
A Structured Approach to Selecting and Justifying Software
Safety Evidence

R. Hawkins and T. Kelly

{richard.hawkins | tim.kelly@cs.york.ac.uk}
Department of Computer Science,

The University of York, York, YO10 5DD
UK

Keywords: software, safety, evidence, safety argument.

Abstract

The safety assurance of software is ultimately demonstrated
by the evidence that is put forward. There is a range of
existing guidance on the types of evidence that may be used
to demonstrate the safety of software, however questions
remain as to the sufficiency of the evidence suggested by such
guidance. We propose that the only way to determine the
sufficiency of the evidence is to consider its capability to
address specific explicit safety assurance claims in a software
safety argument. In this paper we propose a lightweight
approach to selecting and assessing software safety evidence.

1 Introduction

It is possible to demonstrate the safety of a software system
through the presentation of a software safety argument as
required by Defence Standard 00-56 [10]. The purpose of
such an argument is to demonstrate that sufficient assurance
in the safety of the software has been achieved. In previous
work undertaken in the SSEI [4], [5] we have looked at how a
compelling software safety argument may be constructed.
This work provided guidance on the nature of the argument
and safety assurance claims that must be supported for the
software. We also provided guidance on how to identify and
mitigate assurance deficits which may arise throughout the
development of the software system and associated safety
assurance argument.

The overall assurance that is achieved is ultimately
determined by the evidence that is put forward to support the
argument. There is a range of existing guidance on the types
of evidence that may be used to demonstrate the safety of
software, such as in [12] and [1]. Particularly detailed is that
provided within Part 3 of the safety standard IEC 61508 [6].
Guidance such as this provides detailed lists of the types of
evidence that may be appropriate to provide in support of
software developed to different levels of integrity. Such
processes are useful as they set out explicitly the various
types of evidence that may be generated. They can also
provide valuable guidance on how to implement a high-
quality and repeatable software engineering process. However
questions remain as to the sufficiency of the evidence
suggested by such guidance. The main problem lies in the
lack of rationale as to why those particular items of evidence

are generated, and thus their sufficiency for demonstrating
that the software is acceptably safe to operate in a particular
context.

To solve this problem we propose that the software safety
assurance argument be used to determine the requirement for,
and sufficiency of, particular items of software assurance
evidence. Software safety evidence should be selected
principally upon its capability to address specific explicit
safety assurance claims in a software safety argument. We
propose a lightweight approach to selecting and assessing
evidence based upon the consideration of three simple
questions:

1. Is the type of evidence capable of supporting the safety
claim?
2. Is the particular instance of that type of evidence capable of
supporting the safety claim?
3. Can the instance of that type of evidence be trusted to
deliver the expected capability?
Such questions could be asked of any item of evidence being
used to support any argument and can identify weaknesses or
limitations in the sufficiency of the evidence. We refer to
such weaknesses as assurance deficits since they have
potential to undermine our assurance in a safety claim. By
identifying and mitigating assurance deficits throughout
system development, it becomes possible to justify that the
evidence provided is sufficient. In this paper we investigate
how these questions can be applied to software safety. We use
this to define a systematic software safety evidence selection
process.

2 The Nature of Software Safety Assurance
Claims

The starting point for selecting and assessing software safety
assurance evidence is a safety argument for the software
aspects of the system under consideration. In previous work,
we have considered how to structure explicit hazard-focused
arguments regarding the safety of the software. This included
the generation of a software safety argument pattern
catalogue. The full software safety argument pattern
catalogue is documented in Appendix B of [9]. These
software safety argument patterns provide guidance on the
structure of the software safety argument, and the nature of
the safety claims that may be expected to be made for any
safety-related software system.

To ensure flexibility, the structure of the software safety
argument patterns is based upon a generalized ‘tier’ model of
development such as that proposed in [7]. Each tier
corresponds to one level of decomposition of the design. Key
to the arguments is establishing the satisfaction of software
safety requirements (SSRs) and the absence of hazardous
errors throughout the tiers of design decomposition of the
software. More specifically, evidence is required to support
safety assurance claims regarding:

Safety Requirement Satisfaction - Evidence that
demonstrates SSRs have been met. An example of evidence
that might be used to support this is evidence from testing,
which can be used to demonstrate that the required behaviour
occurs.

Safety Requirement Decomposition - Evidence that
demonstrates the requirements and design are appropriately
allocated, decomposed, apportioned and interpreted at each
tier of decomposition of the software design. Formal proof of
specification equivalence could be used to support a
decomposition argument.

Absence of design errors - Evidence that demonstrates
(hazardous) errors have not been introduced into the design.
Such claims could, for example, be supported by evidence
from a manual design review.

Assessment of hazardous failure behaviour - Evidence that
demonstrates hazardous failure behaviour of software has
been assessed e.g. field experience of similar systems.

Having established the nature of the software safety assurance
claims that require support, it possible to consider how the
three simple questions described earlier can be applied.

3 Question 1 – Capability of Evidence Types

All types of evidence have certain limitations, or fundamental
weaknesses. In the same way that fault trees could never be
used as evidence of hazard identification, different types of
software evidence will also have certain inherent limitations.
When Dijkstra famously said in his Turing Award Lecture in
1972, ``Program testing can be used to show the presence of
bugs, but never to show their absence!'', he was neatly
capturing a fundamental limit on the capability of program
testing as a type of evidence. These limitations can give rise
to questions as to the capability of a particular type of
evidence to support a particular software safety assurance
claim.

It is possible, in considering question 1, to determine how
different common types of software safety assurance evidence
may support the different broad types of safety claim
described in section 2. For this purpose we can use a simple
categorisation of the types of evidence that might be expected
to be used for software safety. These are:

Testing - Any evidence based upon the execution of the
software
Analysis - Any evidence based upon repeatable and objective
analysis of an artefact. This may include evidence based upon
a formal approach.
Review - Any evidence based upon subjective manual
assessment of an artefact.
Field experience - Any evidence based upon experience from
operation of a system.

It is important here to note a clear distinction between reviews
(which tend to be manual qualitative assessments) and
analysis (which is repeatable and systematic evidence of
correctness).

For each evidence type the role and limitations of that type of
evidence in supporting a particular type of claim can be
captured. It is possible to break the type of claim down further
by considering the nature of the software safety requirement
(SSR) to which that claim relates. SSRs can be categorised as
functional requirements, timing requirements, or value (data)
requirements. The types of evidence that could provide strong
support to claims relating to a functional SSR, may be quite
different from the types of evidence appropriate for a timing
SSR. Table 1 shows an example of how information on the
role and limitations of each type of evidence could be
captured. This information can then be used to inform a
decision on the most appropriate type of evidence to support a
particular claim.

This approach is similar to the concept of `expressive power'
used in the systems domain. In [8] the authors establish a
hierarchy among the most commonly used types of
dependability models, according to their modelling power.
They describe how the choice of a suitable model type is
determined by factors such as ease of use in a particular
application, the kind of system behaviour to be modelled, and
the conciseness and ease of model specification.

4 Question 2 – Capability of Evidence Instances

Because evidence of a particular type has the potential to
support a particular claim in the software safety argument,
this does not imply that every item of evidence of that type
will be appropriate. The second question considers factors
which affect the capability of individual evidence instances to
support specific claims in the argument. There are a number
of factors that can affect the capability of an item of software
evidence to support a particular safety claim. These include:

Relevance – Is the item of evidence relevant to the claim
within this particular argument? For example was a code
review performed upon the correct version of the software.
Context and Assumptions – The suitability of an item of
evidence can only be judged within the specific system and
argument context and assumptions. For example failure
analysis evidence may have been generated on the assumption
that a robust partitioning mechanism was in place. The

evidence item will therefore only be suitable if such a
mechanism exists in the implemented system.
Coverage – Is the coverage provided by testing or analysis
sufficient to demonstrate the required properties?
Depth1 – Depth represents the level of design detail against
which the evidence is provided. The depth of the evidence
must be appropriate for the claim being supported. For
example a claim relating to properties of the software code
could not be supported by evidence from integration testing
(which does not consider code structure).

Note that the factors discussed above are properties of a
particular instance of evidence, rather than a limitation
common to all evidence of that type.

5 Question 3 – Trustworthiness of Evidence

The trustworthiness of an item of evidence is the confidence
that the item of evidence delivers its expected capability. This
property could also be considered to be the integrity of the
item of evidence, or its rigour. An item of evidence which is
untrustworthy may not provide the support to the safety
assurance claim that was expected when that item of evidence
was selected.

We propose that the best way to justify that an item of
evidence is sufficiently trustworthy is to provide an assurance
argument relating specifically to that item of evidence, an
approach suggested in [3]. For each item of evidence it is
necessary to consider the reasons why that evidence may fail
to deliver its expected capability. Each item of evidence is

1 The Common Criteria [2] concept of depth considers that
greater assurance is achieved at a finer level of design and
implementation detail.

generated as the result of undertaking a process. It is when the
process is being performed that weaknesses are introduced
into the evidence. We propose that the factors that affect the
trustworthiness of the evidence are best identified by
considering potential failures in the evidence generation
process. The assurance argument for the item of evidence is
then used to demonstrate confidence in these process aspects.

It is described in [11] how a process model can be used to
capture the important characteristics of a development
process. It notes that it is important that such a model should
not be subsumed in huge amounts of detail. It suggests the
process model should:

• Capture inputs and outputs
• Capture resources
• Capture role of human beings
• Reveal the process dynamics, for example if a

process contains a high degree of iteration or
parallelism then the model should show this

Based on this we can provide simple models of the process
used to generate items of evidence, as shown in figure 1a.
Figure 1b shows how this simple model might apply in the
case of system functional test results.

Figure 1: Simple process model for evidence generation

In order to reveal weaknesses in the process it is necessary to
consider deviations in that process. We propose applying

 Evidence Type
Nature of Safety Claim Testing Analysis Review Field Experience

Functional
Requirement

Satisfaction claim –
demonstrate that the
required output will always
be provided when required

Role – Demonstrate
that each test case
results in the required
output
Limitations – Test
cases may not be
sufficient to trigger all
possible outputs

Role – Demonstrate
that input will always
result in expected
output
Limitations – Reliant
upon the accuracy of
model and hardware
assumptions. Non‐
formal methods may
not be repeatable.

Role – Check errors are
not made in the
design/code which
affect the achievement
of the requirement.
Limitations – Reviews
cannot directly
demonstrate
achievement of the
requirement. Reviews
are subjective and not
repeatable.

Role – Identify any
errors that occur
relating to the
requirement.
Limitations – Cannot
guarantee that all the
relevant errors have
been exposed by the
experience. The
environment and
operational context of
the experience may
not be exactly that of
the target system.

Decomposition claim –
demonstrate that the
decomposed specification
correctly captures the
functional requirement of
the previous tier of design

Role – N/A Role – Demonstrate
that the decomposed
design is equivalent to
previous specification.
Limitations – Reliant
upon the accuracy of
model assumptions.

Role – Check that the
decomposed design is
equivalent to previous
specification.
Limitations – Reviews
are subjective and not
repeatable.

Role – N/A

Absence of Design Errors
claim – demonstrate that…

Role – N/A Role – Demonstrate
that…

Role – Check that… Role – N/A

Table 1: Example table comparing types of evidence against types of safety claim

simple HAZOP-like guidewords to each input and resource
identified in the process model. The effect these deviations
may have on the output of the process (the item of evidence)
are then considered. In doing this we are attempting to
identify specifically those deviations which could result in the
evidence not providing the required support to the safety
claim. Table 2 shows how the guidewords may be applied and
interpreted for the system functional test results. The
argument considerations identified in the table can be used to
structure the assurance argument relating to that item of
evidence. This argument will itself require evidence relating
to the evidence generation process (for example evidence
from auditing activities), we shall refer to such evidence as
process evidence.

6 Addressing Assurance Deficits

Through systematically considering the three questions
described above we can identify potential weaknesses or
limitations in the sufficiency of any evidence being
considered to support the defined safety claim. As discussed
earlier, we refer to such weaknesses as assurance deficits. If
assurance deficits are identified for the selected evidence, it
becomes necessary to try to mitigate those assurance deficits.
There are essentially two strategies that can be adopted to
mitigate assurance deficits, either through primary evidence
and arguments, or through backing evidence and arguments.
Primary evidence is that which is used to directly support the
safety claim. Backing argument and evidence is that which is
used to provide assurance for that support (i.e. it is arguing
about how the primary argument supports the claim). In this
section we describe the use of both primary and backing
evidence and arguments.

6.1 Primary Evidence and Arguments

Primary evidence and argument is that which is used to
mitigate an assurance deficit by directly addressing the safety
claim. There are a number of ways in which this can be
achieved:

Evidence Diversity - Evidence diversity involves using
multiple items of evidence of different types in order to
support a claimed position within an argument. To be
effective in mitigating the assurance deficit, any diverse
evidence provided must extend the capability beyond that
provided by the other evidence used to support the claim.
This requires understanding of the particular limitations of the
different types of diverse evidence being used as discussed in
section 3.
Changes to the Argument - It may be possible to address an
assurance deficit by making changes to the existing argument.
By changing the safety claim to be supported, the capability
of an item of evidence to support the claim may then be
sufficient. If a claim in the argument is changed, the knock-on
effect of that change on the rest of the argument must be
considered. In particular the higher level claims in the safety
argument may no longer by sufficiently supported by the new
claim. In practice, it is likely that such changes would be
limited to redefining the basis on which the claim is stated
through changes to context and assumptions.

6.2 Backing Evidence and Arguments

Sometimes the sufficiency of a particular item of evidence to
support the safety claim can be unclear and hard to determine.
In such cases, it may be possible to clarify the sufficiency of

Input Guideword Interpretation Effect on safety claim Argument consideration

People less The personnel carrying out
the tests are not sufficiently
competent

The tests may not be sufficient to
demonstrate the requirements

Personnel are sufficiently
competent

 As well as The developers also carry
out the testing

Lack of independence can
undermine the confidence gained
from functional testing

Development team and
testing team are
independent

Tools less Testing tools used are of
insufficient integrity

Unreliable tools may indicate a
successful test when the required
functionality is not implemented

Tools used are of sufficient
integrity

Process
description

No, less Functional testing process is
not defined or not defined
clearly

Having no clearly defined process
can undermine confidence in the
outcome of the testing

Functional testing process
is clearly defined

 Defined process is not
followed

If the process is not followed, this
can undermine confidence in the
outcome of the testing

Defined process is followed
correctly

Test Cases other than False positives ‐ required
output defined incorrectly

Although the tests may still pass,
the required functionality is not
implemented

The test cases have been
correctly defined

Table 2: Example considering potential weaknesses in trustworthiness of functional test results

the evidence by providing backing argument and evidence.
There are a number of ways in which this can be achieved:

Develop a Backing Argument - An example of when a
backing argument may be used is in order to demonstrate the
relevance of an item of evidence to the claim being supported.
The relevance of the evidence may for example be open to
question because the data used for analysis was not actual
system data. It may be possible in such a situation to provide
a backing argument to explain why the data used was
sufficiently representative of the real system data.
Another example would be to explain why an assumption is
valid. For example, if an item of software hazard analysis
evidence is only valid if an assumption about the partitioning
properties of the system holds, a backing argument could be
used to explain how the architecture of the system guarantees
those properties.
Provide Additional Process Evidence – This evidence can
be used to provide additional confidence in the
trustworthiness of the item of evidence, or to further clarify
the role of the evidence in supporting the safety claim.

7 Systematic Evidence Selection Process

Based on the guidance we have discussed in this report, we
have been able to define a systematic process for selecting
and justifying sufficient evidence to support a software safety
argument. The process is represented in figure 2. The process
is based around consideration of the three simple questions
described in this report. The process starts by considering a
claim, and the evidence being used to support that claim. If
the response to any of the three main questions running down
the centre of figure 2 is positive, then one proceeds to
consider the next question. Where the response to a question
is negative, this identifies that the evidence being selected is
not sufficient, and could lead to an unacceptable assurance
deficit. It is therefore then necessary to identify additional or
alternative primary evidence or argument and return to the
start. In many cases it may be unclear whether the selected
evidence is sufficient, in which case the provision of
additional backing evidence and argument may help to justify
the support offered by the evidence to the claim.

The final stage in the process is to provide an explicit
justification as to why the software assurance evidence
provided is sufficient. We believe that by following the
process described in this paper, it becomes easier to make a
compelling justification. The process encourages a systematic
consideration of the sufficiency of each item of evidence
specifically with respect to the explicit safety claim in the
argument.

8 Conclusions and Future Work

The safety assurance of software is ultimately demonstrated
by the evidence that is put forward. There is a range of
existing guidance on the types of evidence that may be used
to demonstrate the safety of software and we have not
attempted to reproduce guidance of this form. We assert the

only way to determine the sufficiency of the evidence is
considering its capability to address specific explicit safety
assurance claims in a software safety argument. In this paper
we have proposed a lightweight approach to selecting and
assessing evidence. This approach has been applied as part of
existing case study work on software safety case construction
with encouraging results. Further validation of the approach is
planned.

Acknowledgements

The authors would like to thank the U.K. Ministry of Defence
for their support and funding. This work is undertaken as part
of the research activity within the Software Systems
Engineering Initiative (SSEI), www.ssei.org.uk.

References

[1] CAA Safety Regulation Group, “CAP 670 - Air Traffic
Services Safety Requirements,” Civil Aviation Authority,
(2007).

[2] Common Criteria Management Committee. “Common
criteria for information technology security evaluation –
Version 3.1”, (2007)

[3] I. Habli and T. Kelly. “Achieving integrated process and
product safety arguments.”, In Proceedings of the 15th
safety Critical Systems Symposium, (2007)

[4] R. Hawkins and T. Kelly, "A Systematic Approach for
Developing Software Safety Arguments", In
Proceedings of the 27th International System Safety
Conference, Huntsville, AL (2009).

[5] R. Hawkins and T. Kelly. “Software safety assurance –
what is sufficient”, In Proceedings of the 4th IET
International Conference on System Safety, (2009).

[6] IEC. “61508 - Functional Safety of Electrical / Electronic
/ Programmable Electronic Safety-Related Systems,”
International Electrotechnical Commision, (1998).

[7] M. Jaffe, R. Busser, D. Daniels, H. Delseny and G.
Romanski. “Progress report on some proposed upgrades
to the conceptual underpinnings of DO-178B/ED-12B.”,
In Proceeding of the 3rd IET International Conference
on System Safety, (2008)

[8] M. Malhotra and K. Trivedi, “Power-hierarchy of
Dependability-model Types”, IEEE Transactions on
Reliability, (1994)

[9] C. Menon, R. Hawkins and J. McDermid, “Interim
Standard of Best Practice on Software in the Context of
DS 00-56 Issue 4”, SSEI-BP-000001 issue 1, Software
Systems Engineering Initiative (SSEI), (2009), available
at www.ssei.org.uk.

[10] MoD. “Defence Standard 00-56 Issue 4: Safety
Management Requirements for Defence Systems,”
HMSO, (2007).

[11] MoD. “Defence Standard 00-55 Issue 2: Requirements
for Safety Related Software in Defence Equipment”,
HMSO, (2007).

[12] RTCA. “DO178B - Software Considerations in
Airborne Systems and Equipment Certification,” Radio
and Technical Commission for Aeronautics, (1992).

2. Is the type of evidence
capable of supporting the
claim within the context

presented?

1. Identify the claim
being supported
and related
evidence

4. Can additional backing
argument and evidence be
provided to assure the
capability of the type

evidence to support the
claim?

6. Is the instance of the type of
evidence capable of supporting
the claim within the context

presented?

8. Is the instance of the type of
evidence sufficiently trustworthy
within the context presented?

10. Provide
justification for the
sufficiency of the

evidence.

Stop

Not sure

Yes

Yes

3. Identify additional
or alternative

primary evidence or
arguments

No
5. Provide backing

arguments and
evidence to address
the assurance deficit

Start

No

No

7. Can additional backing
argument and evidence be
provided to assure the
capability of the item of
evidence to support the

claim?

Not sure

Yes

9. Can additional backing
argument and process
evidence be provided to
increase assurance of

trustworthiness?

Not sure

Yes

Yes

No

No

YesYes

Yes

Yes

Figure 2: Evidence Selection Process

