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Abstract 
 

We present common principles of software safety assurance that can be observed from software safety standards and 
best practice. These principles are constant across domains and across projects, and can be regarded as the 
immutable core of any software safety justification.  The principles also help maintain understanding of the ‘big 
picture’ of software safety issues whilst examining and negotiating the detail of individual standards, and provide a 
reference model for cross-sector certification. 
 

Introduction 
 

As the use of software in safety-critical applications has grown, so have the number of software assurance standards. 
There are now many software standards, such as DO-178B/C for avionics [1], CENELEC-50128 for railway 
applications [2], ISO26262 for automotive applications [3], and the cross-domain standard IEC61508 [4]. 
Unfortunately, amongst these standards there are many differences in terminology, concepts, requirements and 
recommendations. This may seem like a hopeless situation. However, there are a small (and manageable) number of 
common software safety assurance principles that can be observed both from these standards and best practice. This 
paper presents these principles, the rationale for these principles, and explains how they relate to existing standards. 
The principles presented are constant across domains and across projects, and can be regarded as the immutable core 
of any software safety justification.  Recognising these principles, of course, doesn’t remove the obligation to 
comply with domain specific standards. However, they help maintain understanding of the ‘big picture’ of software 
safety issues whilst examining and negotiating the detail of individual standards, and provide a reference model for 
cross-sector certification. 
 

Software Safety Principles 
 

1. Requirements Validity  
 
The assessment and mitigation of hazards is central to the engineering of safety-critical systems. Hazards such as 
unintended release of braking in cars or absence of stall warnings in aircraft are conditions that occur at the system 
level and can lead, under certain environment conditions, to accidents. Software, although conceptual, can contribute 
to these hazards through the system control or monitoring functions it implements (e.g. software implementing anti-
lock braking or aircraft warning functions). Typically, the way in which software, as well as other components such 
as sensors, actuators or power sources, can contribute to hazards is identified in the system safety assessment 
process using safety analysis techniques such as Fault Tree Analysis or Hazard and Operability Studies (HAZOP). 
The outcome of these techniques should drive the development of safety requirements and the allocation of these 
requirements to software components.  
 
It is important to note that, at this stage of the development, software is treated as a black box, used for enabling 
certain functions, and with little visibility into the way in which these functions are implemented. Failure to identify 
hazardous software failures, and define and allocate appropriate safety requirements, can increase of the risk of 
certain system hazards to unacceptable levels. 
 
For example, software implements safety-critical functions in medical devices such as pacemakers and infusion 
pumps. In particular, infusion pumps, according to the Food and Drug Administration (FDA) in the US, have been 
associated with safety problems [5]. Some of these problems relate to the embedded software. “Key bounce” is one 
of the software problems reported to the FDA. This problem occurs when the software in an infusion pump 



interprets a single keystroke (e.g. rate of 10 mL/hour) as multiple keystrokes (e.g. infusion rate of 100 mL/hour). 
Obviously, this behaviour, implemented by the software, can lead to events with serious safety consequences. 
 
In 2010, the FDA ordered Baxter Healthcare Corp to recall Colleague Volumetric Infusion Pumps used in the US 
[6]. This recall was the result of the FDA identifying safety problems associated with these infusions pumps 
(amongst other models of infusion pumps). The analysis carried out by the FDA traced the sources of some of these 
safety problems to software defects. The recall of the Colleague pumps was not an isolated instance. 87 recall cases 
were reported between 2005 and 2009 by the FDA as a result of infusion pump safety concerns. More worryingly, 
between the same period, the FDA received over 56,000 reports of issues related to the use of infusion pumps: 
“approximately 1% were reported as deaths, 34% were reported as serious injuries, and 62% were reported as 
malfunctions” [7]. Since 2010, the FDA has placed increased attention to embedded software, particularly within its 
new guidance document that can be used for preparing premarket notification submissions for infusion pumps [7]. 
 
In short, software is a core enabling technology used in safety-critical systems and as such the ways in which 
software can contribute to system hazards should be an integral part of the overall system safety process. Hazardous 
software contributions, identified in a safety process, are addressed by the definition of safety requirements to 
mitigate these contributions. It is important for these contributions to be defined in a concrete and verifiable manner, 
i.e. describing the specific software failure modes that can lead to hazards. Otherwise, we will in danger of defining 
generic software safety requirements, or simply correctness requirements, that can fail to address the specific 
hazardous failure modes that affect the safety of the system.  
 
This gives us our first software safety assurance principle: 
 
Principle 1: Software safety requirements shall be defined to address the software contribution to system 
hazards. 
 

2. Requirement Decomposition 
 
As the software development lifecycle progresses, the requirements and design are progressively decomposed and a 
more detailed software design is created. The requirements derived for the more detailed software design are often 
referred to as derived software requirements. Having established complete and correct software safety requirements 
at the highest (most abstract) level of design, the intent of those requirements must be maintained as the software 
safety requirements are decomposed. 
On 14th September 1993, Lufthansa Flight 2904 from Frankfurt was cleared to land in heavy rain at Warsaw-Okecie 
Airport. On landing, the aircraft failed to achieve the necessary deceleration. Seeing the approaching end of the 
runway and an earth embankment behind it, the pilot steered the aircraft off the runway. The aircraft travelled a 
further 90 m before hitting the embankment. Two of 70 occupants of the Airbus A320-200 died in the accident, 
including the co-pilot [8].  
 
There were three means of ground deceleration on the aircraft: spoilers, brakes, and thrust reversers. For safety 
reasons, both the thrust reversers and spoilers should only be deployed when the aircraft is on the ground (deploying 
them in the air could be catastrophic). This requirement was achieved for the A320-200 through software which 
(simplified) required that the spoilers are only activated if there is either: weight of over 12 tons on each of the two 
main landing gear, or the wheels of the aircraft are turning faster than 72 knots. The thrust reversers are only 
activated if the first condition is true. There was no way on this aircraft for the pilot to override the software and 
activate either braking system manually. 
 
It should be noted at this point that the high-level safety requirement (not to deploy air braking until the aircraft is on 
the ground) was valid. The causes of the accident only start to emerge when we consider how that high-level safety 
requirement was interpreted for the detail of the software design. Under normal circumstances, the detailed 
requirements implemented by the software will meet the intent of the high-level safety requirement (the software 
will deploy the spoilers and thrust reversers once the aircraft is on the ground). On this day, this did not happen. The 
intent of the high-level safety requirement was not successfully met by the detailed software safety requirements. 
Why not? 
 



On landing, the aircraft was deliberately banked to the right and travelling slightly faster than usual in order to 
compensate for expected cross-winds. Instead of a cross-wind, there was in fact a tail-wind. As a result, the aircraft 
remained banked to the right as it touched the ground. This meant that there was only weight on one of the landing 
gear. In addition the very wet runway led to hydroplaning, meaning that the one wheel that was on the ground was 
not spinning at the required 72 knots. Neither of the required conditions was therefore met, and braking was not 
activated. Note that the software functioned correctly according to its specification (defined by the software safety 
requirements), it was the software safety requirements themselves which had been interpreted incorrectly. 
 
What has been described above is essentially a problem of on-going requirements validation. There is always a 
problem as you go through a software development process of how to demonstrate that the requirements at one level 
of design abstraction are equivalent to the requirements defined at a more abstract level. Simply looking at 
requirements satisfaction is insufficient. In the accident above, the software safety requirements had been satisfied, 
however we have seen how those requirements were not equivalent under all real-world environmental conditions to 
the intent of the high-level safety requirement. This is a very challenging problem. As well as environmental issues, 
other factors which may complicate the suitability of the decomposition include human factors issues (a warning 
may be displayed to a pilot as required, but that warning may not be noticeable on the busy cockpit displays). 
 
A theoretical solution to this problem is to ensure that all the required information is captured in the initial high-level 
requirement. In practice however this would be impossible to achieve. Design decisions will always be made later in 
the software development lifecycle that require greater detail in requirements. This detail cannot be properly known 
until that design decision has been made.  
 
Clearly if the software is to be considered safe to operate, the decomposition of safety requirements is an area that 
must always be addressed. This gives us our second software safety principle: 
 
Principle 2: The intent of the software safety requirements shall be maintained throughout requirements 
decomposition. 

 
3. Requirements Satisfaction  

 
Once a set of ‘valid’ software safety requirements is defined, either in the form of allocated software safety 
requirements (Principle 1) or refined or derived software safety requirements (Principle 2), it is essential to verify 
that these requirements have been satisfied. A key prerequisite for requirements satisfaction is that these 
requirements are clear, defined in sufficient detail and are indeed verifiable. The types of verification technique used 
to demonstrate the satisfaction of software safety requirements will depend on the safety criticality, development 
stage and implementation technology. As such, it is neither feasible nor prudent to try to prescribe specific 
verification techniques that should be used for the generation of verification results. 
 
The loss of the Mars Polar Lander (MPL) in January 1999 [9], as part of NASA’s Mars Surveyor Program, 
represents an event in which inadequate software verification, specifically inadequate software testing, was a 
contributory factor (another contributory factor was inadequate requirements specification). A software error leading 
to the premature shutdown of the decent engines was considered a probable cause of the loss of the lander. In 
particular, the software fault-injection testing regime was considered inadequate to stress test the flight software, 
especially testing for transient surface touchdown sensor signals. Further, the test environment was deemed 
insufficient to detect flaws in the touchdown sensing software.  
 
Given the complexity and the safety criticality of many software-based systems, it is clear that the use of one type of 
software verification is insufficient to satisfy the software safety requirements and hence a combination of 
verification techniques are often needed to generate the verification evidence. Although testing and expert review 
are commonly used to generate primary or secondary verification evidence, there is an increased emphasis on the 
suitability and effectiveness of formal verification in satisfying the software safety requirements with a high degree 
of certainty [1]. 
 
The principal challenge for demonstrating that the software safety requirements have been satisfied resides in the 
fundamental limitations of the evidence obtained from the techniques outlined above. The source of the difficulties 
lies in the nature of the problem space. For testing and analysis techniques alike, there are issues with completeness, 



given the complexity of software systems, particularly those used in implementing autonomous capabilities. Formal 
methods do have some advantages for verification of the core logic of the software, though challenges remain here, 
too: assurance of model validity is difficult to provide, and formal methods do not address the fundamental issue of 
hardware integration.  
 
Assuring the safety of software systems clearly rests in the ability to satisfy the defined software safety 
requirements. This gives us our third software safety assurance principle: 
 
Principle 3: Software safety requirements shall be satisfied. 
 

4. Hazardous Software Behaviour  
 
Although the software safety requirements placed on a software design can capture the intent of the high-level safety 
requirements, this cannot guarantee that the requirements have taken account of all the potentially hazardous ways in 
which the software might behave. There will often be unintended behaviour of the software, resulting from the way 
in which the software has been designed and developed, which could not be appreciated through simple 
requirements decomposition. These hazardous software behaviours could result from either: 
 

• unanticipated behaviours and interactions arising from software design decisions 
• systematic errors introduced during the software development process 

 
On 1st August 2005, a Boeing 777-200 flight from Perth to Kuala Lumpur experienced a number of serious alerts, 
spurious indications and dangerous auto-pilot activity [10]. The pilot managed to return the aircraft safely to Perth 
only by disengagement of the auto-pilot, manually overriding warnings and automatic commands, and reliance on 
information provided by air traffic control. The initiating event for this incident occurred some four years previously 
when one of the aircraft accelerometers failed such that it provided erroneously high output. The software in the 
aircraft’s Air Data Inertial Reference Unit (ADIRU), in accordance with its specification, disregarded the erroneous 
accelerometer and instead relied upon data from a back-up accelerometer. The incident occurred when the back-up 
accelerometer also failed. At this point the ADIRU software reverted to taking input from the accelerometer that had 
initially failed. The reason for this was that the ADIRU software had been designed such that when it was shut down 
and restarted the accelerometer was no longer recognised as faulty, and therefore taken by the software to be 
available for use should it be required. 
 
This incident highlights the problems that can arise from the unanticipated side-effects of a software design. It 
would only be through a systematic and thorough consideration of potential software failure modes and their effects 
(both on the software and other systems) that such incidents might be anticipated. If potential hazardous software 
behaviour has been identified, then it is possible to put in place measures to address it. However this requires that 
analysis of the potential impact of software design commitments is performed. 
 
Not all hazardous software behaviour will arise due to unanticipated effects of the software design. Hazardous 
behaviour may also be observed as a direct result of errors introduced during the software design and 
implementation processes. During the first Gulf war a Patriot missile battery failed to track and intercept a Scud 
missile, which hit a US Army barracks killing 28 soldiers and injuring 98 [11]. This incident was a direct result of, 
in part, a lack of precision in a conversion performed by the software from a floating point number to an integer, 
which reduced the accuracy of the integer over time. It is not uncommon for such seemingly trivial development 
errors to have large consequences. 
 
The key thing to note here is that this is not a general software quality issue. For the purposes of software safety 
assurance we are only concerned with those errors that could lead to hazardous behaviour. This allows effort to be 
focussed on reducing systematic errors in those areas where there may be a safety impact. In practice it may not be 
realistic to systematically establish direct hazard causality for every error, it is probably desirable therefore for a 
period of time to adopt activities that are seen to be best practice. However the rationale for doing so should at least 
be based upon some experience within the software safety community of how the specific issue being addressed has 
given rise to safety related incidents. It is also important that the most critical aspects of the software design are 
identified, to ensure that sufficient rigour is applied to their development. 



 
If there is to be confidence that the software will always behave safely, any software behaviour that may be 
hazardous must be identified and prevented. This gives us our fourth software safety principle. 
 
Principle 4: Hazardous behaviour of the software shall be identified and mitigated. 
 

5. Confidence  
 
For any safety related system containing software, the four principles described above apply. It is necessary to 
provide evidence to demonstrate that each of the principles has been established for the software. The evidence may 
take numerous forms based upon the nature of the software system itself, the hazards that are present, and which 
principle is being demonstrated. The evidence provided will determine the confidence or assurance with which the 
principle is established, and may vary hugely in quantity and rigour. It is therefore important to ensure that the 
confidence established is appropriate in all cases. This is commonly done by ensuring that the confidence achieved 
is commensurate to the contribution that the software makes to system risk. This approach ensures that most effort 
(in generating evidence) is focussed on those areas that reduce safety risk the most. This approach is widely 
observed in current practice, with many standards using notions of integrity or assurance levels to capture the 
confidence required in a particular software function. 
 
The Boeing 777 aircraft has a Fly-By-Wire Flight Control System (FCS). The central element of the FCS is the 
Primary Flight Computer  (PIFC) [12]. The 777 FCS provides the single source of control of the aircraft in the pitch, 
roll and yaw axes. Should there be a failure of the PIFC, then control of the aircraft could be lost, with no further 
mitigations available. The PIFC function clearly makes a very large contribution to risk for the aircraft, and as such 
was determined to require the highest level of assurance. This in turn necessitated a robust software architecture and 
design approach (including triple-redundancy) and the generation of extensive evidence including rigorous 
verification and validation activities (such as mathematical proofs for satisfying requirements and design 
specifications).  
 
Sizewell B is a pressurised water reactor nuclear power station in the UK. The reactor protections system entails a 
computerised Primary Protection System (PPS) and a hard-wired Secondary Protection System (SPS) [13]. The 
reactor protection system as a whole was determined to require the highest safety integrity level due to the high risk 
associated with the system. In this case the computerised PPS does not take sole responsibility for this risk. Since the 
PPS and the SPS were determined to be independent (they have sufficiently independent failure modes), the risk 
contribution can be split between the two systems. The SPS offers failure protection for the PPS, and thus the 
integrity required from the PPS is reduced. This means that the confidence that must be achieved for the PPS 
software function is also reduced (the quantity and rigour of the software safety evidence generated may be lower). 
These two simple examples illustrate how projects make decisions on the required confidence based on a judgement 
of the software’s contribution to system risk. Such a judgement is not always straightforward. For example there has 
been much debate about the overall risk posed by unmanned aerial vehicles and the contribution that software can 
make to this risk. 
 
Once the required confidence has been determined, it is necessary to be able to assess whether this has been 
achieved. In order to judge the level of confidence with which each principle is demonstrated, there are a number of 
considerations. Firstly the appropriateness of the evidence should be considered. This must take account of the 
limitations of the type of evidence being used. These limitations will influence the confidence that can be gained 
from each type of evidence with respect to a particular principle. These limitations will include for example the 
achievable coverage of different types of testing, the accuracy of the models used in formal analysis techniques, or 
the subjectivity of review and inspection. The limitations of different types of evidence mean that in order to achieve 
the required level of confidence against any of the principles, it may be necessary to use multiple forms of evidence. 
Secondly the trustworthiness of each item of evidence must be considered. This considers the confidence there is 
that the item of evidence actually delivers its expected capability. This is often also referred to as evidence integrity 
or evidence rigour. The trustworthiness of the evidence item is determined by the rigour of the process used to 
generate that item. The main parameters that will affect trustworthiness are [14]: 
 

• Independence 



• Personnel 
• Methodology 
• Level of audit and review 
• Tools 

 
So although the four software safety principles will never vary, the confidence with which those principles are 
established will vary considerably. We have seen that it is necessary to make a judgement as to the necessary 
confidence with which the principles must be established for any given system. This gives us our final principle. 
 
Principle 4+1: The confidence established in addressing the software safety principles shall be commensurate 
to the contribution of the software to system risk. 
 
This principle is referred to as Principle 4+1 since it cross-cuts the implementation of the other four principles. 
 

Relationship to Existing Software Safety Standards  
 
The software safety assurance principles described in this paper are inherent, though often are implicit, in most 
software safety standards. It is however easy for software engineers using these standards to lose sight of the core 
objectives by focusing solely on compliance with the letter of these standards (e.g. through box-ticking). Below we 
describe how each of the principles is exhibited in some of the most commonly used software safety standards: DO 
178C [1], IEC 61508 [4], ISO 26262 [3]. 
 
Principle 1: The establishment of a link between hazard analysis at the system level and software safety 
requirements is observable in IEC 61508 and ISO 26262. DO-178C requires that “high-level requirements that 
address system requirements allocated to software to preclude system hazards should be defined”. This addresses 
Principle 1, particularly when applied in the context of companion standard ARP 4754 [15]. 
 
Principle 2: The need for traceability in software requirements is universal. The standards also emphasise step-wise 
validation of the software requirements. DO-178C and ISO26262 provide specific models of requirements 
decomposition. Where the standards tend to be less strong is in capturing the rationale for the requirements 
traceability (a crucial aspect of Principle 2). In particular what is lacking is a particular emphasis on maintaining the 
intent of the software safety requirements. This requires richer forms of traceability, which consider the intent of the 
requirements, than merely syntactic traceability mechanisms between the requirements at different development 
stages. 
 
Principle 3: Guidance on requirements satisfaction forms the core of the software safety standards. This principle is 
universally well addressed although there are clearly differences in the recommended means of satisfaction (for 
example DO-178 traditionally placed strong emphasis on testing). 
 
Principle 4: Some aspects of this principle can be observed in the standards – it is required to show the absence of 
errors introduced during the software lifecycle. The software hazard analysis aspect however is the least discussed in 
any of the standards. The standards imply that safety analysis is a system-level process.  As such, the role of 
software development is to demonstrate correctness against requirements, including safety requirements allocated to 
software, as generated from the system-level processes. The process of refining and implementing these 
requirements at subsequent stages in the development process does not involve any explicit application of software 
hazard analysis. DO 178C allows for identified safety issues to be fed back to the system level, however there is no 
explicit requirement to identify ‘emerging’ safety issues during software development. 
 
Principle 4+1: The concept of moderating the software assurance approach according to ‘risk’ is common across the 
standards. There are crucial differences however in how the criticality of the software is determined. IEC61508 sets 
a Safety Integrity Level according to the probability delta in risk reduction; DO-178B places more focus on severity; 
ISO 26262 incorporates the concept of controllability of the vehicle. In addition, there are many differences in the 
recommended techniques and processes at different levels of criticality. 
 

Conclusions 



 
This paper has presented the 4+1 model of fundamental principles for software safety assurance.   As we have 
discussed, the principles can be seen to relate strongly to features of existing software safety assurance standards and 
can provide a common reference model through which standards can be compared.  Through the examples we have 
presented it can also be observed that, though it is possible to state these principles simply, they have not always 
been observed in practice, and challenges can remain in the implementation of the principles. In particular, the 
management of confidence in relation to software safety assurance (Principle 4+1) remains an area of significant 
investigation and debate. 
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