
1

A FRAMEWORK FOR DETERMINING THE SUFFICIENCY
OF SOFTWARE SAFETY ASSURANCE

R.D. Hawkins, T.P. Kelly

Department of Computer Science, The University of York, Deramore Lane,
York, YO10 5GH, UK

{rhawkins|tim.kelly}@cs.york.ac.uk

Keywords: Software, Safety, Assurance, Suppliers,
Sufficiency.

Abstract

In this paper we present a framework for ensuring software
suppliers provide the necessary information about their
software in order to support an overall platform safety case.
The framework has been developed particularly for use on
defence projects utilising a range of both bespoke and
previously developed software. The framework aims to
provide detailed guidance on what is expected from the
software supplier (to avoid ambiguity, inconsistency and
uncertainty), but not to unnecessarily constrain the supplier
by detailing how that should be achieved (to facilitate the use
of previously developed software and a wide supplier base).
 The framework defines a set of five core software safety
assurance principles. These principles must be shown to be
addressed for all software that may contribute to hazards of
the platform. The framework also defines the criteria by
which the sufficiency of the evidence provided by the
supplier against these principles is determined.

1. Requirements for the software safety
assurance framework

The primary aim of the software safety framework described
in this paper is to ensure the overall platform meets the
requirements of Defence Standard 00-56 Issue 4 [1]. The
framework has been developed particularly for use on a
complex defence project utilising a large and diverse range of
both bespoke and previously developed software products
(both in-house and external). This means that there are a
number of different suppliers, each having responsibility for
developing and assuring their own software. In addition the
software suppliers may utilise a range of software assurance
and development standards and processes.
What is therefore required is a software safety framework that
ensures that the suppliers provide the necessary information
about their software in order to support the overall platform
safety case. The framework must make it clear how the
sufficiency of this information will be determined, without
being overly prescriptive. Ultimately the aim of the
framework is to provide detailed guidance on what is
expected from the software supplier (to avoid ambiguity,
inconsistency and uncertainty), but not to unnecessarily

constrain the supplier by detailing how that should be
achieved (to facilitate the use of previously developed
software and a wide supplier base).

1.1. Challenges of existing approaches to software
safety assurance

The type of projects we are particularly considering in this
paper – highly integrated with a large number of suppliers
who often provide previously developed or COTS products -
are very common, perhaps the norm, for large military
systems. Previous experience with projects of this type has
shown that the integrator is often required to carry out large
amounts of expensive additional work (in addition to that
done by the software supplier) in order to make an overall
safety case for the platform. This results from:

• Inconsistency across the suppliers in what is
considered an acceptable software safety approach.

• Too little software safety evidence being provided
by the supplier in order to provide the necessary
assurance.

• Lack of understanding by the suppliers of the role of
their software in the occurrence of platform hazards.

• Supplier’s claiming to have developed ‘safe
software’ but failing to provide sufficient
demonstration and justification.

This approach presented in this paper aims to reduce project
risk by providing a framework that addresses these problems.

1.2. What is required from software suppliers?

00-56 requires the production of a safety case consisting of “a
structured argument, supported by a body of evidence, that
provides a compelling, comprehensible and valid case that a
system is safe for a given application in a given
environment.” For the software aspects of the system, this
requires an argument regarding the risk contribution of that
software (a “risk argument”), i.e. how is the software
contribution to the hazards of the overall platform controlled?
00-56 also requires that the argument and evidence should be
commensurate with the risk posed by the system. For the
software aspects of the system, this requires an argument
documenting the reasons why there is sufficient confidence in
the argument of the risk contribution of the software (a
“confidence argument”), i.e. the confidence in the software

2

risk argument is appropriate for the criticality of the software
contribution to platform hazards.
The idea of splitting a safety argument into a risk argument
and associated confidence argument was first proposed in [2].
The framework developed here uses this idea as a basis for
clearly defining the expectations on the software suppliers.

1.3. What is required by software suppliers?

In order to provide a software risk argument, suppliers must
correctly understand how, and to what extent, their software
can contribute to the hazards of the overall platform. This
requires that the following information be defined for all
software under consideration:

• Specific contributions that the software may make to
the identified platform hazards, either in the form of
potential failure behaviour of the software (that the
software is required to avoid), or defined
functionality or properties that the software must
provide. These can be identified from the hazard
analysis activities performed as part of a standard
platform hazard analysis process (for example an
FFA or FTA).

• The criticality of those contributions, based upon the
severity of the hazardous outcome and the degree of
contribution of the software to the overall hazard.
This recognises the fact that the software is normally
just one element of the overall contribution of a
system to a platform hazard.

There are a number of similar approaches to categorising the
criticality of software contributions to system hazards. A
commonly used approach is that defined by US MIL Std
882C [3] that determines a software hazard risk index based
on the severity category of the hazard, and the degree of
control that the software has over the hardware aspects of the
system. Our approach categorises the criticality of each
software contribution to a platform hazard in a similar
manner. Since we are determining the software contributions
for each equipment, the levels of hardware redundancy
provided by other equipment at the platform level is also
taken into consideration, as well as the degree of control of
the software within that equipment. We define four levels of
criticality for equipment hazardous software contributions:
Critical, High, Medium, Low.
The information described above is the minimum information
required by software suppliers in order to be able to provide a
software risk argument. It defines how their software affects
safety at the platform level, taking into account the particular
hazards of the platform and the interactions of their
equipment with other systems. Without this, although a
software provider may be able to reason about the behaviour
and potential failure modes of their software, they are unable
to understand how that will affect the overall platform
hazards. This means that this information must be determined
early on such that it can be passed onto the suppliers.

2. Overview of the Framework
The framework defines in detail the expectations on software
suppliers with respect to demonstrating the safety of the

software as part of the platform. The framework addresses
both the software risk argument and the confidence argument.
To address the software risk argument, the framework defines
a set of five core software safety assurance principles. These
principles must be shown to be addressed through the
provision of sufficient evidence for all software that may
contribute to hazards of the platform. The software safety
assurance principles are described in section 2.1. These
principles are fundamental to any software risk argument and,
as such, are independent of the criticality of the software
contribution to hazards or any other particular features of the
software under consideration.
To address the confidence argument, the framework defines
the criteria by which the sufficiency of the evidence provided
to demonstrate the achievement of the core principles is
determined. Unlike the software safety assurance principles,
the confidence criteria vary according to the criticality of the
software contribution to the platform hazards. Where the
software contribution is of higher criticality, more confidence
is required that the assurance principles have been addressed.
The framework splits the confidence criteria into the
following areas:

• The criteria to be used to assess whether the
confidence achieved in each of the core principles is
commensurate with the criticality. See section 2.2.

• The types of safety assurance evidence that may be
used to address each of the core principles and the
limitations that influence the confidence that can be
gained from each evidence type. See section 2.3.

• Criteria for determining the trustworthiness of each
evidence item with respect to the criticality. See
section 2.4.

2.1. Software Safety Assurance Principles

In this section we describe the core software safety assurance
principles that must be addressed for any software that may
contribute to platform hazards. These principles have largely
been extracted from previous work undertaken by the authors
[4], [5]. The principles have been found to be valid in a
number of platforms, including those reported in [6].
These principles are:

• Software Safety Requirements validity (Valid) –
Demonstrate that the defined software safety
requirements provide an appropriate means of addressing
the identified software contributions to platform hazards.

• Software Safety Requirements satisfaction
(Satisfaction) – Demonstrate satisfaction of all the
identified software safety requirements.

• Software Safety Requirements Decomposition
(Decomposition) – Demonstrate that the requirements
and design are appropriately allocated, decomposed,
apportioned and interpreted throughout the
decomposition of the software design and through to
implementation.

• Assessment of Hazardous Software Failure Behaviour
(Hazardous Behaviour) – Demonstrate that potential

3

hazardous failure behaviour of the software has been
assessed and addressed.

• Absence of Development Errors (Errors) -
Demonstrate that potentially hazardous errors have not
been introduced through the software development and
implementation process. For example, it must be
demonstrated that the software is free from intrinsic
errors (e.g. buffer overflows and divide-by-zero errors).

The principles should be demonstrated to hold at all levels of
abstraction in the software design. These core principles are
always valid, and therefore do not vary according to the
criticality of the software contribution to hazards. What does
vary according to criticality is the confidence with which
those principles are demonstrated, as described below.

2.2. Confidence Criteria for the Software Safety
Assurance Principles

Each of the software safety assurance principles must be
demonstrate with sufficient confidence. Confidence is gained
that the principle is addressed through the provision of
evidence, and also an argument as to how that evidence
demonstrates that principle. The confidence provided in each
principle must be commensurate with the criticality of the
software contribution to the platform hazard. That is to say
that where software makes a more critical contribution to
platform hazards, more confidence must be provided that the
principles have been met. Below, we define the criteria for
determining whether the assurance is commensurate with the
each criticality level.
These criteria have been defined by characterising what is
meant by demonstrating different levels of confidence in each
of the software safety assurance principles. These definitions
build on work undertaken by Reinhart and McDermid [7],
who provide more general definitions for different levels of
assurance.

Critical (1)

Satisfaction: Absolute assurance provided that the defined
software safety requirements will always be met as required
by the executed software in a defined execution and
operational context. There is no uncertainty in the
achievement of the software safety requirement.

Decomposition: Absolute assurance provided that the
decomposed software design appropriately captures the
software safety requirements defined at the previous level of
decomposition. There is no uncertainty in the correctness of
the requirements decomposition.

Hazardous Behaviour: Absolute assurance provided that all
potential hazardous behaviour of the executing software has
been identified and addressed. There is complete certainty
that all potential hazardous behaviour of the software has
been considered.

Errors: Absolute assurance provided that the software does
not contain development errors. There is no uncertainty
regarding the presence of residual development errors.

High (2)

Satisfaction: All reasonably practicable steps have been taken
to demonstrate that the software safety requirements will
always be met as required by the executed software in a
defined execution and operational context. There may be
some remaining uncertainty but this is unlikely to lead to
violation of the safety requirement.

Decomposition: All reasonably practicable steps have been
taken to demonstrate that the decomposed software design
appropriately captures the software safety requirements
defined at the previous level of decomposition. There may be
some remaining uncertainty in the adequacy of the
requirements decomposition but this is will not impact the
safe behaviour of the software.

Hazardous Behaviour: All reasonably practicable steps have
been taken to demonstrate that all potential hazardous
behaviour of the executing software has been identified and
addressed. There may not be complete certainty that the
identification is exhaustive.

Errors: All reasonably practicable steps have been taken to
demonstrate that the software does not contain development
errors. There may be some remaining uncertainty regarding
the presence of residual development errors but this is not
expected to impact the safe behaviour of the software.

Medium (3)

Satisfaction: Steps have been taken to demonstrate that the
software safety requirements will always be met as required
by the executed software in a defined execution and
operational context. The remaining uncertainty would only
lead to violation of the safety requirement under exceptional
defined operational circumstances.

Decomposition: Steps have been taken to demonstrate that the
decomposed software design appropriately captures the
software safety requirements defined at the previous level of
decomposition. The remaining uncertainty is unlikely to
impact the safe behaviour of the software.

Hazardous Behaviour: Steps have been taken to demonstrate
that all potential hazardous behaviour of the executing
software has been identified and addressed. The identification
is not exhaustive but is systematic and thorough.

Errors: Steps have been taken to demonstrate that the
software does not contain development errors. The remaining
uncertainty is unlikely to impact the safe behaviour of the
software.

Low (4)

Satisfaction: Steps have been taken to demonstrate that the
software safety requirements will be met as required by the
executed software in a defined execution and operational
context. The remaining uncertainty could lead to violation of
the safety requirement, but this would not be expected under
normal operating conditions.

Decomposition: Steps have been taken to demonstrate that the
decomposed software design appropriately captures the
software safety requirements defined at the previous level of

4

decomposition. The remaining uncertainty could potentially
impact the safe behaviour of the software.

Hazardous Behaviour: Steps have been taken to demonstrate
that potential hazardous behaviour of the software has been
identified and addressed. The identification may not be
systematic and thorough.

Errors: Steps have been taken to demonstrate that the
software does not contain development errors. The remaining
uncertainty could potentially impact the safe behaviour of the
software.

2.3. Limitations of Evidence Types

It is expected that many different types of evidence will be
used to provide assurance in the safety of the software. In
previous work [8] we have described the limitations of
different types of software assurance evidence with respect to
different claims in a software safety argument. These
limitations identify the factors that influence the confidence
that can be gained from each type of evidence. These
limitations should be considered when using the criteria in
section 2.2 on the required level of confidence for each
criticality level. The limitations of the different types of
evidence mean that in order to achieve the required level of
assurance against one of the principles, it may be necessary to
use multiple forms of evidence.
The types of evidence that would typically be used to address
each of the principles are indicated below. The limitations of
each type of evidence are summarised.

Satisfaction:

Evidence
Type

Limitations

Testing Test cases may not have sufficient coverage
to trigger all possible outputs.

Analysis Reliant upon the accuracy of model and
hardware assumptions.
Non-formal analysis may not be repeatable.

Design /
Code
Reviews

Reviews cannot directly demonstrate
achievement of the requirement.
Reviews are subjective and not repeatable.
Information reviewed is documentation
dependant (can only reveal errors in what’s
documented).

Field
Experience

Cannot guarantee that field experience has
exposed all relevant errors.
The environment and operational context of
the field experience may not be exactly that
of the target system.

Decomposition:

Evidence
Type

Limitations

Formal
Analysis

Reliant upon the accuracy of model
assumptions.

Manual
Design
Review

Reviews are subjective and not repeatable.

Hazardous Behaviour:

Evidence
Type

Limitations

Failure/Hazard
Analysis

These techniques are varyingly subjective
and are not necessarily exhaustive in
consideration of erroneous behaviour.

Field
Experience

Cannot guarantee that all hazardous
functional failures have been exposed by
the field experience.
The environment and operational context
of the field experience may not be exactly
that of the target system.

Errors:

Evidence
Type

Limitations

Formal
Analysis /
Model
Checking

Reliant upon the accuracy of model
assumptions.

Manual Design
Review /
Review of
conformance to
standards /
guidelines

Reviews are subjective and not
repeatable.

2.4. Trustworthiness Criteria

For each item of evidence generated the trustworthiness of
that item must be appropriate for the level of criticality of the
software contribution. The trustworthiness of the evidence
item is determined by the rigour of the process used to
generate that item. The main parameters that will affect
trustworthiness are:

• Independence
• Personnel
• Methodology
• Level of Audit and Review
• Tools

We have provided guidance on how to assess the sufficiency
of an evidence item against each of these parameters at
different levels of criticality (see Table 1). This guidance is
based upon best practice as defined in standards such as [9],
[10], [11]. Note that the criteria used is the same for both
High and Medium criticality levels (2 and 3).

3. Use of Previously Developed Software
On large complex project, particularly one with multiple
external software suppliers, it is likely that at least some of
the software used will have been previously developed (either
commercially or on another project). In these situations,
although it is not possible to constrain the development of the
software, it is still necessary to show how the existing

5

software product and evidence set meets the criteria for the
required criticality. This may, of course, identify some gaps in
the existing evidence that then need to be addressed before
the software can be used as part of the platform. It is not
within the scope of this paper to discuss strategies for
generating additional evidence relating to previously
developed software (other work in this area exist such as [12]
and [13]), however the explicitness of the criteria and
guidance presented in this framework will facilitate filling
identified gaps.

3.1. Use of Other Standards

The software suppliers may utilise a range of software
assurance and development standards and processes. One of
the aims of the framework was to provide the flexibility to
allow suppliers to use other standards as part of an assurance
strategy that ensures compliance with the framework criteria.
Where software standards (such as DO-178B [10] or IEC
61508 [9]) have been used by a supplier the framework
criteria remain, and the supplier must indicate how the
principles are addressed in the use of the standard. It is
anticipated that there may be gaps identified between the
evidence generated by the supplier in complying with the
standard, and the evidence requirements laid out in this
framework. The supplier must define a strategy for generating
the additional evidence required.

4. Conclusions

The framework we have described in this paper has been
developed in order to address particular challenges of
complex projects utilising a large and diverse range of both
bespoke and previously developed software products. One of
the biggest challenges identified on previous projects working
within a Def Stan 00-56 regime is how to provide guidance to
suppliers in enough detail that they understand clearly what is
expected from them without unnecessarily constraining them
by prescribing how this is to be achieved. We believe that the
framework described here achieves this difficult balance, in
particular it makes clear how other software standards (such
as IEC 61508 or DO178B) may be used by the suppliers as
part of a sufficient software safety approach.
Another advantage of the framework is that it makes it
relatively easy to integrate the software safety justification
produced by the supplier as part of the overall platform safety
case. This is due to enabling the supplier to produce a
software risk argument focussing on the explicit contributions
of the software to platform hazards. Without this the supplier
can only reason about the planned and unplanned behaviour
of their software, but not the impact of this on the safety of
the platform. This is important since it reduces the additional
work required by the integrator in order to demonstrate that
the supplier software is safe in the particular platform context.
It also ensures that responsibility for developing safe software
and demonstrating its safety remains, as far as practicable
with the software suppliers.

We believe that although ‘pockets’ of useful guidance and
best practice have existed for some time, this framework

presents a complete, coherent, consistent and easy to use
approach with benefits for both integrators and suppliers.

Acknowledgements

The authors would like to thank BAE Systems for their
support in funding this work.

References

[1] MoD. “Defence Standard 00-56 Issue 4: Safety
Management Requirements for Defence Systems,”
HMSO, (2007).

[2] R. Hawkins, T. Kelly, J. Knight, P. Graydon. “A New
Approach to Creating Clear Safety Arguments”, In
Proceedings of the Nineteenth Safety-Critical Systems
Symposium (SSS ’11), Southampton (2011)

[3] US DoD. “MIL-STD-882C – System Safety Program
Requirements”, US DoD, (1993).

[4] R. Hawkins, T. Kelly. “A Systematic Approach for
Developing Software Safety Arguments”, Journal of
System Safety, Volume 46, No. 4, pp 25-33, System Safety
Society Inc. (2010).

[5] R. Hawkins, T. Kelly. “A Software Safety Argument
Pattern Catalogue”, Available at
www.cs.york.ac.uk/~rhawkins/pubs.html, (2010).

[6] R. Hawkins, K. Clegg, R. Alexander, T. Kelly. “Using a
Software Safety Argument Pattern Catalogue: Two Case
Studies”, 30th International Conference on Computer
Safety, Reliability and Security (SAFECOMP '11),
Naples, Italy, (2011).

[7] D. W. Reinhardt, J. A. McDermid. “Contracting for
architectural, claims and evidence assurance for military
aviation systems”, In Proceeding of the Australian System
Safety Conference, (2012).

[8] R. Hawkins, T. Kelly. “A Structured Approach to
Selecting and Justifying Software Safety Evidence”, In
Proceedings of the IET International System Safety
Conference, (2010).

[9] IEC, “61508 – Functional Safety of Electrical / Electronic
/ Programmable Electronic Safety-Related Systems”, IEC,
(1998).

[10] RTCA. “DO178B – Software Considerations in Airborne
Systems and Equipment Certification”, RTCA, (1992)

[11] IEE. “Safety, Competency and Commitment:
Competency Guidelines for Safety-Related System
Practitioners”, IEE, (2000)

[12] F. Ye. “Justifying the Use of COTS Components within
Safety Critical Applications”, PhD Thesis, The University
of York, (2006).

[13] C. Menon, J. McDermid, P. Hubbard. “Goal–based
Safety Standards and COTS Software Selection”, In
Proceedings of the 4th IET International System Safety
Conference, (2009).

6

Independence

1 Independent
Organisation

Organisation separate and distinct, by management and other resources, from the organisations
responsible for the activities that take place

2/3 Independent
Department

Department separate and distinct from the departments responsible for the activities that take place

4 Independent Person Person separate and distinct from the activities that take place with no direct responsibility for those
activities

Personnel

1 Expert Has sufficient understanding of why things are done in certain ways, and sufficient demonstrated
management skills, to be able to undertake overall responsibility for the performance of a function.
Familiar with the ways in which systems have failed in the past. Keeps abreast of technologies,
architectures, application solutions, standards and regulatory requirements. Has sufficient breadth of
experience, knowledge and deep understanding to be able to work in novel situations. Is able to deal
with a multiplicity of problems under pressure without jeopardising safety issues.

2/3 Practitioner Has sufficient knowledge and understanding of best practice, and sufficient demonstrated experience,
to be able to work on the task without the need for detailed supervision. Maintains knowledge and
aware of current developments.

4 Supervised
Practitioner

Has sufficient knowledge and understanding of best practice to be able to work on the task without
placing an excessive burden on the practitioner or expert which might compromise safety. Supervised
practitioners may not have had experience of working on a safety-related project.

Methodology

1 Objective Reasoning
of Achievement

Method has objective, systematic reasoning that the required outcome is achieved

2/3 Objective Acceptance
Criteria

Method has objective acceptance criteria that can give a high level of confidence that the required
outcome is achieved (exceptions to be identified and justified).

4 No Objective
Acceptance Criteria

Method has no or little objective acceptance criteria

Level of Audit and Review

1 Independent Audit Independent check that the activities undertaken are compliant with the defined process. Audit should
be undertaken by person(s) from independent organisation.

2/3 Independent Audit Independent check that the activities undertaken are compliant with the defined process. Audit should
be undertaken by person(s) from independent department.

4 Self-Check No independent check that the activities undertaken are compliant with the defined process.

Tools

1 Objective Reasoning
of Correct Operation

Objective, systematic reasoning that the (verification) tool functions according to its operational
requirements under normal operational conditions

2/3 Demonstrated
Correct Operation

Evidence provided that the (verification) tool functions according to its operational requirements under
normal operational conditions

4 Unverified Little or no evidence provided that the (verification) tool functions according to its operational
requirements under normal operational conditions

Table 1 – Assessment of evidence trustworthiness criteria

