
This is a repository copy of Analysing the Safety of Decision-Making in Autonomous 
Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/189278/

Version: Accepted Version

Proceedings Paper:
Osborne, Matthew orcid.org/0000-0002-9941-4531, Hawkins, Richard David 
orcid.org/0000-0001-7347-3413 and McDermid, John Alexander orcid.org/0000-0003-
4745-4272 (Accepted: 2022) Analysing the Safety of Decision-Making in Autonomous 
Systems. In: SAFECOMP 2022 (41st International Conference on Computer Safety, 
Reliability and Security). . (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Analysing the Safety of Decision-Making in

Autonomous Systems⋆

Matt Osborne[0000−0002−9941−4531], Richard Hawkins[0000−0001−7347−3413], and
John McDermid[0000−0003−4745−4272]

Assuring Autonomy International Programme, Department of Computer Science,
University of York, Deramore Lane, York, England, YO10 5GH
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Abstract. We characterise an autonomous system as one that has the
capability to take decisions independently from human control. This in-
dependent and autonomous decision making could give rise to new haz-
ards or hazard causes not present in an equivalent human-controlled sys-
tem, e.g. through lack of human real-world understanding. Despite the
increased adoption of autonomous systems there has been a dearth of re-
search in the area of safety analysis and assurance of decision-making for
autonomous systems. This paper is intended to be a first step to fill this
gap. We compare and contrast the differing causal models of autonomous
and non-autonomous systems, and build on existing safety engineering
techniques in order to define a process (Decision Safety Analysis) for the
analysis of autonomous decision-making. We show, using a real-world ex-
ample, how this process supports the development of safety requirements
to mitigate hazardous scenarios.

Keywords: Decision-Making · Autonomous Systems · Safety Analysis.

1 Introduction

As the use of autonomous systems (AS) for safety-related tasks continues to in-
crease, safety-related decision-making has consequently started to transfer from
the human to the AS. There is a clear and pressing need to assure the safety
of (the AS making) those decisions. There are well established safety analysis
approaches that have been shown to be effective in assuring the safety of tra-
ditional systems. In this paper we investigate how autonomous decision-making
challenges the use of these existing approaches [1]. We identify a lack of un-
derstanding of how these approaches may be applied effectively to autonomous
decision-making. For example, there are existing techniques for the analysis of
human error and erroneous human decision-making but it is not clear that these
could be applied to decision-making by AS. We therefore propose a process for
analysing autonomous decision-making (Decision Safety Analysis (DSA)) that
addresses these limitations.

⋆ This work is funded by the Assuring Autonomy International Programme
https://www.york.ac.uk/assuring-autonomy.
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This paper makes the following contributions:

1. We provide a process for analysing the safety of decisions made by an AS
2. We show how the process can be used to specifically focus further, efficient

safety analyses of the AS
3. We demonstrate how the outcomes of the process can help to elicit safety

requirements in mitigation of unsafe decisions that could be made by an AS.

We present the background and discuss the problem space in Section 2 before
presenting our proposed DSA approach in Section 3. We present an evaluation
of the process in Section 4, before describing the results, wider applications, and
future work in Section 5.

2 Background

AS can be characterised as systems that have the capability to take decisions
free from human control. From a safety perspective it is therefore the ability of
an AS to make safe decisions that is of primary concern. It is crucial where the
actions of an AS may lead to hazardous events, that such decisions are analysed
for their safety impact and sufficient mitigations, or barriers, put in place.

The decision-making of an AS could give rise to new causal/failure paths
that would not be present in an equivalent, human-controlled system (such as
an autonomous robot operating in a typical office environment being ‘unaware’
of the dangers presented by blind corners, or water on a floor). Alternatively,
autonomous decision-making could bring new causes to existing hazards (for
example an office robot failing to detect a door that is comprised of transparent
material). Figure 1 shows a representation of an accident model for a system.
The system is represented as an agent that must:

– Sense the environment in which it operates using exteroceptive sensors
– Understand the information provided from the sensors (and other informa-

tion) in order to create a model of the environment
– Decide how the system should respond based on its environment model
– Act in order to implement the decision made.

This is a continuous process for the system as it responds to changes in the
environment by updating its understanding in order to make new decisions. For
the case represented by the grey boxes at the top of Figure 1, both the under-
standing and deciding aspects are dealt with by a human who forms a mental
model of the environment from the information presented by the sensors and
then, based on that mental model, decides on the best option to ensure the
system meets its operational objectives in a sufficiently safe manner. Figure 1
illustrates that some of the actions the human may choose could result in an
accident. The system would be designed with a combination of human and sys-
tem checks that are intended to prevent failures resulting in accident outcomes.
These are represented in Figure 1 as barriers at multiple points in the model.
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Fig. 1. A causal model of accidents for different types of system

For a traditional software-controlled system, as shown in Figure 1, informa-
tion is processed by the system (the unshaded boxes) and decisions either made
by the human, or suggested by the system, with human oversight. The decisions
made by the software are in fact pre-determined rules which have already been
hard-coded into the design by a human. Analysis and assurance of safe decisions
is primarily a human factors issue for such traditional systems - through analy-
sis of human behaviour and mitigation through human factors measures such as
procedures, training and supervision (although it does depend on the veracity
of information provided by the system).

Figure 1 shows a similar causal model for an AS, represented with dark
boxes. In this case, only the bottom line of the understand and decide elements

are relevant. Here the system has primary responsibility for understanding the
environment, creating an accurate model, and making safe decisions. A key dif-
ference here, as well as the removal of human over-sight, is the fact that the
decisions are not hard-coded at design time as they were for traditional software
systems [2], rather the system is given autonomy to determine the best action,
given its understanding of the environment. Although the level of autonomy
given to an AS can vary, we focus here on the case where there is no human
oversight. From a safety perspective this represents a significant challenge for
two important reasons.

Firstly, for traditional systems, humans have a particularly important role in
dealing with unanticipated or unusual situations that the system may encounter.
A human operator is able to use their contextual knowledge and general intelli-
gence to react safely to unexpected occurrences. This innate ability to generalise
often plays a crucial role in ensuring safe decisions are taken. Although machines
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may present a high level of artificial intelligence, this intelligence is typically very
narrow in nature [15], meaning that they can perform well for very specific tasks,
but their ability to generalise to unanticipated situations is limited. From a safety
perspective this potentially opens up a large new set of hazard causes.

Secondly, safe decision-making can no longer be treated as a human factors
issue. Once the human is removed, it becomes a purely technical issue. This
requires that the safety of decision-making be brought more explicitly into the
system safety engineering process in a manner that it never was previously. In
recent decades there has been extensive research on evaluating the process of
human decision-making (such as [10], [11], [12], and [20]) and work assessing the
human-robot collaborative space (such as [14] and [6]), however these do not
help to address the challenge of autonomous decision-making, per se.

The focus of this paper is on addressing this challenge by developing an ap-
proach for the safety analysis of the decision-making in AS. This analysis seeks
to understand the way in which hazards and accidents may arise from deci-
sions made by an AS, and to derive safety requirements in mitigation. Whilst
autonomous systems that are designed to operate within a controlled and con-
trollable environment (such as automated passenger railways) can reasonably
rely on ‘classical’ safety engineering techniques, a different approach is required
for assuring the safety of decision-making by AS when its operating environment
is more complex.

Although a lot of work has considered the implementation and verification of
AS decision-making, there is an assumption that what constitutes safe behaviour
is known (examples include [19] and [16] but these are by no means exceptions),
we have found very little work on safety analysis and identification of mitigations
for such systems. This paper begins to address that gap.

3 A Decision Safety Analysis Process

Key to the safe operation of an AS is the establishment of a suitably-defined
Operational Domain Model (ODM) (often referred to in the automotive industry
as an Operational Design Domain (ODD) [13]). The ODM defines the scope of
operation within which the AS is to be shown to be acceptably safe. This will
include any assumptions made, the features of the operating environment (e.g.
people, road type and layout, weather conditions) which the AS is expected to
sense, understand, and potentially interact with prior to making decisions as
it carries out its tasks. If the ODM is insufficiently defined then the AS may
encounter scenarios during its operation that were not considered during the
development of the system, and which could therefore be unsafe and for which no
assurance is provided. It is crucial therefore that all relevant aspects, features and
interactions within and of the operational domain are defined - including those
non-mission interactions [8]. Despite the importance of a sufficiently defined
ODM, the assurance of an ODM is out of the scope of this paper.

Use cases can be created for each of the tasks which identify the elements
of the ODM which the AS must understand and with which it may interact.
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Examination of these use cases reveals the occasions when key decisions must be
made by an AS. These decisions must be modelled and analysed to determine the
nature of any hazardous scenario that may arise as a result of the AS decision.

We consider hazardous scenarios to be special cases of the Operating Sce-
narios for the AS, which are identified as those which could result in an unsafe
outcome. ‘Scenarios’ describe the combination of the AS Operating Scenario and
the relevant environment variables. Potentially hazardous scenarios for an AS
arise due to decisions taken which are unsafe in a given environmental state
when performing a particular operating scenario (the same decisions might be
safe in other circumstances). Hazardous scenarios for the AS can therefore be
described using the general form:

<AS operating scenario><relevant environment variables>AND

<decision>, where:

– An AS Operating Scenario describes what task(s) the AS is undertaking
– A Relevant Environment Variable is one or more features of the environ-

ment relevant to the decision point
– The Decision is the selected course of action as a result of the scenario and

relevant environment variables.

As an example, for an autonomous passenger shuttle undertaking the task of
navigating a (UK) roundabout, we can identify a decision point for whether the
shuttle should enter the roundabout. For this case, an example of a ‘relevant’
environment variable would be a cyclist on the roundabout to the right of the
AS. A pedestrian on the footpath 20m behind the AS would not be considered
relevant as they will not influence the decision taken by the AS. Other variables
could concern the road state, or weather conditions at the time a decision is
required to be made.

Decisions taken by the AS can only be in relation to variables that the system
can control, i.e. speed and/or direction - as the environmental variables are
outside of the control of the AS. As such, the options for the passenger shuttle
at this ‘decision point’ are:

1. Enter the roundabout (at variations in speed)
2. Stop and wait.

The approach we present in this paper can be used to identify hazardous
scenarios by considering the real world state in combination with the belief state
of the AS, and each of the options at the decision point, e.g. the 2 options for the
shuttle identified above. This analysis would thus identify hazardous scenarios
such as:

– <the passenger shuttle is approaching a roundabout><with a cyclist on the
roundabout to the vehicle’s right> AND <the passenger shuttle enters the
roundabout> or,
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– <the passenger shuttle is approaching a roundabout><with no cyclist present>
AND <the passenger shuttle stops and waits>.

Whilst the first case presents an obvious risk, the second case may not always
be safe, as should the AS decide to brake rapidly and unexpectedly, a hazardous
outcome may be realised in the form of a rear-end collision.

3.1 The Decision Safety Analysis Process

Before we discuss the DSA process in detail, we must first consider what we
mean by ‘decision-making’ in AS. The nature of the decisions made by AS can
vary enormously depending on the type of system and the application domain.
For example:

– An autonomous cancer-screening system decides on the appropriate patient
referral based upon information from scans and other medical data

– An autonomous vehicle decides on a safe course of action if it detects an
object in its path. The decision must take account of multiple other envi-
ronmental variables, such as the presence of other road users, and weather
conditions.

For the DSA Process it is important to distinguish between what is actually
the decisions of interest for the safety analysis and what is part of the under-
standing task. This distinction can be highlighted in the second example above,
which can be split into two parts:

– Understand - is there an object in the path of the vehicle?
– Decide - what am I going to do about it?

For AS the complexity of the operating environment can have a much greater
impact on safe behaviour than for traditional systems, as this increases the
chance of unanticipated and unusual events (sometimes referred to as ‘edge
cases’). This can be a particular challenge since AS typically operate in highly
complex environments that often cannot be fully specified at design time [3].
Whilst dealing with complex environments is not limited to AS, traditional sys-
tems operating in complex environments place a lot of reliance on the human
ability to deal with any unanticipated events. With an AS we cannot rely on a
human to ensure a safe state is maintained, and must rely on the AS to respond
safely under all situations within the entire operating domain. This requires that
the analysis incorporates consideration of the operating environment in a more
systematic and explicit manner than is currently the case.

Guiochet advocates the use of Use Cases and Sequence Diagrams (and then
State Charts as required) as the models for undertaking HAZOP-UML analysis
[7]. However, we have found that these do not make good models for analysing AS
decisions as they do not make the decisions explicit, nor do they lend themselves
to methodical analysis with defined start/finish points. Instead our approach
uses Activity Diagrams for each use case (as shown in Figure 3 for the example
of an autonomous robot) with the following explicit information included:
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– Decision points (annotated ‘DP’ within the diamonds) identified from the
Use Cases and ODM. These represent the instances where a decision must
be made by an AS due to a required interaction with the environment.

– Options associated with each decision point (represented as circles). These
represent the options that an AS could select for each decision point.

– Understanding points in the use case represent the points at which the AS
requires information about a particular relevant environment variable (non
‘DP’ diamonds).

In addition, for each Activity Diagram it is important to explicitly model all
relevant assumptions and preconditions as these must be considered as part of
the analysis.

It is important that the model is a complete representation of the operat-
ing scenario, particularly that the decision and understanding points have been
adequately elicited. We can gain confidence in this through utilising an explicit
domain model, but further work is required, and research such as that presented
in [17] has started to address the completeness of ODMs via modelling and
simulations, but further work is required.

Having established the Activity Diagram(s) for the system, we then analyse
that model to determine hazardous scenarios, i.e. the way in which the deci-
sion could lead to selecting an option that is unsafe given the relevant environ-
ment variables. As for many similar safety analysis tasks, we propose the use of
deviation-based analysis of those decision points in order to identify plausible un-
safe behaviours. We considered a number of existing deviation-based techniques
that have been applied to software-based systems and could be adapted to de-
cision analysis such as FFA/FHA [5], STPA [9], and HAZOP [4]. In particular
we considered HAZOP-UML [7] which was developed as a method for analysing
UML models of robot systems. In general, the use of a HAZOP-based approach
does seem reasonable, yet it does not support the analysis of the decision models
we propose, nor explicitly consider the impact of the operating domain as part
of the analysis. In addition the HAZOP-UML approach is exhaustive but unfo-
cused, and will therefore quickly lead to a state explosion requiring substantial
analysis effort without necessarily revealing the safety issues of most concern.

We have therefore developed our DSA approach to ensure the analysis is
driven by consideration of the identified decision points to establish potentially
hazardous deviations. As well as identifying hazardous scenarios associated with
decision points, our process also provides the focus for further, more detailed
analysis using, for example, HAZOP-UML. Our process is summarised in Figure
2 and is described below. A more detailed description is provided at [18].

STEP 1 The DSA requires the identification of the relevant environment
variables pertinent to the scenario under analysis. These variables are identified
through recourse to the ODM, as discussed earlier. One potential approach would
be to use [8], but the decision model we present does not presume any particular
method.

STEP 2 Decision Points are identified by considering the decisions required
to be made as a result of the interactions between the AS and the environment.
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Fig. 2. The Decision Point Analysis Process

Once the decision point is identified, the options available to the AS are enu-
merated through considerations of the system variables, as discussed previously.

In the example at Table 1 in Section 3.2, as the AS can only amend system
variables it has control over (speed and/or direction), we defined 4 options in
this case:

1. Continue on the current path at current speed
2. Continue on the current path at reduced speed
3. Take and alternative route at current speed
4. Stop and wait.

It is now possible to create an Activity Diagram that includes Understanding
Points identified in Step 1 and Decision Points identified in Step 2. An extract
of an Activity Diagram for an example system is provided at Figure 3.

STEP 3 The potentially hazardous scenarios must be determined (repre-
sented in the 1st column of Table 1). This is done by firstly considering the
possible options defined at Step 2 in combination with both the real world state,
and the system belief state at the point at which that decision is made. Real
world and system belief states are often represented as Booleans. In the exam-
ple we give in section 3.2, the state of ‘True’ for the real world state means a
blind corner is present, and a state of ‘True’ for the system belief means that
the AS “knows” this. The potentially hazardous scenarios will also consider false
negatives (i.e. a real world state of ‘False’ and a system belief state of ‘True’).

For the extract in Table 1 in Section 3.2 we can see 14 of the scenarios which
are enumerated by considering the 4 options along with the real world, and
system belief states regarding the presence of a blind corner and a static object.

STEP 4 The outcome of each potentially hazardous scenarios enumerated
in Step 3 must be determined by considering the real world impact should that
scenario manifest. For any scenarios with hazardous outcomes, the hazardous
scenarios can be specified using the general form described in Section 3.

STEP 5 The process then focuses on mitigating hazardous outcomes. Such
mitigations could be in the form of design changes (e.g. adding a diverse sensor),
or through derived safety requirements. These mitigations can be levied against
the sense capability, detection capability, against the decision-making algorithm
itself or on supporting infrastructure, where appropriate.
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Identifying effective mitigations requires further more detailed analysis. The
hazardous scenarios defined at Step 4 are used to identify the logic nodes of
interest in the Activity Diagram (such as Understanding points) against which
a targeted analysis such as HAZOP-UML can then be applied. The extract at
Figure 3 shows, in red font, the logical nodes of interest to which the Targeted
HAZOP will be applied.

The findings of the targeted HAZOP are used to elicit further safety re-
quirements to mitigate potential causes of hazardous scenarios. This targeted
approach to undertaking the HAZOP is explained in full and illustrated on a
mobile robot at [18].

It is only because we have already assessed the possible outcomes using DSA
that the HAZOP can be targeted in this manner. It allows us to focus the analysis
on the logic points of interest that could contribute to an erroneous decision
being taken. This approach prevents the state explosion that manifests from
applying HAZOP guidewords against every logical node in an Activity Diagram
by allowing scenarios resulting in safe (if not always efficient) outcomes to be
removed from further analysis.

In the next section we present an example of applying our approach to robots
that are designed to be used for delivering small packages within one of our
University buildings [18].

3.2 Robot Delivery System Example

We are developing a number of small robots that are capable of delivering pack-
ages around a university building. Building occupants may request a robot to
come to them anywhere in the building and deliver a package to a desired desti-
nation. The building comprises 3 floors containing offices, laboratories of varying
size, meeting/conference facilities, and various comfort/rest areas. A large goods
lift in the centre of the building provides access to all floors, and a large shared
atrium houses the reception area for visitors. The building benefits from a build-
ing management system (BMS) that provides automation and control of climate,
lighting, doors, and the lift.

Through interacting with the BMS the robot is able to open/close doors and
use the lift to move around the building. A central server (Robot HQ) is used
to coordinate the allocation of tasks amongst the multiple robots that operate
in the building at any time, but all movement around the building is controlled
locally by each individual robot. In addition to the basic delivery and messenger
tasks, the robots must interact with human occupants and other robots within
the fabric of the building. The primary overall use case (01) for the robots is
‘Package Delivery’. We broke this down to the following, more detailed use cases:

02. Request robot
03. Load package
04. Travel to destination
05. Unload package.

Within use case 04 a number of exception cases were identified, including:
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A. Dynamic object in path of robot
B. Static object in path of robot
C. Forbidden zone on planned path
D. Use Lift
E. Pass through doorway
F. Blind corner on route.

Within use case 04 a number of preconditions were also identified, including:

– Precondition1: Robot is available
– Precondition2: Sender and receiver are in accessible locations
– Precondition3: Robot battery charge is sufficient for task.

The identified use cases relates to 4 different actors:

– Sender
– Receiver
– Building Management System
– Robot HQ.
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Fig. 3. An Extract of the Decision Activity Diagram for Use Case 04 - “Travel to
Destination”

These, along with the elements of the operating environment defined in
the ODM, assumptions, normal flows, alternative flows, and safety require-
ments/invariants represent the primary interactions that the robots make.

We have used the DSA Process to analyse the system described above. As
described in Section 3.1 the first thing we require is a model of the decisions taken
by the delivery robots. Figure 3 shows an example decision activity diagram for
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Table 1. Extract of a Decision Safety Analysis Table

Operational Scenario: Travel to Destination

Environment Variables:

<Robot approaching blind corner><Static Object in Path>

Potentially

Hazardous

Scenarios

Real

World

State

System

Model

Belief

Option Outcome
Safety

Reqmt

1

T T

Continue on Current
Path at Current Speed

Hazardous -
Collision

#1
#2
#3

2
Continue on Current
Path at Reduced Speed

Hazardous - though
severity may reduce

#2

3
Take an Alternative
Route at Current Speed

Correct decision
#2
#3

4 Stop and Wait Safe but inefficient

5

T F

Continue on Current
Path at Current Speed

Hazardous #4

6
Continue on Current
Path at Reduced Speed

Hazardous - though
severity may reduce

#5

7
Take an Alternative
Route at Current Speed

Safe - but predicated
on erroneous
understanding

#3

8 Stop and Wait
Safe but
inefficient

9

F T

Continue on Current
Path at Current Speed

Safe - but predicated
on bug in path
planning

#6

10
Continue on Current
Path at Reduced Speed

Safe - but predicated
on bug in path
planning

#6

11
Take Alternative
Route at Current Speed

Safe - but predicated
on bug in path
planning

#6

12 Stop and Wait
Potentially Unsafe
(Sudden Stop)

#6

13
F F

Continue on Current
Path at Current Speed

Correct decision

14
Continue on Current
Path at Reduced Speed

Safe - but predicated
on bug in path
planning

Safety Requirements

1 The robot shall take into account blind corners when route plannning

2
The robot shall reduce its speed to 0.25m per second when approaching
a blind corner

3
The robot shall provide audio and visual alerts when approaching a
blind corner

4
The Building Management System shall enforce robot speed
reductions in areas of blind corners

5 The robot shall be aware of blind corners on its planned path

6 The robot shall not falsely detect the presence of blind corners
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Use Case 04. Through consideration of the interactions of the robot with the
elements of the defined ODM, a number of scenarios were identified including the
robot approaching a blind corner. By blind corner we mean one the robot cannot
“see” around, and these might be permanent, e.g. due to walls, or temporary,
e.g. due to a bag being placed against the side of a desk blocking the normal line
of sight for the robot’s optical sensors. Table 1 shows the results of the analysis of
this scenario, showing 14 identified scenarios and their potential outcomes. Note
that requirement #4 deals with permanent blind corners but will be unable to
deal with temporary problems caused by placing of bags, etc. Requirement #5
requires the robot to sense blockages that create temporary blind corners – for
example determining, using a depth camera, that it cannot “see” as far as normal
in the relevant direction at this location. This is therefore a requirement on the
understanding component of the system, which also requires information about
the layout of the building (from maps or the BMS) to detect temporary blind
corners and to inform the decision-making algorithm accordingly. Details such
as the above would be added as the safety requirements are allocated to the
system components and refined.

This analysis elicited a number of hazardous scenarios, for example:

<the robot is travelling to its destination><approaching a blind corner with
a static object in its intended path> AND <the robot continues at current
speed>.

In conjunction with a targeted HAZOP we were able to identify a number of
mitigations levied against both the robots and other actors (e.g. the BMS being
required to enforce robot speed reductions in areas including permanent blind
corners). The mitigations identified from the DSA can be seen in Table 1, and
mitigations from the targeted HAZOP can be found in full at [18].

4 Process Evaluation

We have so far evaluated our DSA process in two ways. Firstly, we assessed the
usability of the approach by applying it to a real-life case study. This showed
the process was able to successfully generate a set of safety requirements in
mitigation of identified hazardous scenarios. Secondly, we have evaluated the
efficiency of the process by also carrying out a full HAZOP-UML analysis, and
comparing the effort and outputs for both the DSA and HAZOP-UML.

When we applied our DSA process to the robots, we elicited 32 safety re-
quirements, of which 3 were allocated to the BMS and the rest to the robots
themselves. The process was simple to apply using the Activity Diagrams that
had been created for the robot tasks. In carrying out this evaluation it was noted,
however that well-defined use cases and a clearly structured and complete ODM
were essential to the efficacy of the process. For example, if the ODM is missing
any of the key elements of the operating environment, this would mean that
potentially critical interactions could be missed. The challenge of specifying use
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cases and ODMs is widely reported ([13] for example) and requires further work
which is outside the scope of this paper.

It was also noted that for the requirements definition phase, it is often nec-
essary to specify constraints as part of the derived safety requirements. As is
always the case for complex systems and environments, defining these safety
constraints can be challenging. For example eliciting the required range, bear-
ing, and detectable distance of static and dynamic objects will be influenced by
the size, speed, and braking capability of the AS. Defining such constraints as
part of the safety requirements is something we intend to explore further, but is
out of scope for this paper.

We have described how our process enables further focused analysis of causes
of unsafe decisions through the use of a targeted HAZOP that enabled safe sce-
narios to be excluded from the analysis. This allows a complete analysis without
the need for exhaustive state coverage. In order to test this, a full HAZOP-UML
was undertaken on the entire use case for our system (considering all logic nodes
in the activity diagrams). We found that this full HAZOP analysis was a very
time consuming activity due to the expected state explosion (generating 834
lines of analysis). Despite this, it did not identify any safety requirements to
be placed on the robots in addition to those elicited much more efficiently from
applying our process and subsequent targeted HAZOP. The full use cases, DSA
results, HAZOP, and safety requirements elicited in mitigation can all be found
at [18].

5 Discussion and Conclusions

This paper has made the following contributions. Firstly, we have demonstrated
a process for analysing the safety of AS decision-making. Secondly, we have
demonstrated how the process can be used to facilitate a targeted approach
to HAZOP, that avoids analysing safe (but perhaps inefficient) outcomes and
prevents the state explosion associated with applying guidewords to every log-
ical node of a use case. Thirdly, our approach enables the elicitation of safety
requirements in mitigation of hazardous decisions made by an AS.

We have, so far, only applied the DSA approach to a single robot system
in a controllable environment, and do not yet make an argument regarding the
generalisability of our approach. In order to check the wider applicability of the
approach we are applying the process to more complex, less controllable operat-
ing domains, including outdoor operation. This will also be further extended to
consider a multi-robot system, and concurrent and consecutive decision-making.
Our current case study considers robots that operate in an environment that in-
cludes humans, but it has not yet been applied to systems involving robot-human
collaboration (where humans work together with the robots to fulfil tasks). We
therefore also plan to apply the process to a COBOT [6] system.

We anticipate carrying out additional applications of our approach in order
to further validate its efficacy and to demonstrate its wider applicability.
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