
Weaving an Assurance Case from Design: A Model-Based Approach

Richard Hawkins, Ibrahim Habli, Dimitris Kolovos, Richard Paige, Tim Kelly
Department of Computer Science

The University of York
York, UK

{Richard.Hawkins, Ibrahim.Habli, Dimitris.Kolovos, Richard.Paige, Tim.Kelly}@york.ac.uk

Abstract— Assurance cases are used to demonstrate confidence
in properties of interest for a system, e.g. for safety or security.
A model-based assurance case seeks to bring the benefits of
model-driven engineering, such as automation, transformation
and validation, to what is currently a lengthy and informal
process. In this paper we develop a model-based assurance
approach, based on a weaving model, which allows integration
between assurance case, design and process models and
metamodels. In our approach, the assurance case itself is
treated as a structured model, with the aim that all entities in
the assurance case become linked explicitly to the models that
represent them. We show how it is possible to exploit the
weaving model for automated generation of assurance cases.
Building upon these results, we discuss how a seamless model-
driven approach to assurance cases can be achieved and
examine the utility of increased formality and automation.

Keywords-assurance cases, safety cases, arguments, model-
driven engineering, weaving

I. INTRODUCTION
Systems used to perform critical functions require

justification that they exhibit the necessary properties (such
as for safety or security). Assurance cases provide an explicit
means for justifying and assessing confidence in these
critical properties. In certain industries, specifically in the
safety-critical domain, e.g. defence, aviation, automotive,
and nuclear, it is a regulatory requirement that a safety or an
assurance case is developed and reviewed as part of the
certification process [1]. An assurance case is defined as a
“reasoned and compelling argument, supported by a body of
evidence, that a system, service or organisation will operate
as intended for a defined application in a defined
environment” [2].

Assurance cases are typically represented textually, using
natural language, or graphically, using structured notations
such as the Goal Structuring Notation (GSN) [2] or Claims,
Arguments and Evidence (CAE) [3]. In order to improve
standardisation and interoperability, the Object Management
Group (OMG) has recently specified and issued a Structured
Assurance Case Metamodel (SACM) for the representation
of assurance cases [4]. Both GSN and CAE conform to
SACM.

However, the development and acceptance of assurance
cases remain a significant challenge for engineers and
assessors. Assurance cases are large and complex, with a
great deal of explicit and implicit dependencies. In particular,

the lack of integration with, and the limited traceability to,
design artefacts can undermine confidence in the reasoning
presented, and the evidence referenced, in the assurance
case. In particular, the limited automated capability for both
constructing and analysing the dependency of assurance
cases on other engineering artefacts makes it difficult to
navigate, check and maintain the assurance case arguments
and evidence.

By exploiting metamodels and well-defined modelling
languages, an assurance case representation can be treated as
a model, potentially bringing the benefits of model-driven
engineering, such as automation, transformation and
validation, to what has been a lengthy and informal process.
It also has the potential to improve traceability between the
assurance case and the design and analysis models and
therefore support the coevolution of the system design and
the assurance case. This in turn can help highlight, in a
timely manner, weaknesses in the design, evidence and
potentially the argument.

In this paper we develop a model-based assurance
approach, based on a weaving model, which allows
integration between assurance case, design and process
models and metamodels. We show how it is possible to
exploit the weaving model for automated generation and
analysis of assurance cases. Building upon these results, we
discuss how a seamless model-driven approach to assurance
cases can be achieved and examine the utility of increased
formality and automation.

Specifically, the contributions of this paper are as
follows:

a) A model-based approach to managing assurance
case models;

b) A weaving model that allows interoperation;
c) A GSN metamodel that is compliant with SACM;
d) Automatic instantiation of assurance argument

patterns.
This paper is organised as follows. Section 2 describes

our approach. In section 3, we use a case study to illustrate
how our approach is implemented. Section 4 describes how
our approach relates to other work in this area. Section 5
presents conclusions based upon our work to date and
discusses future development of the approach.

II. MODEL-BASED SAEETY CASES
Our approach is illustrated in Fig. 1. In the following

sections, we discuss in detail each element of the approach.

Figure 1. Overview of the Model-Based Assurance Case Approach

A. GSN Patterns
Patterns are widely used in software engineering as a way

of abstracting the fundamental design strategies from the
details of particular designs. The use of patterns as a way of
documenting and reusing successful assurance argument
structures was developed by Kelly [5]. Assurance argument
patterns provide a way of capturing the required form of an
assurance argument in a manner that is abstract from the
details of a particular argument. It is then possible to use the
patterns to create specific arguments by instantiating the
patterns in a manner appropriate to the application.
Assurance argument patterns can be captured using GSN [2].

Assurance argument patterns essentially define
requirements for the necessary information (e.g. to
instantiate the assurance claims) and evidence (to support
those claims). It is possible to manually obtain this
information from design or analysis documentation, or
directly from an engineer, and instantiate the argument
patterns; this is current practice. Our approach instead uses
the models themselves to automatically instantiate the
patterns. Instantiation involves both instantiating ‘roles’ in
the argument patterns, and making instantiation choices.

Roles are instantiable entities within elements of the
argument pattern. They represent an abstract entity that
needs to be replaced with a concrete instance appropriate for
the target system. For example in Fig. 2, the role within this
assurance claim, represented in curled braces is ‘Function’.
This entity must be replaced with the name of the relevant
function of the system. In addition, argument patterns will
often include multiplicity relations, where the number of
required argument elements must also be determined (e.g. an
entity created for each of the functions present in the system
design).

Figure 2. A GSN Argument Element Requiring Instantiation

Assurance argument patterns will also often represent
choices for different argument approaches that may be
adopted. At instantiation, the assurance claims most
appropriate for the target system must be chosen from the
options provided in the pattern.

Decisions on how to instantiate choices and optional
elements within argument patterns are currently based on
experience and judgement. Using a model-based approach
allows consistent, reusable instantiation rules to be
established, ensuring consistent instantiations. This will be
particularly important where complicated relationships
between multiple models are required.

Our approach considers the GSN argument patterns as
models. As with all the models used, the argument pattern
models must be consistent with an explicitly defined
metamodel, and must be in a machine-readable format. We
discuss the format of argument pattern models in Section 3.
Below we address the issue of a metamodel for GSN.

B. GSN Metamodel

GSN argument patterns conform to the syntax and

semantics defined by the GSN standard [2]. Currently the
GSN standard does not define a GSN metamodel. However,
as already discussed, an OMG standard metamodel for
structured assurance cases (SACM) exists [4]. We have
extended the SACM metamodel to include specific GSN
entities as shown in Fig. 3.

For example, the notion of Claim in SACM is extended
to cover GSN_Goal, GSN_Assumption, GSN_Justificaton
and GSN_ContextAsAssertion. Further, the pattern notation
of GSN is richer than that of the SACM core, so we have
also introduced these additional pattern extensions into the
metamodel in Fig. 3 (e.g. a new entity GSN_Choice and
attributes choice and multiplicity). Our GSN metamodel,
including a more detailed description, is to be included as a
proposal in issue 2 of the GSN standard [2].

C. Reference Information Models
What we refer to as the reference information models are

the set of models containing the information required for the
instantiation of the assurance argument pattern. In theory,
since the potential scope of assurance argument patterns is
unbounded, so are the number and type of models that will
be required. In practice however, the required information
models will mainly be design, process and analysis models
for the system. The particular models required can only be
determined from the specific argument patterns themselves,
with the information need being established from the roles of
the instantiable elements.

The information models are expected to be diverse in
nature, however our approach only requires that the models
conform to a defined metamodel. Each model may have a
different metamodel, and this must be explicitly defined such
that it can be used in developing the weaving model (Section
2.D). Our approach places no restrictions on the tools and
notations used to generate the models, which in turn
maximises the information that becomes available for
automatic pattern instantiation. For most argument patterns

multiple models are required to provide the instantiation
information. Consider for example an argument pattern
regarding the error behaviour of a component (Table 1). By
picking out some of the key roles in the argument pattern we
can see the different reference information models needed.

TABLE I. REFERENCE MODELS FOR DIFFERENT ROLES

Role Reference Information Model
Component AADL specification
Component error model AADL error model specification
Error effect FMEA analysis results
Stage FMEA process model

There are a number of things to note here. Firstly, some

of these models are of a type that is normally informally
defined. For example the results of Failure Modes and
Effects Analysis (FMEA) are normally captured as a simple
table, and the FMEA analysis process will often be described

using a textual description in a process document, or as a
flow chart. Secondly, it is not necessary to have all the
models relating to an argument pattern in machine-readable
format in order to undertake automation of the instantiation.
Those entities where the information model is available will
be instantiated, while those entities where the model is not
available will remain uninstantiated, requiring subsequent
manual instantantiation. Thirdly, there is clearly an
interrelationship between these four reference information
models. For example, the failure modes and effects identified
in the FMEA analysis results must relate to error types in the
AADL error model. These inter-model relationships,
although generally implicitly understood, are often not
explicitly documented. As part of creating the weaving
model (Section 2.D), our approach requires that these
relationships be explicitly captured.

Figure 3. Proposed GSN Metamodel

D. Weaving Model
A weaving model is at the heart of our approach. It is the

weaving model that links the reference information
metamodels to the GSN argument patterns. Model weaving is
an approach to model transformation defined by [8] as an
operation "whose primary objective is to handle fine-grained
relationships between elements of distinct models, establishing
links between them. These links are captured by a weaving
model. It conforms to a metamodel that specifies the link
semantics”. The weaving can be performed either manually,
i.e. by linking the related elements by hand, or automatically,
i.e. through a model transformation. An advantage of model
weaving is that the mappings between the models themselves
are also considered as models bringing expressiveness,
flexibility and genericity [9].

In our approach a weaving model captures the
dependencies between the roles in the GSN patterns and
individual reference information metamodels and also between
the multiple reference information metamodels. It is the
dependency information captured in the weaving model that
enables the argument instantiations to be automatically
performed. We provide more details on the weaving model
through an example in Section 3. It is always necessary to
identify these dependencies when instantiating an assurance
argument pattern.

Normally, however, such as when manually instantiating
argument patterns, these dependencies are implicit or
hardwired. Our utilisation of a weaving model makes this
dependency information explicitly defined. The weaving model
also enables the specification of mechanisms for capturing the
more complex dependencies between models that are often
required for an assurance argument (e.g. the dependencies
between a fault model and the model of the analysis process
used to generate it). There are existing approaches and tools,
such as that described in [9] that support the creation of
weaving models.

E. Model-Based Technology
Using a model-based approach allows us to take advantage

of the extensive set of model management tools that are
available. This brings the opportunity to harness the tools in
order to quickly and easily add extra functionality and features.
In particular we make use of the Epsilon family of languages
and tools for model management [10]. Epsilon includes the
following languages that are particularly useful with respect to
assurance cases:
• Epsilon Object Language (EOL) is an imperative

programming language for creating, querying and
modifying models. We use EOL for the pattern
instantiation program.

• Epsilon Transformation Language (ETL) is a hybrid,
rule-based model-to-model transformation language. It can
transform many input to many output models, and can
query, navigate and modify both source and target models.
ETL supports transforming diverse model inputs prior to
use by the pattern instantiation program.

• Epsilon Validation Language (EVL) is a validation
language that implements model constraints. EVL allows
us to automatically check and enforce sets of constraints,
both on the assurance arguments themselves, and also on

the relationships between the argument and the reference
information models.

• Epsilon Generation Language (EGL) is a template-
based model-to-text language for generating code,
documentation and other textual artefacts from models.
We use EGL in order to generate the output of the
instantiation program. EGL provides us with the flexibility
to provide a number of options for the output format (e.g.
GSN, text or tabular formats).

F. Instantiation
The instantiation program is an EOL program that runs on

the Eclipse platform. It requires as input: GSN argument
pattern models, reference information models and a weaving
model. The instantiation program (Fig. 4):

1. identifies the elements requiring instantiation in the
GSN argument pattern models;

2. determines which information from the reference
information model is required to instantiate each GSN
element by querying the weaving model;

3. obtains the required information from the relevant
information models; and

4. outputs instantiation information.
For any information models that conform to a metamodel

included in the weaving model, the instantiation program will
identify the required information from those information
models and perform the instantiation. To do this, the
instantiation model uses the mappings in the weaving model in
conjunction with the relationships between the entities in the
metamodel, also defined in the weaving model.

for	 all	 nodes	 in	 GSN_Pattern_Models	
	 	 	 {if	 (tobeInstantiated=true)	
	 	 	 	 	 	 then	 instantiate(node)	
	 	 	 else	
	 	 	 	 	 	 add	 node	 to	 output	 GSNML	 file}	

	 	

for	 all	 relationships	 in	 GSN_Pattern_Models	
	 	 	 {add	 relationship	 to	 output	 GSNML	 file}	

	 	

instantiate(node)	
	 	 	 {if	 (relationship	 pointing	 to	 node	 is	 multiplicity)	
	 	 	 	 	 	 then	 makeMultiples(node)	
	 	 	 else	
	 	 	 	 	 	 makeInstance(node)}	 //for	 simplicity,	 this	 pseudo	 code	 does	 not	 consider	 choices	

	 	

makeInstance(node)	
	 	 	 {for	 each	 node	 role	
	 	 	 	 	 	 {find	 target	 type	 of	 weaving	 model	 mapping	 for	 role	
	 	 	 	 	 	 for	 all	 elements	 of	 reference	 design	 model	 	
	 	 	 	 	 	 	 	 	 {if	 (element	 type=target	 type)	
	 	 	 	 	 	 	 	 	 	 	 	 extract	 information	 from	 reference	 design	 model	 element	
	 	 	 	 	 	 	 	 	 	 	 	 create	 node	 in	 output	 GSNML	 file	 using	 extracted	 information	
	 	 	 	 	 	 	 	 	 	 	 	 create	 a	 relationship	 pointing	 to	 created	 node	 in	 output	 GSNML	 file}}}	

	 	

makeMultiples(node)	
//number	 of	 instances	 required	 is	 determined	 from	 information	 from	 the	 	
//reference	 design	 	
	 	 	 {identify	 the	 multiplicity	 role	 type	 for	 the	 relationship	 pointing	 to	 node	
	 	 	 find	 target	 type	 of	 weaving	 model	 mapping	 for	 multiplicity	 role	 type	
	 	 	 //for	 simplicity,	 this	 code	 does	 not	 describe	 how	 dependencies	 in	 the	 metamodel	
	 	 	 //	 are	 used	 to	 identify	 the	 relevant	 elements	 of	 the	 reference	 design	 model	
	 	 	 for	 all	 elements	 of	 reference	 design	 model	
	 	 	 	 	 	 {count	 if	 (element	 type=target	 type)}	
	 	 	 for	 1	 to	 count	
	 	 	 	 	 	 {instantiate(node)	
	 	 	 	 	 	 //the	 sub-‐structure	 below	 this	 must	 also	 be	 instantiated	 multiple	 times	
	 	 	 	 	 	 instantiate	 argument	 pattern	 model	 below	 node}}	

Figure 4. Instantiation Pseudo Code

G. Instantiation Output
As a result of using the Eclipse framework, there are many

different ways in which the instantiation program can output
the instantiation information. It is important that the output is
presented in a manner that is easily and clearly understood by a
human. This is required for presentation as part of the
assurance case, as well as for review purposes. It is also
desirable for the output to be amenable to end-user editing to
facilitate human instantiation of undeveloped parts of the
assurance argument. The output argument instantiation model
should therefore be independent of, but compatible with,
existing GSN editor tools.

Our approach allows us to provide such an output in the
form of a GSNML model file for the GSN instantiation model
that is compliant with the GSN metamodel. This then allows
representation and editing of the argument instantiation in
manner familiar to the end-user.

III. CASE STUDY
In this section, we use a security system to illustrate how

our approach can be used to automatically generate an
assurance argument directly from design models through the
use of a weaving model.

A. System
The example we present is a software cryptographic

controller system taken from [11]. The architecture for the
system is shown in Fig. 5.

Figure 5. Software Architecture of Crypto Controller System

The system is a controller for end-to-end encryption. It
takes inputs as clear text from the red network, encrypts the
content of the message, and sends the encrypted message out
on the black network. Inputs comprise both a header, which
contains destination and other routing information, and the
message content itself. Only the message content is encrypted
since the black network has to read and process the headers so
the message can be correctly routed to its destination.

For this cryptographic controller system, the overall
security policy is that no unencrypted message content
information shall be passed to the black network. The local
policy for each of the components is that:

• crypto shall encrypt everything that leaves on its
outgoing channel; and

• bypass shall ensure that only valid protocol headers
are passed from red to black.

In this system the software in the red and black components
can be completely untrusted (i.e. no assurance is required in
these components in order to assure the overall security
policy).

We wish to create an assurance case regarding the security
of this system. The assurance argument pattern that can be used
to structure the argument is shown in Fig. 7. This argument
pattern is used to demonstrate the enforcement of the overall
security policy through consideration of the enforcement of the
locaNl security policy defined for each component in the
system, as well as the composition of the components on the
implementation platform (ensuring interference between
components only occurs over defined paths). This pattern
considers just the high-level structure of the argument. Further,
more detailed patterns (not presented here) are available for
creating arguments regarding the implementation of the
components and their composition.

B. Implementation
We now provide a walk-through of applying our approach

to instantiate the assurance argument pattern from Fig. 7 to
create the high-level of the security argument for the
cryptographic controller system.

Firstly we create a model of the assurance argument pattern
that is conformant to the GSN metamodel presented in Fig. 3.
The most straightforward approach is to use the Eclipse
framework to generate a tree-based editor from the GSN
metamodel and then use it to construct the models. The
creation of GSN patterns is however a creative activity, often
involving discussion and review with multiple stakeholders. In
such situations, a graphical representation is normally
desirable. To enable graphical model generation we developed
from the GSN metamodel a graphical editor using GMF
(Graphical Modelling Framework). Fig. 6 shows an extract
from the resulting model in XML form (which we call
GSNML files). This GSNML file was taken as input by the
instantiation program.

Figure 6. Assurance Argument Pattern Model in GSNML (Partial)

For this example the required instantiation information can
be obtained from the AADL [13] specification that has been
created for the system, a small part is seen in Fig. 8. This is a
straightforward exercise. Even, however, in cases where a

required information model is informally defined, such as the
FMEA analysis process description mentioned earlier, it is
often possible to generate simple XML representations
sufficient to input to the instantiation program. As an example
we have generated a process model from a flow-chart of the
FMEA analysis process. The flow chart conforms to the
generic process metamodel defined in [12].

We created a weaving model to capture the dependencies
between the roles of the argument pattern model and the

elements of the AADL meta-model (the AADL meta-model is
defined in [13]). Fig. 9 shows a graphical representation of this
weaving model. The left hand side shows the roles from the
argument pattern, the right hand side represents the AADL
meta-model, the horizontal arrows represent the mappings in
the weaving model between roles in the argument pattern and
elements of the AADL meta-model.

Goal: sysSecurity

{{DMILS System}}
{security|safety} policy is
enforced

Con: sysPolicy

The system
{security|safety} policy is
{application
safety|security policy}

Con: sysDescr

{{DMILS system
implementation}}
AADL Model [ref]

Strat: SysSecurity
Argument over the individual
software component
behaviour and the
compositional behaviour of the
DMILS system

Con: trustedComponents

Trusted software
components identified in the
policy architecture are
{{trusted software
components}}

Con: policyArchitecture
Policy architecture
described by the
architecture AADL model
[{{architecture AADL
model}}]

Goal: components

Trusted software components
behave according to the policy
architecture

Strat: components
Argument over each
trusted software
component

{{no. of trusted software
components}}

Goal: swCompX_Trusted
Component

{{trusted software component X}}
enforces its local policy

Trusted Component

Goal: Composition_Composition

The composition of the {{DMILS
system}} guarantees the system
{security|safety} policy is met

Composition

Figure 7. Assurance Argument Pattern

Figure 8 Extract of the AADL specification for the crypto controller system

Figure 9. Representation of the Example Weaving Model

The models described above were used as input to our
instantiation program. The instantiation program generated a
complete model of the instantiated argument. This is provided
as a GSNML file that includes the information for all the
required argument elements and the relationships between the
elements.

From this file the instantiated argument can be represented
graphically using a graphical tool (e.g. our Eclipse based
editor) or inputted to an existing GSN argument editor.

IV. RELATED WORK
Our work builds on existing efforts for standardising the

representation of assurance cases and providing automated
means for analysis and reuse, particularly based on the OMG
SACM standard [4] and the GSN standard [2]. Several tools
now exist that comply with these standards (e.g. [3] [14] [15]
[6]). There is also interest in extending the SACM standard in
order to provide a modelling basis for machine-checkable
assurance cases [16].

Khalil et al [17] present an argument pattern library that
aims to define and automatically generate safety cases in a
model-based development environment. However, they fall
short of specifying the means by which a safety case model is
integrated with design models and the process by which the
instantiation of the safety argument patterns can be automated.
The authors seem to be interested in applying their model-
based approach to support modular certification [7], although
without specifying the relationship between a modular
architecture and its corresponding modular safety case.

Armengaud [18] discusses the automatic assembly of safety
cases for automotive applications from information models
generated from ISO 26262 work products (i.e. items of
evidence such as design and test artefacts). However, the
author does not address how these models inform, or relate to,
the structure of the safety case argument.

At a more formal level, Rushby [19] promotes the use of
formal verification techniques for the representation and
analysis of assurance cases, with the aim of reaping the benefits
of increased precision and “pushbutton automation” offered by
recent advances in the development and use of formal
techniques. Formalism here entails the definition of the safety
argument using a mathematically based notation. This also
involves defining a means for translating the structure and
expression of safety cases into forms tractable for automated
formal analysis.

Rushby makes a distinction between two aspects of
assurance arguments [20]: (1) logic doubt that relates to the
reasoning in the argument and (2) epistemic doubt that relates
to our understanding of the system and its environment.
Rushby’s thesis is that it is possible to use formalism,
supported by automation, to eliminate logic doubt, i.e. proving
that an argument is deductively sound [21]. Expert judgement,
however, is still necessary for dealing with epistemic doubts.

There has also been significant work on defining a formal
basis for GSN arguments, patterns and modules [22] [23] [24]
[25]. This issue is discussed in more detail in by Habli and
Kelly in [26]. For example, Denney and Pai propose a formal
basis for GSN arguments [22] and patterns [23] and offer
automated means, implemented in the AdvoCATE tool [6], for
the assembly of safety arguments and the instantiation of
argument patterns. In both cases, i.e. assembly and
instantiation, the automatic generation of the argument is based
on a table that has the data entries needed for populating the
argument.

Our approach complements the above but does not depend
on having to predefine assembly and instantiation data in
tables. Rather, this data is automatically extracted from the
design and safety analysis models, based on a weaving model,
and is then used to instantiate the argument pattern. This helps
in assessing and ensuring traceability between the sources of

information, e.g. in design, process and analysis models, and
the assurance case. Automation in this way also has the
potential to support the coevolution of system design and
assurance cases.

V. DISCUSSION AND CONCLUSIONS
Automation and structured modelling provide two of the

main pillars of our approach. Below we reflect on the utility of
increased automation and formality for the development and
assessment of assurance cases.

1. Automatic instantiation of argument patterns: argument
patterns are intended to capture the essence of a
potentially repeatable reasoning used in an assurance
process. This reasoning requires extensive domain
knowledge and experience (i.e. an in-depth
understanding of what makes systems safe or unsafe in
a particular domain or for a particular class of
technology). Pattern construction is basically a creative
engineering activity and as such will largely remain
manual. However, once an argument pattern is defined,
reviewed and accepted, instantiation will benefit from
automated support. Machines, compared to humans, are
more capable in terms of parsing large volumes of
information, from diverse sources, and instantiating
argument patterns based on extracting relevant
information needed for the different argument elements
(e.g. claims and assumptions). Our approach utilises
automation for the argument pattern instantiation rather
than for the pattern creation process. In particular,
automation here, supported by increased precision
enforced by the metamodels, improves repeatability and
consistency in pattern instantiation.

2. Mapping between argument pattern roles and external
models: many real assurance arguments are,
unfortunately, often referred to as “cartoon arguments”.
They are based on common high-level argument
patterns whose instantiation lacks sufficient details
about the specifics of the system under consideration.
That is, the traceability between the argument and
evidence in the assurance case and the actual system
design and analysis models is questionable. Our
approach tries to bridge this gap by explicitly defining
pattern roles that need to be traced to specific types of
information in these models. This can help improve the
validity of the argument against the available design and
analysis models (a big challenge for safety cases as
highlighted in the Nimrod Accident Review [27]).
Further, these models themselves are interdependent.
When this interdependency is explicitly defined, such as
in our approach, it enables detailed analysis of the
reasoning in the argument, e.g. reviewing the strength of
a piece of design evidence (based on a design model)
and auditing the process by which this evidence was
generated (based on a process model that is linked to
that design model). In our approach, complex model-to-
model relationships are explicitly modelled and form
part of the weaving model itself.

3. Direct instantiation of the argument patterns from
models: unlike most existing means for automated

pattern instantiation (e.g. [23]), where the necessary
information is extracted manually from the models, our
approach directly links the argument patterns to the
sources of information in these models and helps avoid
potential humans errors (e.g. interpretation and
translation errors). More importantly, the automated and
direct instantiation from these models can highlight
claims or evidence where the information in the models
is incomplete. Our automated approach flags
incompleteness in the form of uninstantiated or
undeveloped elements that require a more detailed
investigation by the analyst. Information can also be fed
back directly to the models themselves, highlighting
inconsistencies between aspects of the design and
analysis.

4. Advanced model management for assurance cases: by
being based on, and traced to, well-defined metamodels,
an assurance case model can exploit the benefits of
model-driven engineering such as model validation,
merging, querying and transformation. For example,
this includes argument validation against predefined
internal constraints (e.g. coverage of a claim by the
available evidence) and external constraints (e.g.
faithfulness of referenced evidence against actual
project data).

5. Scalability and external validity: our evaluation so far
has focused on demonstrating the feasibility of
exploiting a weaving model for automated generation of
assurance cases. On-going research will evaluate the
external validity and scalability of this approach based
on applying it to systems and patterns defined by
industry, e.g. the argument patterns currently being
developed by the MISRA Working Group on
Automotive Safety Cases and ISO-26262 [28].

In conclusion, this paper has shown how our approach can
be used to generate an assurance argument for a system using
information extracted directly from design, analysis and
development models of that system. We have described how
assurance cases are a synthesis of complex information from a
variety of sources. Ensuring that the assurance case is
consistently generated from a diverse and large set of source
models is a challenging task. Our approach provides a model-
based foundation for addressing this challenge.

ACKNOWLEDGEMENT

This work was part funded by the European Union FP7 D-
MILS project (www.d-mils.org).

REFERENCES
[1] Health Foundation, “Using safety cases in industry and healthcare”,

December 2012.
[2] GSN Community Standard Working Group, “GSN community

standard,” 2011. Available at www.goalstructuringnotation.info/
[3] http://www.adelard.com/asce/choosing-asce/index.html
[4] Object Management Group (OMG), “Structured assurance case

metamodel (SACM),” version 1.0, 2013. Available at
www.omg.org/spec/SACM/

[5] T. Kelly and J. McDermid, “Safety case construction and reuse using
patterns”, in proc. Safecomp 97, pp 55-69, Springer, 1997.

[6] E. Denney, G. Pai, and J. Pohl. "Advocate: An assurance case
automation toolset". in proc. Workshop on Next Generation of System
Assurance Approaches for Safety Critical Systems (SASSUR), pp 8-21,
2012.

[7] S. Voss, B. Schatz, M. Khalil, and C. Carlan, “Towards modular
certification using integrated model-based safety cases,” in proc.
VeriSure: Verification and Assurance Workshop, 2013.

[8] M. Didonet Del Fabro, J. Bézivin, F. Jouault, B. Erwan, and G. Gueltas,
“AMW: A generic model weaver,” in proc. 1ères Journées sur
l’Ingénierie Dirigée par les Modèles, 2005.

[9] M. Didonet et. al., “Applying generic model management to data
mapping,” in proc. Bases de Données Avancées (BDA05), 2005.

[10] D. Kolovos, L. Rose, A. Garcia-Dominguez, and R. Paige, “The Epsilon
book,” available at http://www.eclipse.org/epsilon/doc/book/, October
2013.

[11] J. Rushby, “Separation and integration in MILS (The MILS
constitution),” Technical Report SRI-CSL-08-XX, SRI International,
2008.

[12] I. Habli T Kelly, “A model-driven approach to assuring process
reliability”, 19th IEEE International Symposium on Software Reliability
Engineering (ISSRE), Seattle, USA, November 2008.

[13] SAE, “Architecture analysis & design language (AADL), Annex C
AADL Meta Model and Interchange Formats”, SAE International, 2006.

[14] Y. Matsuno, S. Yamamoto, "An implementation of GSN community
standard," Assurance Cases for Software-Intensive Systems (ASSURE),
1st International Workshop, 2013.

[15] http://nasa.github.io/CertWare/
[16] OMG, “Machine-checkable assurance case language (MACL),” RFI,

2012. Available at http://www.omg.org/cgi-bin/doc?sysa/2012-9-4
[17] B. Schaetz, M. Khalil and S. Voss, “A pattern-based approach towards

modular safety analysis and argumentation”, Embedded Real Time
Software and Systems (ERTS2), February 2014.

[18] E. Armengaud, “Automated safety case compilation for product-based
argumentation”, Embedded Real Tme Software and Systems (ERTS2),
February 2014.

[19] J. Rushby, “Formalism in safety cases,” Making Systems Safer:
Proceedings of the Eighteenth Safety-Critical Systems Symposium,
Springer, 2010.

[20] J. Rushby, “Logic and epistemology in safety cases”, In Computer
Safety, Reliability, and Security: Proceedings of SafeComp ‘13,
Springer, 2013.

[21] J. Rushby, “Mechanized support for assurance case argumentation,” in
proc. 1st International Workshop on Argument for Agreement and
Assurance (AAA 2013), Springer LNCS, 2013.

[22] E. Denney and G. Pai, "A formal basis for safety case patterns", in proc.
32nd International Conference on Computer Safety, Reliability and
Security (SafeComp '13), 2013.

[23] E. Denney and G. Pai, "A lightweight methodology for safety case
assembly", in proc. 31st International Conference on Computer Safety,
Reliability and Security (SafeComp '12), 2012.

[24] Y. Matsuno, “A design and implementation of an assurance case
language,” in proc. IEEE/IFIP Dependable Systems and Netoworks
(DSN), 2014.

[25] Y. Matsuno and K. Taguchi, "Parameterised argument structure for GSN
patterns", in proc. International Conference on Quality Software (QSIC
2011) , pp96--101, IEEE, 2011.

[26] I. Habli and T. Kelly, “Balancing the formal and informal in safety case
arguments,” VeriSure: Verification and Assurance Workshop, colocated
with Computer-Aided Verification (CAV) 2014, Vienna, Austria, July
2014.

[27] C. H. Cave, “An independent review into the broader issues surrounding
the loss of the RAF Nimrod MR2 Aircraft XV230 in Afghanistan in
2006,” The Stationary Office, Tech. Rep., 2006.

[28] I. Habli, et. al., “Safety Cases and Their Role in ISO 26262 Functional
Safety Assessment”, 32nd International Conference on Computer Safety,
Reliability, and Security, Toulouse, France, 2013.

