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Abstract— Assurance cases are used to demonstrate confidence 
in properties of interest for a system, e.g. for safety or security. 
A model-based assurance case seeks to bring the benefits of 
model-driven engineering, such as automation, transformation 
and validation, to what is currently a lengthy and informal 
process. In this paper we develop a model-based assurance 
approach, based on a weaving model, which allows integration 
between assurance case, design and process models and 
metamodels. In our approach, the assurance case itself is 
treated as a structured model, with the aim that all entities in 
the assurance case become linked explicitly to the models that 
represent them. We show how it is possible to exploit the 
weaving model for automated generation of assurance cases. 
Building upon these results, we discuss how a seamless model-
driven approach to assurance cases can be achieved and 
examine the utility of increased formality and automation. 

Keywords-assurance cases, safety cases, arguments, model-
driven engineering, weaving 

I. INTRODUCTION 
Systems used to perform critical functions require 

justification that they exhibit the necessary properties (such 
as for safety or security). Assurance cases provide an explicit 
means for justifying and assessing confidence in these 
critical properties. In certain industries, specifically in the 
safety-critical domain, e.g. defence, aviation, automotive, 
and nuclear, it is a regulatory requirement that a safety or an 
assurance case is developed and reviewed as part of the 
certification process [1]. An assurance case is defined as a 
“reasoned and compelling argument, supported by a body of 
evidence, that a system, service or organisation will operate 
as intended for a defined application in a defined 
environment” [2]. 

Assurance cases are typically represented textually, using 
natural language, or graphically, using structured notations 
such as the Goal Structuring Notation (GSN) [2] or Claims, 
Arguments and Evidence (CAE) [3]. In order to improve 
standardisation and interoperability, the Object Management 
Group (OMG) has recently specified and issued a Structured 
Assurance Case Metamodel (SACM) for the representation 
of assurance cases [4]. Both GSN and CAE conform to 
SACM. 

However, the development and acceptance of assurance 
cases remain a significant challenge for engineers and 
assessors. Assurance cases are large and complex, with a 
great deal of explicit and implicit dependencies. In particular, 

the lack of integration with, and the limited traceability to, 
design artefacts can undermine confidence in the reasoning 
presented, and the evidence referenced, in the assurance 
case. In particular, the limited automated capability for both 
constructing and analysing the dependency of assurance 
cases on other engineering artefacts makes it difficult to 
navigate, check and maintain the assurance case arguments 
and evidence.    

By exploiting metamodels and well-defined modelling 
languages, an assurance case representation can be treated as 
a model, potentially bringing the benefits of model-driven 
engineering, such as automation, transformation and 
validation, to what has been a lengthy and informal process. 
It also has the potential to improve traceability between the 
assurance case and the design and analysis models and 
therefore support the coevolution of the system design and 
the assurance case. This in turn can help highlight, in a 
timely manner, weaknesses in the design, evidence and 
potentially the argument.  

In this paper we develop a model-based assurance 
approach, based on a weaving model, which allows 
integration between assurance case, design and process 
models and metamodels. We show how it is possible to 
exploit the weaving model for automated generation and 
analysis of assurance cases. Building upon these results, we 
discuss how a seamless model-driven approach to assurance 
cases can be achieved and examine the utility of increased 
formality and automation.  

Specifically, the contributions of this paper are as 
follows:  

a) A model-based approach to managing assurance 
case models; 

b) A weaving model that allows interoperation;  
c) A GSN metamodel that is compliant with SACM; 
d) Automatic instantiation of assurance argument 

patterns. 
This paper is organised as follows. Section 2 describes 

our approach. In section 3, we use a case study to illustrate 
how our approach is implemented. Section 4 describes how 
our approach relates to other work in this area. Section 5 
presents conclusions based upon our work to date and 
discusses future development of the approach. 

II. MODEL-BASED SAEETY CASES 
Our approach is illustrated in Fig. 1. In the following 

sections, we discuss in detail each element of the approach. 



 
Figure 1. Overview of the Model-Based Assurance Case Approach 

A. GSN Patterns 
Patterns are widely used in software engineering as a way 

of abstracting the fundamental design strategies from the 
details of particular designs. The use of patterns as a way of 
documenting and reusing successful assurance argument 
structures was developed by Kelly [5]. Assurance argument 
patterns provide a way of capturing the required form of an 
assurance argument in a manner that is abstract from the 
details of a particular argument. It is then possible to use the 
patterns to create specific arguments by instantiating the 
patterns in a manner appropriate to the application. 
Assurance argument patterns can be captured using GSN [2]. 

Assurance argument patterns essentially define 
requirements for the necessary information (e.g. to 
instantiate the assurance claims) and evidence (to support 
those claims). It is possible to manually obtain this 
information from design or analysis documentation, or 
directly from an engineer, and instantiate the argument 
patterns; this is current practice. Our approach instead uses 
the models themselves to automatically instantiate the 
patterns. Instantiation involves both instantiating ‘roles’ in 
the argument patterns, and making instantiation choices. 

Roles are instantiable entities within elements of the 
argument pattern. They represent an abstract entity that 
needs to be replaced with a concrete instance appropriate for 
the target system. For example in Fig. 2, the role within this 
assurance claim, represented in curled braces is ‘Function’. 
This entity must be replaced with the name of the relevant 
function of the system. In addition, argument patterns will 
often include multiplicity relations, where the number of 
required argument elements must also be determined (e.g. an 
entity created for each of the functions present in the system 
design). 

 

 
Figure 2. A GSN Argument Element Requiring Instantiation 

Assurance argument patterns will also often represent 
choices for different argument approaches that may be 
adopted. At instantiation, the assurance claims most 
appropriate for the target system must be chosen from the 
options provided in the pattern.  

Decisions on how to instantiate choices and optional 
elements within argument patterns are currently based on 
experience and judgement. Using a model-based approach 
allows consistent, reusable instantiation rules to be 
established, ensuring consistent instantiations. This will be 
particularly important where complicated relationships 
between multiple models are required.  

Our approach considers the GSN argument patterns as 
models. As with all the models used, the argument pattern 
models must be consistent with an explicitly defined 
metamodel, and must be in a machine-readable format. We 
discuss the format of argument pattern models in Section 3. 
Below we address the issue of a metamodel for GSN. 

B. GSN Metamodel 
 
GSN argument patterns conform to the syntax and 

semantics defined by the GSN standard [2]. Currently the 
GSN standard does not define a GSN metamodel. However, 
as already discussed, an OMG standard metamodel for 
structured assurance cases (SACM) exists [4]. We have 
extended the SACM metamodel to include specific GSN 
entities as shown in Fig. 3.  

For example, the notion of Claim in SACM is extended 
to cover GSN_Goal, GSN_Assumption, GSN_Justificaton 
and GSN_ContextAsAssertion. Further, the pattern notation 
of GSN is richer than that of the SACM core, so we have 
also introduced these additional pattern extensions into the 
metamodel in Fig. 3 (e.g. a new entity GSN_Choice and 
attributes choice and multiplicity). Our GSN metamodel, 
including a more detailed description, is to be included as a 
proposal in issue 2 of the GSN standard [2]. 

C. Reference Information Models 
What we refer to as the reference information models are 

the set of models containing the information required for the 
instantiation of the assurance argument pattern. In theory, 
since the potential scope of assurance argument patterns is 
unbounded, so are the number and type of models that will 
be required. In practice however, the required information 
models will mainly be design, process and analysis models 
for the system. The particular models required can only be 
determined from the specific argument patterns themselves, 
with the information need being established from the roles of 
the instantiable elements.  

The information models are expected to be diverse in 
nature, however our approach only requires that the models 
conform to a defined metamodel. Each model may have a 
different metamodel, and this must be explicitly defined such 
that it can be used in developing the weaving model (Section 
2.D). Our approach places no restrictions on the tools and 
notations used to generate the models, which in turn 
maximises the information that becomes available for 
automatic pattern instantiation. For most argument patterns 



multiple models are required to provide the instantiation 
information. Consider for example an argument pattern 
regarding the error behaviour of a component (Table 1). By 
picking out some of the key roles in the argument pattern we 
can see the different reference information models needed. 

TABLE I.  REFERENCE MODELS FOR DIFFERENT ROLES 

Role Reference Information Model 
Component AADL specification 
Component error model AADL error model specification 
Error effect FMEA analysis results 
Stage FMEA process model 

 
There are a number of things to note here. Firstly, some 

of these models are of a type that is normally informally 
defined. For example the results of Failure Modes and 
Effects Analysis (FMEA) are normally captured as a simple 
table, and the FMEA analysis process will often be described 

using a textual description in a process document, or as a 
flow chart. Secondly, it is not necessary to have all the 
models relating to an argument pattern in machine-readable 
format in order to undertake automation of the instantiation. 
Those entities where the information model is available will 
be instantiated, while those entities where the model is not 
available will remain uninstantiated, requiring subsequent 
manual instantantiation. Thirdly, there is clearly an 
interrelationship between these four reference information 
models. For example, the failure modes and effects identified 
in the FMEA analysis results must relate to error types in the 
AADL error model. These inter-model relationships, 
although generally implicitly understood, are often not 
explicitly documented. As part of creating the weaving 
model (Section 2.D), our approach requires that these 
relationships be explicitly captured.  

 
Figure 3. Proposed GSN Metamodel 



D. Weaving Model 
A weaving model is at the heart of our approach. It is the 

weaving model that links the reference information 
metamodels to the GSN argument patterns. Model weaving is 
an approach to model transformation defined by [8] as an 
operation "whose primary objective is to handle fine-grained 
relationships between elements of distinct models, establishing 
links between them. These links are captured by a weaving 
model. It conforms to a metamodel that specifies the link 
semantics”. The weaving can be performed either manually, 
i.e. by linking the related elements by hand, or automatically, 
i.e. through a model transformation. An advantage of model 
weaving is that the mappings between the models themselves 
are also considered as models bringing expressiveness, 
flexibility and genericity [9].  

In our approach a weaving model captures the 
dependencies between the roles in the GSN patterns and 
individual reference information metamodels and also between 
the multiple reference information metamodels. It is the 
dependency information captured in the weaving model that 
enables the argument instantiations to be automatically 
performed. We provide more details on the weaving model 
through an example in Section 3. It is always necessary to 
identify these dependencies when instantiating an assurance 
argument pattern.  

Normally, however, such as when manually instantiating 
argument patterns, these dependencies are implicit or 
hardwired. Our utilisation of a weaving model makes this 
dependency information explicitly defined. The weaving model 
also enables the specification of mechanisms for capturing the 
more complex dependencies between models that are often 
required for an assurance argument (e.g. the dependencies 
between a fault model and the model of the analysis process 
used to generate it). There are existing approaches and tools, 
such as that described in [9] that support the creation of 
weaving models. 

E. Model-Based Technology 
Using a model-based approach allows us to take advantage 

of the extensive set of model management tools that are 
available. This brings the opportunity to harness the tools in 
order to quickly and easily add extra functionality and features. 
In particular we make use of the Epsilon family of languages 
and tools for model management [10]. Epsilon includes the 
following languages that are particularly useful with respect to 
assurance cases: 
• Epsilon Object Language (EOL) is an imperative 

programming language for creating, querying and 
modifying models. We use EOL for the pattern 
instantiation program. 

• Epsilon Transformation Language (ETL) is a hybrid, 
rule-based model-to-model transformation language. It can 
transform many input to many output models, and can 
query, navigate and modify both source and target models. 
ETL supports transforming diverse model inputs prior to 
use by the pattern instantiation program. 

• Epsilon Validation Language (EVL) is a validation 
language that implements model constraints. EVL allows 
us to automatically check and enforce sets of constraints, 
both on the assurance arguments themselves, and also on 

the relationships between the argument and the reference 
information models. 

• Epsilon Generation Language (EGL) is a template-
based model-to-text language for generating code, 
documentation and other textual artefacts from models. 
We use EGL in order to generate the output of the 
instantiation program. EGL provides us with the flexibility 
to provide a number of options for the output format (e.g. 
GSN, text or tabular formats). 

F. Instantiation 
The instantiation program is an EOL program that runs on 

the Eclipse platform. It requires as input: GSN argument 
pattern models, reference information models and a weaving 
model. The instantiation program (Fig. 4):    

1. identifies the elements requiring instantiation in the 
GSN argument pattern models; 

2. determines which information from the reference 
information model is required to instantiate each GSN 
element by querying the weaving model;  

3. obtains the required information from the relevant 
information models; and 

4. outputs instantiation information. 
For any information models that conform to a metamodel 

included in the weaving model, the instantiation program will 
identify the required information from those information 
models and perform the instantiation. To do this, the 
instantiation model uses the mappings in the weaving model in 
conjunction with the relationships between the entities in the 
metamodel, also defined in the weaving model. 
 
for	  all	  nodes	  in	  GSN_Pattern_Models	  
	  	  	  {if	  (tobeInstantiated=true)	  
	  	  	  	  	  	  then	  instantiate(node)	  
	  	  	  else	  
	  	  	  	  	  	  add	  node	  to	  output	  GSNML	  file}	  

	   	  

for	  all	  relationships	  in	  GSN_Pattern_Models	  
	  	  	  {add	  relationship	  to	  output	  GSNML	  file}	  

	   	  

instantiate(node)	  
	  	  	  {if	  (relationship	  pointing	  to	  node	  is	  multiplicity)	  
	  	  	  	  	  	  then	  makeMultiples(node)	  
	  	  	  else	  
	  	  	  	  	  	  makeInstance(node)}	  //for	  simplicity,	  this	  pseudo	  code	  does	  not	  consider	  choices	  

	   	  

makeInstance(node)	  
	  	  	  {for	  each	  node	  role	  
	  	  	  	  	  	  {find	  target	  type	  of	  weaving	  model	  mapping	  for	  role	  
	  	  	  	  	  	  for	  all	  elements	  of	  reference	  design	  model	  	  
	  	  	  	  	  	  	  	  	  {if	  (element	  type=target	  type)	  
	  	  	  	  	  	  	  	  	  	  	  	  extract	  information	  from	  reference	  design	  model	  element	  
	  	  	  	  	  	  	  	  	  	  	  	  create	  node	  in	  output	  GSNML	  file	  using	  extracted	  information	  
	  	  	  	  	  	  	  	  	  	  	  	  create	  a	  relationship	  pointing	  to	  created	  node	  in	  output	  GSNML	  file}}}	  

	   	  

makeMultiples(node)	  
//number	  of	  instances	  required	  is	  determined	  from	  information	  from	  the	  	  
//reference	  design	  	  
	  	  	  {identify	  the	  multiplicity	  role	  type	  for	  the	  relationship	  pointing	  to	  node	  
	  	  	  find	  target	  type	  of	  weaving	  model	  mapping	  for	  multiplicity	  role	  type	  
	  	  	  //for	  simplicity,	  this	  code	  does	  not	  describe	  how	  dependencies	  in	  the	  metamodel	  
	  	  	  //	  are	  used	  to	  identify	  the	  relevant	  elements	  of	  the	  reference	  design	  model	  
	  	  	  for	  all	  elements	  of	  reference	  design	  model	  
	  	  	  	  	  	  {count	  if	  (element	  type=target	  type)}	  
	  	  	  for	  1	  to	  count	  
	  	  	  	  	  	  {instantiate(node)	  
	  	  	  	  	  	  //the	  sub-‐structure	  below	  this	  must	  also	  be	  instantiated	  multiple	  times	  
	  	  	  	  	  	  instantiate	  argument	  pattern	  model	  below	  node}}	  

Figure 4. Instantiation Pseudo Code 



G. Instantiation Output 
As a result of using the Eclipse framework, there are many 

different ways in which the instantiation program can output 
the instantiation information. It is important that the output is 
presented in a manner that is easily and clearly understood by a 
human. This is required for presentation as part of the 
assurance case, as well as for review purposes. It is also 
desirable for the output to be amenable to end-user editing to 
facilitate human instantiation of undeveloped parts of the 
assurance argument. The output argument instantiation model 
should therefore be independent of, but compatible with, 
existing GSN editor tools.  

Our approach allows us to provide such an output in the 
form of a GSNML model file for the GSN instantiation model 
that is compliant with the GSN metamodel. This then allows 
representation and editing of the argument instantiation in 
manner familiar to the end-user. 

III. CASE STUDY 
In this section, we use a security system to illustrate how 

our approach can be used to automatically generate an 
assurance argument directly from design models through the 
use of a weaving model. 

A. System 
The example we present is a software cryptographic 

controller system taken from [11]. The architecture for the 
system is shown in Fig. 5. 

 
Figure 5. Software Architecture of Crypto Controller System 

The system is a controller for end-to-end encryption. It 
takes inputs as clear text from the red network, encrypts the 
content of the message, and sends the encrypted message out 
on the black network. Inputs comprise both a header, which 
contains destination and other routing information, and the 
message content itself. Only the message content is encrypted 
since the black network has to read and process the headers so 
the message can be correctly routed to its destination.  

For this cryptographic controller system, the overall 
security policy is that no unencrypted message content 
information shall be passed to the black network. The local 
policy for each of the components is that:    

• crypto shall encrypt everything that leaves on its 
outgoing channel;  and   

• bypass shall ensure that only valid protocol headers 
are passed from red to black. 

In this system the software in the red and black components 
can be completely untrusted (i.e. no assurance is required in 
these components in order to assure the overall security 
policy). 

We wish to create an assurance case regarding the security 
of this system. The assurance argument pattern that can be used 
to structure the argument is shown in Fig. 7. This argument 
pattern is used to demonstrate the enforcement of the overall 
security policy through consideration of the enforcement of the 
locaNl security policy defined for each component in the 
system, as well as the composition of the components on the 
implementation platform (ensuring interference between 
components only occurs over defined paths). This pattern 
considers just the high-level structure of the argument. Further, 
more detailed patterns (not presented here) are available for 
creating arguments regarding the implementation of the 
components and their composition. 

B. Implementation 
We now provide a walk-through of applying our approach 

to instantiate the assurance argument pattern from Fig. 7 to 
create the high-level of the security argument for the 
cryptographic controller system. 

Firstly we create a model of the assurance argument pattern 
that is conformant to the GSN metamodel presented in Fig. 3. 
The most straightforward approach is to use the Eclipse 
framework to generate a tree-based editor from the GSN 
metamodel and then use it to construct the models. The 
creation of GSN patterns is however a creative activity, often 
involving discussion and review with multiple stakeholders. In 
such situations, a graphical representation is normally 
desirable. To enable graphical model generation we developed 
from the GSN metamodel a graphical editor using GMF 
(Graphical Modelling Framework). Fig. 6 shows an extract 
from the resulting model in XML form (which we call 
GSNML files). This GSNML file was taken as input by the 
instantiation program. 

 

 
Figure 6. Assurance Argument Pattern Model in GSNML (Partial) 

For this example the required instantiation information can 
be obtained from the AADL [13] specification that has been 
created for the system, a small part is seen in Fig. 8. This is a 
straightforward exercise. Even, however, in cases where a 



required information model is informally defined, such as the 
FMEA analysis process description mentioned earlier, it is 
often possible to generate simple XML representations 
sufficient to input to the instantiation program. As an example 
we have generated a process model from a flow-chart of the 
FMEA analysis process. The flow chart conforms to the 
generic process metamodel defined in [12]. 

We created a weaving model to capture the dependencies 
between the roles of the argument pattern model and the 

elements of the AADL meta-model (the AADL meta-model is 
defined in [13]). Fig. 9 shows a graphical representation of this 
weaving model. The left hand side shows the roles from the 
argument pattern, the right hand side represents the AADL 
meta-model, the horizontal arrows represent the mappings in 
the weaving model between roles in the argument pattern and 
elements of the AADL meta-model. 

Goal: sysSecurity

{{DMILS System}}
{security|safety} policy is
enforced

Con: sysPolicy

The system
{security|safety} policy is
{application
safety|security policy}

Con: sysDescr

{{DMILS system
implementation}}
AADL Model [ref]

Strat: SysSecurity
Argument over the individual
software component
behaviour and the
compositional behaviour of the
DMILS system

Con: trustedComponents

Trusted software
components identified in the
policy architecture are
{{trusted software
components}}

Con: policyArchitecture
Policy architecture
described by the
architecture AADL model
[{{architecture AADL
model}}]

Goal: components

Trusted software components
behave according to the policy
architecture

Strat: components
Argument over each
trusted software
component

{{no. of trusted software
components}}

Goal: swCompX_Trusted
Component

{{trusted software component X}}
enforces its local policy

Trusted Component

Goal: Composition_Composition

The composition of the {{DMILS
system}} guarantees the system
{security|safety} policy is met

Composition

 
Figure 7. Assurance Argument Pattern 

 

 
Figure 8 Extract of the AADL specification for the crypto controller system 

 

 
Figure 9. Representation of the Example Weaving Model 

The models described above were used as input to our 
instantiation program. The instantiation program generated a 
complete model of the instantiated argument. This is provided 
as a GSNML file that includes the information for all the 
required argument elements and the relationships between the 
elements.  

From this file the instantiated argument can be represented 
graphically using a graphical tool (e.g. our Eclipse based 
editor) or inputted to an existing GSN argument editor. 



IV. RELATED WORK 
Our work builds on existing efforts for standardising the 

representation of assurance cases and providing automated 
means for analysis and reuse, particularly based on the OMG 
SACM standard [4] and the GSN standard [2]. Several tools 
now exist that comply with these standards (e.g. [3] [14] [15] 
[6]). There is also interest in extending the SACM standard in 
order to provide a modelling basis for machine-checkable 
assurance cases [16]. 

Khalil et al [17] present an argument pattern library that 
aims to define and automatically generate safety cases in a 
model-based development environment. However, they fall 
short of specifying the means by which a safety case model is 
integrated with design models and the process by which the 
instantiation of the safety argument patterns can be automated. 
The authors seem to be interested in applying their model-
based approach to support modular certification [7], although 
without specifying the relationship between a modular 
architecture and its corresponding modular safety case.   

Armengaud [18] discusses the automatic assembly of safety 
cases for automotive applications from information models 
generated from ISO 26262 work products (i.e. items of 
evidence such as design and test artefacts). However, the 
author does not address how these models inform, or relate to, 
the structure of the safety case argument. 

At a more formal level, Rushby [19] promotes the use of 
formal verification techniques for the representation and 
analysis of assurance cases, with the aim of reaping the benefits 
of increased precision and “pushbutton automation” offered by 
recent advances in the development and use of formal 
techniques. Formalism here entails the definition of the safety 
argument using a mathematically based notation. This also 
involves defining a means for translating the structure and 
expression of safety cases into forms tractable for automated 
formal analysis.  

Rushby makes a distinction between two aspects of 
assurance arguments [20]: (1) logic doubt that relates to the 
reasoning in the argument and (2) epistemic doubt that relates 
to our understanding of the system and its environment. 
Rushby’s thesis is that it is possible to use formalism, 
supported by automation, to eliminate logic doubt, i.e. proving 
that an argument is deductively sound [21]. Expert judgement, 
however, is still necessary for dealing with epistemic doubts. 

There has also been significant work on defining a formal 
basis for GSN arguments, patterns and modules [22] [23] [24] 
[25]. This issue is discussed in more detail in by Habli and 
Kelly in [26]. For example, Denney and Pai propose a formal 
basis for GSN arguments [22] and patterns [23] and offer 
automated means, implemented in the AdvoCATE tool [6], for 
the assembly of safety arguments and the instantiation of 
argument patterns. In both cases, i.e. assembly and 
instantiation, the automatic generation of the argument is based 
on a table that has the data entries needed for populating the 
argument. 

Our approach complements the above but does not depend 
on having to predefine assembly and instantiation data in 
tables. Rather, this data is automatically extracted from the 
design and safety analysis models, based on a weaving model, 
and is then used to instantiate the argument pattern. This helps 
in assessing and ensuring traceability between the sources of 

information, e.g. in design, process and analysis models, and 
the assurance case. Automation in this way also has the 
potential to support the coevolution of system design and 
assurance cases. 

V. DISCUSSION AND CONCLUSIONS 
Automation and structured modelling provide two of the 

main pillars of our approach. Below we reflect on the utility of 
increased automation and formality for the development and 
assessment of assurance cases. 

1. Automatic instantiation of argument patterns: argument 
patterns are intended to capture the essence of a 
potentially repeatable reasoning used in an assurance 
process. This reasoning requires extensive domain 
knowledge and experience (i.e. an in-depth 
understanding of what makes systems safe or unsafe in 
a particular domain or for a particular class of 
technology). Pattern construction is basically a creative 
engineering activity and as such will largely remain 
manual. However, once an argument pattern is defined, 
reviewed and accepted, instantiation will benefit from 
automated support. Machines, compared to humans, are 
more capable in terms of parsing large volumes of 
information, from diverse sources, and instantiating 
argument patterns based on extracting relevant 
information needed for the different argument elements 
(e.g. claims and assumptions). Our approach utilises 
automation for the argument pattern instantiation rather 
than for the pattern creation process. In particular, 
automation here, supported by increased precision 
enforced by the metamodels, improves repeatability and 
consistency in pattern instantiation.   

2. Mapping between argument pattern roles and external 
models: many real assurance arguments are, 
unfortunately, often referred to as “cartoon arguments”. 
They are based on common high-level argument 
patterns whose instantiation lacks sufficient details 
about the specifics of the system under consideration. 
That is, the traceability between the argument and 
evidence in the assurance case and the actual system 
design and analysis models is questionable. Our 
approach tries to bridge this gap by explicitly defining 
pattern roles that need to be traced to specific types of 
information in these models. This can help improve the 
validity of the argument against the available design and 
analysis models (a big challenge for safety cases as 
highlighted in the Nimrod Accident Review [27]). 
Further, these models themselves are interdependent. 
When this interdependency is explicitly defined, such as 
in our approach, it enables detailed analysis of the 
reasoning in the argument, e.g. reviewing the strength of 
a piece of design evidence (based on a design model) 
and auditing the process by which this evidence was 
generated (based on a process model that is linked to 
that design model). In our approach, complex model-to-
model relationships are explicitly modelled and form 
part of the weaving model itself. 

3. Direct instantiation of the argument patterns from 
models: unlike most existing means for automated 



pattern instantiation (e.g. [23]), where the necessary 
information is extracted manually from the models, our 
approach directly links the argument patterns to the 
sources of information in these models and helps avoid 
potential humans errors (e.g. interpretation and 
translation errors). More importantly, the automated and 
direct instantiation from these models can highlight 
claims or evidence where the information in the models 
is incomplete. Our automated approach flags 
incompleteness in the form of uninstantiated or 
undeveloped elements that require a more detailed 
investigation by the analyst. Information can also be fed 
back directly to the models themselves, highlighting 
inconsistencies between aspects of the design and 
analysis. 

4. Advanced model management for assurance cases: by 
being based on, and traced to, well-defined metamodels, 
an assurance case model can exploit the benefits of 
model-driven engineering such as model validation, 
merging, querying and transformation. For example, 
this includes argument validation against predefined 
internal constraints (e.g. coverage of a claim by the 
available evidence) and external constraints (e.g. 
faithfulness of referenced evidence against actual 
project data). 

5. Scalability and external validity: our evaluation so far 
has focused on demonstrating the feasibility of 
exploiting a weaving model for automated generation of 
assurance cases. On-going research will evaluate the 
external validity and scalability of this approach based 
on applying it to systems and patterns defined by 
industry, e.g. the argument patterns currently being 
developed by the MISRA Working Group on 
Automotive Safety Cases and ISO-26262 [28]. 

In conclusion, this paper has shown how our approach can 
be used to generate an assurance argument for a system using 
information extracted directly from design, analysis and 
development models of that system. We have described how 
assurance cases are a synthesis of complex information from a 
variety of sources. Ensuring that the assurance case is 
consistently generated from a diverse and large set of source 
models is a challenging task. Our approach provides a model-
based foundation for addressing this challenge. 
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