

 364 Int. J. Critical Computer-Based Systems, Vol. 1, No. 4, 2010

 Copyright © 2010 Inderscience Enterprises Ltd.

Software safety: relating software assurance and
software integrity

Ibrahim Habli*, Richard Hawkins and
Tim Kelly
High Integrity Systems Engineering Research Group,
Department of Computer Science,
The University of York,
York, YO10 5DD, UK
Fax: +44 (0) 1904 432708
E-mail: Ibrahim.Habli@cs.york.ac.uk
E-mail: Richard.Hawkins@cs.york.ac.uk
E-mail: Tim.Kelly@cs.york.ac.uk
*Corresponding author

Abstract: The overall safety integrity of a safety critical system, comprising
both software and hardware, is typically specified quantitatively, e.g., in terms
of failure rates. However, for software, it is widely accepted that there is a limit
on what can be quantitatively demonstrated, e.g., by means of statistical testing
and operational experience. To address this limitation, many software standards
appeal instead to the quality of the process to assure the sufficient
implementation of the software. In this paper, we contend that there is a large
inductive gap between the quantitative software integrity required for a safety
function and the assurance of the software development process for that
function. We propose that this large inductive gap between software integrity
and software process assurance could be narrowed down by an explicit
definition of a product-based software argument. The role of this argument is to
justify the transition from arguing about software integrity to arguing about
software assurance by showing how the evidence, in the context of the software
product-based argument, provides assurance which is commensurate with the
required integrity.

Keywords: software safety; software reliability; safety critical systems; safety
critical software; software safety standards; software assurance; software
integrity; software quantification; safety cases; safety arguments; goal
structuring notation.

Reference to this paper should be made as follows: Habli, I., Hawkins, R. and
Kelly, T. (2010) ‘Software safety: relating software assurance and software
integrity’, Int. J. Critical Computer-Based Systems, Vol. 1, No. 4, pp.364–383.

Biographical notes: Ibrahim Habli is a Research and Teaching Fellow at the
High Integrity Systems Engineering (HISE) Research Group at the University
of York. He has previously worked as a Research Associate at the Rolls-Royce
University Technology Centre at the University of York. His main research
interests include safety case development, software safety assurance, software
architecture design and safety-critical product-lines.

Richard Hawkins is a Research Associate for the Software Systems
Engineering Initiative (SSEI) at the University of York. He is a member of the
High Integrity Systems Engineering (HISE) Research Group. His current

 Software safety 365

research involves establishing a systematic approach to the development of
software safety cases. In particular, he is developing guidance on the
construction of software safety arguments and developing an approach for
reasoning about argument and evidence assurance.

Tim Kelly is a Senior Lecturer in Software and Safety Engineering within the
Department of Computer Science at the University of York. His expertise lies
predominantly in the areas of safety case development and management. He
has published over 70 papers on safety case development in international
journals and conferences and has been an Invited Panel Speaker on software
safety issues.

1 Introduction

For software systems, it is widely accepted that there is a limit on what can be
quantitatively demonstrated, e.g., by means of statistical testing and operational
experience. However, to meet regulatory requirements, system safety engineers often
have to describe the safety integrity of the overall system quantitatively, e.g., in terms of
system failure rates. This is mostly the case even when the system embodies and depends
on software components to perform safety-critical operations. To this end, it is difficult to
exclude software components from the allocation of quantitative safety integrity
requirements, i.e., merely because of the preserved limitation of demonstrating the
achievement of these requirements by means of quantitative evidence. Many safety
standards acknowledge the difficulty of demonstrating, quantitatively, low software
failure rates and instead appeal to process-based arguments, which are mostly based on
qualitative software assessment techniques.

In this paper, we discuss the limitations of demonstrating the satisfaction of safety
integrity requirements allocated to software by means of quantitative evidence. We also
discuss the weaknesses of addressing these limitations by directly appealing to process
assurance, through compliance with the process defined in prescriptive software
standards. We contend that there is a large inductive gap between the quantitative
software integrity required for a safety function and the assurance of the software
development process for that function, i.e., good tools, techniques and methods do not
necessarily lead to the achievement of the required integrity (e.g., in the form of failure
rates). We propose that this large inductive gap between software integrity and software
process assurance could be narrowed down by an explicit definition of a product-based
software argument. The role of this argument is to justify the transition from arguing
about software integrity to arguing about software assurance by showing how the
evidence, in the context of the software product argument, provides assurance which is
commensurate with the required integrity. By openly recognising and reasoning about,
this inductive gap, the sufficiency of the evidence, produced by the process through
testing and analysis, can be more easily determined and justified. Using a consideration
of product assurance to drive the development processes provides advantages over a
prescriptive approach, which results in evidence which may or may not be appropriate
and relevant to the claims concerning safety functions required, and may or may not be of
the required assurance.

 366 I. Habli et al.

The rest of the paper is organised as follows. Section 2 presents an overview of
system safety activities that lead to the definition of quantitative software safety integrity
requirements. The limitations of demonstrating the achievement of these requirements by
quantitative software evidence is discussed in Section 3, followed by discussing the
weaknesses of appealing instead to the quality of the software process (Section 4).
Relating safety integrity to assurance, in the context of an explicit product-based software
safety argument is then presented in Sections 5, 6 and 7, followed by describing the
relationship between software product assurance and software process assurance
(Section 8). Finally, conclusions are discussed in Section 9.

2 Definition of safety and integrity requirements

In this section, we briefly explore the safety lifecycle activities which typically lead to the
generation and allocation of safety requirements. These activities include (Figure 1):

• hazard identification

• risk assessment

• definition of safety requirements

• allocation of safety requirements to system components.

Figure 1 Allocation of safety requirements

Before the hazard identification activity can commence, the system and its intended
environment should be described and understood. In many domains, the description of
the system is specified in terms of the physical and operational environment and the
system’s boundary, functions and inter-functional dependencies (SAE, 1994)
(IEC, 1998). Hazards associated with the system and its environment are then identified
and typically recorded in a hazard log. The hazard log is a live artefact which tracks the
management of hazards throughout the system, hardware and software safety lifecycles.

 Software safety 367

For each hazard recorded in the hazard log, the likelihood and severity of the hazard’s
consequences are then determined and the risk associated with the hazard is estimated
accordingly. Hazard identification and risk assessment are iterative activities. The
understanding of hazards and their estimated risks evolves in parallel to the evolution of
the system development and deployment, and later evolves based on data gathered from
the system’s operation.

Safety requirements are then defined, specifying the required risk reduction
associated with each identified hazard. Despite variation in terminology, there are
generally three types of safety requirements (MoD, 2007):

• safety requirements allocated to the system as a whole

• derived safety requirements generated from decisions made during development
phases, e.g., design and implementation decisions

• safety integrity requirements specifying the failure rates with which the safety
requirements and the derived safety requirements should be achieved.

Most standards require a quantitative approach to defining safety integrity requirements.
For example, the UK Defence Standard 00-56 states that “quantitative safety integrity
requirements should be defined for safety related complex electronic elements”
(MoD, 2007) – the higher the importance of the safety requirements to system safety, the
more stringent the quantitative safety integrity requirements are. There are different ways
in which quantitative safety integrity requirements can be specified. For example, they
can be specified in terms of mean-time-to-failure, probability of failure-free operation or
unavailability time (Littlewood and Strigini, 1993). The generic functional safety
standard IEC 61508 (IEC, 1998), for instance, emphasises the distinction between two
categories of failure rates: probability of failure to perform low demand functions and
probability of failure to perform high demand/continuous functions. Each range of failure
rates for these two categories is associated with one of four safety integrity levels (SILs)
as shown in Table 1.
Table 1 SILs in IEC 61508

Integrity level Continuous mode
probability of a dangerous failure

per hour

On demand mode
probability of failure to perform the

design function

4 10–9 < P ≤ 10–8 10–4 < P ≤ 10–5
3 10–8 < P ≤ 10–7 10–3 < P ≤ 10–4
2 10–7 < P ≤ 10–6 10–2 < P ≤ 10–3
1 10–6 < P ≤ 10–5 10–1 < P ≤ 10–2

Source: IEC (1998)

Safety requirements and their associated safety integrity requirements are then allocated
to system components within the overall system architecture. If a system component
comprises hardware and software components, the safety requirements and their
associated safety integrity requirements are refined and allocated to these components.
For software and hardware components which implement more than one safety
requirement of different safety integrity targets, these elements should be developed to

 368 I. Habli et al.

the highest allocated safety integrity target, unless sufficient separation and partitioning is
assured.

3 Satisfying safety integrity requirements

At the hardware level, there are accepted means for demonstrating the achievement of the
quantitative safety integrity requirements allocated to hardware components. This is
mainly because hardware components fail randomly, as a result of physical factors such
as corrosion and wear-out. To this end, statistical-based reliability techniques can be
applied, supported by operational experience and industry databases, to estimate and
demonstrate, prior to deployment, the failure rates of the hardware components.

At the software level, on the other hand, and because software is an abstraction,
software failures are systematic – mainly due to specification and design faults. Because
software is not physical, there is a limit on what can be quantitatively demonstrated by
means of statistical testing and operational experience. Littlewood and Strigini (1993) list
the following as the main factors that distinguish software reliability from hardware
reliability:

• software failures are caused by design faults which are difficult to avoid

• software is usually used to implement relatively new systems, making it difficult to
exploit knowledge from previous experiences

• software systems implement ‘discontinuous input-to-output mappings’ which are
complex to be captured in simple mathematical models.

In the safety domain, statistical testing can generally demonstrate software failure rates of
10–3 to 10–4 per hour, prior to release to service (McDermid and Kelly, 2006). However,
this is far from sufficient in domains such as civil aerospace, where DAL A software,
whose failure could contribute to catastrophic failures, corresponds to a failure rate of
10–9 per flying hour. Despite case studies suggesting the achievement of failure rates of
less than 10–7 per hour (Shooman, 1996), based on software operational data, there is a
large consensus that it is infeasible to demonstrate such low failure rates prior to
deployment, where demonstrating safety integrity is most needed, e.g., to obtain the
approval of certification authorities.

Butler and Finelli (1991) in their landmark paper argue that it is infeasible to quantify
the reliability of life-critical software systems, regardless of the form of verification,
whether it is a black-box or white-box examination. For example, they estimate that the
test duration for quantifying a software failure rate of less than 10–9 per hour would take
114,155 years. Littlewood and Strigini (1993) discuss three issues related to software
reliability, namely:

• specifying reliability targets

• designing software systems which can achieve these reliability targets

• evaluating the achievement of the reliability targets by the software systems.

While allocating reliability targets in the form of safety integrity requirements is
adequately addressed in many safety assessment processes, e.g., (SAE, 1994)
(IEC, 1998), and while there are established design mechanisms to address these integrity

 Software safety 369

requirements, the fundamental limitation lies in evaluating the achievement of the
reliability targets in a quantitative manner. In terms of safety argumentation, we know
how to make quantitative claims regarding safety integrity requirements. We also know
how to make claims concerning the suitability of the chosen design measures. However,
we often fail to produce evidence, based on quantitative techniques, which could
substantiate the safety integrity requirements and design claims.

To meet various national and international regulatory requirements, system safety
engineers have to describe the safety integrity of the overall system quantitatively. This is
mostly the case even when the system embodies, and depends on, software components
to perform safety-critical operations. To this end, it is difficult to exclude software
components from the allocation of quantitative safety integrity requirements, i.e., merely
because of the preserved limitation of demonstrating the achievement of these
requirements by means of quantitative evidence. Many safety standards acknowledge the
difficulty of demonstrating, quantitatively, low software failure rates and instead appeal
to process-based arguments, which are mostly based on qualitative software assessment
techniques. In the next section, we discuss fundamental problems relating the
achievement of quantitative safety integrity requirements to qualitative process-based
evidence. In particular, we focus on the way in which appealing to process-based
evidence has been addressed in software certification standards.

4 Problems of existing approaches to satisfying safety integrity
requirements for software

The limitations of demonstrating quantitative integrity requirements for software have
long been acknowledged in most software certification standards. Existing certification
approaches, such as those defined in the commonly used standards such as IEC 61508
(IEC, 1998) and DO178B (RTCA, 1992), do not set out to demonstrate the achievement
of qualitative targets for software. For example, DO178B explicitly states that,
“development of software to a software level does not imply the assignment of a failure
rate for that software. Thus, software levels or software reliability rates based on software
levels cannot be used by the system safety assessment process as can hardware failure
rates.”

Instead, such standards adopt a highly prescriptive approach, based around a
demonstration of compliance with a defined process. The process in DO178B is defined
as a set of objectives. The number of objectives which needs to be met and the level of
independence with which they must achieved is determined by the allocated software
level. For DO178B, the component which implements a safety function is allocated a
software level based upon an assessment of the safety impact of the failure of that
function.

The IEC 61508 standard allocates a SIL to the system implementing the safety
requirement. The SIL represents the required integrity as one of four discrete levels. The
SIL is determined based upon the responsibility of that function for risk reduction at the
system level. In a similar manner to that described above for DO178B, the rigour of the
process followed in developing the software varies according to the assurance level
associated with that software.

 370 I. Habli et al.

So, although it is often difficult to directly claim that the safety functions of the
system are implemented to the required integrity by the software, complying with
prescriptive software standards such as those discussed above enables an alternative
claim to instead be made. That claim is that having demonstrated compliance with the
standard we are sufficiently assured that the safety function is implemented. This
reasoning underpins most highly prescriptive standards, and is the basis upon which they
are accepted. It is important at this point to consider carefully both the fact that we are no
longer dealing with demonstrating integrity, but with demonstrating confidence, and also
how we can be sure that achieved confidence is sufficient.

When we consider integrity, we are dealing with aleatoric uncertainty. By changing to
a consideration of confidence, we are dealing with a different type of uncertainty,
epistemic uncertainty. Epistemic uncertainty is characterised by the limitations of
knowledge. To be able to use an approach to software safety which is based upon
confidence, ‘it is necessary to justify that the level of epistemic uncertainty demonstrated
in the safety function is commensurate with the aleatoric uncertainty which was
determined for that function’.

When considering safety, it is common to use the term assurance rather than
confidence. Assurance is simply the level of confidence which can be justified. In this
paper, we contend that it is possible to justify the achievement of an integrity requirement
through a consideration of assurance. However, prescriptive approaches, such as those
discussed above, are insufficient to justify that the integrity requirement is sufficiently
addressed. Firstly it should be noted that a prescriptive approach deals with process
assurance; confidence in the rigour of the process followed. The first challenge here is
whether a ‘good’ process necessarily leads to a ‘good’ product. A number of people have
questioned this correlation. In relation to IEC 61508, Redmill (2000) notes that, “the
processes defined as being appropriate to the various SILs are the result of value
judgements regarding what needs to be done in support of a reasonable claim to have met
a particular SIL. However, the development processes used, however good, appropriate,
and carefully adhered to, do not necessarily lead to the achievement of the defined SIL.”
This position is supported by McDermid (2001) who, whilst acknowledging that his
assessment cannot be taken as conclusive, claims that, “the evidence does not support the
assumptions that the processes for the higher SILs/DALs produce software with lower
failure rates. At minimum the assumption seems questionable.”

This suggests that, to be compelling, rather than process assurance, what is really
needed is product assurance; confidence in the behaviour of the software product itself.
Product assurance can be more easily directly related to product integrity. In fact, despite
some of the pessimistic views expressed above, highly prescriptive approaches do have
the capability of providing some information relating to product assurance. Following a
rigorous process may not guarantee software integrity, but it does provide assurance
relating to the quality of, and trustworthiness in, the outputs from that process (e.g., test
results or mathematical proofs).

5 Relating software integrity to software assurance

To be able to demonstrate elements relating to the integrity requirements associated with
a safety function, it is necessary to generate assurance in that safety function. Although
assurance in a safety function and integrity of a safety function are not equivalent

 Software safety 371

measures, we will show that it is possible to demonstrate the sufficiency of such a
comparison.

In the previous section we discussed how a prescriptive approach can provide
assurance in the process artefacts. The problem with this is that the assurance of the
process artefacts does not necessarily provide the assurance that is required in the safety
functions. The process artefacts generated from following the process do not necessarily
demonstrate that the safety functions are achieved to the required integrity. This is
illustrated in Figure 2. The diagram indicates that the process assurance activities can
demonstrate assurance of the quality of the process artefacts. There is a missing argument
here which is needed to justify how the evidence produced by the process can provide a
compelling demonstration of the assurance of the safety function, as indicated by the
question mark in Figure 2.

Figure 2 The role of process assurance (see online version for colours)

It is necessary, rather than relying on the outputs of a prescribed process, to instead
explicitly consider the type of evidence that could be used to demonstrate that the specific
safety functions required of the software have been achieved. A structured, product-based
safety argument provides a way in which this can be demonstrated.

6 Constructing product-based software safety arguments

A product-based software safety argument demonstrates how the available evidence can
be reasonably interpreted as indicating assurance in achieving allocated safety
requirements. The degree of this assurance should be commensurate with the required
integrity. By generating an explicit product-based software safety argument, the way in
which the evidence supports the safety integrity claims made in the software safety case
for the particular system under consideration becomes clear.

Before we elaborate further on the key role of the product-based software safety
argument, it is important to highlight the distinction between two types of argument:
deductive and inductive arguments. Baggini and Fosl (2003) characterise deductive
arguments as those where, if the premises are true, then the conclusion must also be true.
In contrast, an inductive argument is characterised as one where the conclusion follows

 372 I. Habli et al.

from the premises not with necessity, but only with probability. Safety arguments are
rarely provable deductive arguments. Instead they are more commonly inductive due to
the complexity and high-level of uncertainty in the software specification and design.

Regarding the term assurance in the context of a safety argument, it is used to refer to
the justified confidence that a claim in the safety argument is true. The assurance of a
safety claim is related to:

• the assurance of the premises (supporting claims or evidence)

• the extent to which those premises give reason to believe the conclusion is true.

Due to the inductive nature of most safety arguments, determination of assurance is
always going to be subjective. What is important is that agreement can be reached
between the safety argument provider, and the safety argument reader, that the subjective
position is acceptable. This can be achieved by demonstrating that the argument is
sufficient. We have already seen how this subjectivity is also present in a prescriptive
approach. Figure 2 is essentially indicating a large inductive ‘gap’ between the assurance
in the process artefacts and the assurance of the safety function. By reasoning about the
subjectivity explicitly in a safety argument, the sufficiency of the evidence can be more
easily determined and justified.

Figure 3 shows how a product-based safety argument can be used to provide the
required link between the evidence and the safety function, thus demonstrating assurance
not just in the process, but also directly in the product (i.e., the safety function of
interest). Figure 3 indicates how the assurance of the evidence used to support the
product-based safety argument can still be provided by process assurance in a similar
manner to that discussed for a prescriptive approach earlier. This is discussed in more
detail in the last section of this paper.

Figure 3 The role of an assurance argument (revisited) (see online version for colours)

The approach described above provides a way, through the creation of a product-based
software safety argument, of determining the evidence that is required. It is then possible
to ensure that processes are put in place to generate that evidence with the required
assurance. Using a consideration of product assurance to drive the development processes

 Software safety 373

provides advantages over a prescriptive approach, which results in evidence which may
or may not be appropriate and relevant to the claims concerning safety functions required,
and may or may not be of the required assurance.

We have so far discussed how an explicit demonstration of the assurance of safety
functions can be achieved through a focus on product assurance. We have yet to fully
discuss the relationship between the assurance of safety functions and the demonstration
of integrity of safety functions (the achievement of safety requirements). This is the
subject of the next section.

7 The transition from software product integrity to software product
assurance

It is important in constructing the software safety argument to correctly capture the
claims which need to be supported. The top level claims in the argument should reflect
the overall safety objectives. For a software safety argument, these objectives are that the
software safety requirements are valid, traceable and satisfied. This includes
demonstrating both the functional and associated integrity requirements. We discussed
earlier how directly demonstrating integrity for software is very difficult, however there
are commonly adopted strategies which can have a direct impact on the failure rates of
software product. For example, there are a number of software architectural approaches
which can directly reduce the expected failure rate due to the presence of redundancy.
Such software architectures, when implemented with sufficient diversity, can reduce the
probability of the manifestation of a functional failure. It is possible to include such
architectural mitigations within the argument to directly address a claim relating to
integrity. Similarly, the use of other features such as the implementation of exception
handling, can directly affect the probability of a functional failure. Again such features
may be considered as part of the safety argument to address claims relating to functional
integrity requirements. It is important to note that it is not the objective of this paper to
provide a comprehensive list of architectural mitigation measures. Interested readers can
refer to Avizienis and Laprie (1986) and Wu and Kelly (2004).

The argument fragment shown in Figure 4 illustrates how an argument regarding
diversity in the software architecture for a long range air-to-air missile (LRAAM) can be
used to support a claim concerning the role of software in preventing premature launch.
Further details of the LRAAM system are provided in Weaver (2003). In particular, the
argument in Figure 4 focuses on the diverse implementation of the interlock handler
components. As shown in Figure 5, the interlock handler components can cause the
premature launch failure mode. The argument in Figure 4 is represented using the goal
structuring notation (Kelly, 1998). GSN explicitly represents the individual elements of
goal-based arguments (requirements, goals, evidence and context) and (perhaps more
significantly) the relationships that exist between these elements (i.e., how individual
requirements are supported by specific claims, how claims are supported by evidence and
the assumed context that is defined for the argument). The principal purpose of any
argument is to show how goals (claims about the system) are successively broken down
into sub-goals until a point is reached where claims can be supported by direct reference
to available evidence. As part of this decomposition, using the GSN it is also possible to
make clear the argument strategies adopted (e.g., adopting a quantitative or qualitative

 374 I. Habli et al.

approach), the rationale for the approach and the context in which goals are stated
(e.g., the system scope or the assumed operational role).

Figure 4 An argument over software diversity

Figure 5 Interlock and mode controller components in the LRAAM software architecture
(see online version for colours)

Source: Weaver (2003)

Note that the diamond symbol beneath a goal, as depicted in Figure 4, is used to
symbolise that the goal requires further development (support by argument and
evidence). The way in which these goals are developed is considered later. Note the
importance of Goal 4. If it were not possible to provide an argument to support Goal 4,
then the strategy of having the two software components would not have the required
effect of addressing the integrity with which the safety requirement is achieved. Note that
the strategy adopted in this argument means that the integrity requirement for Goal 2 and
3 is reduced from 2 × 10–8. As has already been discussed, providing a precise value for
the revised integrity requirements is problematic. However, as we shall see later, the
knowledge that a lower integrity is required is still useful in demonstrating the
sufficiency of the final argument.

 Software safety 375

So, although it is possible to make safety argument claims which relate directly to
integrity, most of the software safety arguments that can be made are not about how good
the software product is, but about how well we know whether the product is good or not,
i.e., the confidence we have in that product. It is therefore inevitable that the claims that
are put forward in the software safety argument, although they may initially deal with
integrity, are likely to ultimately deal only with assurance. The key to a compelling
argument is to ensure that once the argument claims switch solely to assurance claims,
the link to integrity (the ultimate objective) is not lost.

Figure 6 Providing assurance in Goal 2

If we return to Figure 4, Goals 2 and 3 require to be supported by argument and evidence
to demonstrate that software safety requirement is implemented by two diverse interlock
handler components. Whereas it was possible in supporting Goal 1 to directly address the
integrity requirement, Goals 2 and 3 can instead only be addressed through consideration
of assurance (at this point no further strategies for directly impacting the achieved

 376 I. Habli et al.

integrity have been identified). Figure 6 shows an argument for how Goal 2 may be
supported. It can be seen in Figure 6 that the argument and evidence presented to support
Goal 2 are providing assurance in that goal (confidence that the claim made is true), but
the approach used, based on testing and analysis of the component, does not directly
influence the integrity associated with the safety requirement in the way that was seen in
Figure 4.

It should be noted in Figure 6 that the argument relies on the assumption that all the
hazardous failures have been correctly identified. In the fully developed argument it
would be expected that an argument would instead be presented to provide assurance in
the truth of this assumption. In Figure 6, Goal 2 represents the point at which the
argument switches from a consideration of both integrity and assurance, to purely a
demonstration of assurance. It is therefore necessary to demonstrate that the assurance
achieved in Goal 2 is commensurate with the integrity requirement at that point.

Determining the assurance achieved in a goal by the argument provided depends upon
a number of factors including the assurance of the supporting evidence, and the extent to
which the supporting argument and evidence gives reason to believe that the goal is true.
Menon et al. (2009) provide a framework for assessing the assurance achieved based on a
number of factors including the scope and independence of the supporting claims.
Producing an explicit argument (such as through the use of GSN) makes it easier to
understand the structure of the argument and therefore assess the assurance achieved in
the safety claims. The assurance of the evidence can be assessed based on a consideration
of the processes used to generate the evidence. This is discussed in more detail in the next
section.

For the assurance of a safety claim to be considered sufficient, that assurance must be
commensurate with the integrity requirement associated with that claim. This is a
principle which is already well established. As we saw earlier in this paper, in many
prescriptive approaches, the association of a requirement for assurance with an integrity
requirement is a common practise. This is also seen in standards which are less
prescriptive in nature. For example the UK Defence Standard 00-56 (MoD, 2007) rather
than prescribing processes to be followed, instead sets out a small number of higher-level
objectives, which include a requirement for the production of a safety argument. This
requirement states that, ‘the argument shall be commensurate with the potential risk
posed by the system’.

8 The role of software process assurance

Although we emphasised in the previous sections the fundamental role of product-based
software arguments, the role of the process should not be underestimated in the overall
software safety case. A software safety case comprises both product-based arguments and
process-based arguments. That said, the relationship between these two types of
arguments should be carefully maintained. This relationship is based on the sufficiency of
the process-based argument to demonstrate the trustworthiness of the evidence used in
the product-based argument. This evidence is typically generated from review, analysis
and testing. That is, the foundation of any product-based argument, i.e., the evidence,
depends on the verification artefacts generated from the software process.

However, this process can fail to deliver its expected artefacts to the required
assurance and consequently contribute to the generation of untrustworthy evidence. The

 Software safety 377

process may fail due to ambiguous and unsuitable notations, unreliable tool-support,
flawed methods and techniques or incompetent personnel. In other words, assurance in
the software safety case may be undermined by weaknesses or uncertainties about the
quality and adequacy of the process that has generated the evidence used in the product-
based argument. The trustworthiness of this evidence depends on the quality and
adequacy of the software lifecycle process to produce the evidence to the intended
assurance (i.e., the simple question: why should I trust the evidence?).

Disregarded flaws in the process activities and process resources may propagate into
software system itself. The risk of these process flaws should be identified and mitigated
through focused and targeted assessment of a valid model of the software lifecycle
process. This assessment should provide evidence that the risk of the process failing to
deliver the required evidence to the intended assurance is acceptable. If the process
assessment uncovers unacceptable risks, additional risk reduction mechanisms may have
to be integrated into the process in order to reduce the risk of producing untrustworthy
evidence. The quality and adequacy of the process should be explicitly communicated in
the form of a process-based argument that demonstrates the trustworthiness of items of
evidence in a product-based argument.

However, not all process activities pose the same level of risk and therefore require
the same degree of rigour. The degree of rigour in the process activities should be
proportionate to the level of assurance in the evidence as required by the product-based
safety argument. This is crucial for software as software failures relate to the degree of
freedom from systematic errors in the design – introduced through failings in the
software lifecycle process. The key difference between the approach presented in the
paper and that of prescriptive software standards is that the rigour in the process in our
approach is dictated by the level of assurance placed on the evidence as required by the
product-based safety argument – the higher the required confidence in the evidence, the
more demanding are the requirements on the software production process. This offers the
software engineers and the safety analysts the flexibility of selecting methods and
techniques which they can justify to be suitable for the generation of evidence to the
required level of assurance, rather than mere compliance with a prescribed, ‘one size fits
all’ process.

We will illustrate the relationship between software product assurance and software
process assurance by revisiting the argument depicted in Figure 6. This argument, which
is product-based, lacks a clear reference to any process assurance that addresses the
trustworthiness of the product evidence (i.e., black-box testing and state machine
analysis). Firstly, black-box testing (‘Solution 1’) is an effective verification technique
for showing the satisfaction of safety requirements. However, confidence in the
black-box testing depends on assuring the testing process. For example, testing factors
that need to be addressed by the process-based argument include issues such as:

• Is the testing team independent from the design team?

• Is the process of generating, executing and analysing test cases carried out
systematically and thoroughly (i.e., adequacy of test data)?

• Is the traceability between safety requirements and test cases well-established and
documented?

 378 I. Habli et al.

Similarly, state machine analysis (Solution 2) is a powerful formal method for
specification and verification. Nevertheless, process justification is required to reveal the
mathematical competence of the verification engineers and their ability to demonstrate,
for instance, the correspondence between the mathematical model and the software
behaviour at run-time (Hall, 1990). Mistakes can be made in formal proofs in the same
way that they can be made in coding (more on that in the last section). Therefore, the
quality of the verification process by means of formal methods can be as important as the
deterministic results such methods produce.

Figure 7 Integrated product and process argument

To tackle the above limitations, we propose to address process uncertainty through
linking process-based arguments to the items of evidence used in the product-based
safety argument. Such process-based arguments address issues of tool and method

 Software safety 379

integrity, competency of personnel, and configuration management. Figure 7 shows a
modified version of the argument previously depicted in Figure 6. This version
uses an extension to GSN – the ‘away’ Goal’ (e.g., Black-box_Testing and
State-machine_Analysis) to attach process-based arguments to the items of evidence in
product-based argument. Away goals are used within the arguments to denote claims that
must be supported but whose supporting arguments are located in another part of the
safety case.

Figure 8 Black-box process argument

Figure 8 shows the process-argument for the Black-box_Testing away goal. Here, the
argument stresses the importance of process assurance to justify the trustworthiness of the
black-box testing evidence. The process assurance addresses team competency, test case
generation, execution and analysis, and testing traceability. Firstly, the competency of the
testing team (Goal 8) is supported by claims about the team’s qualifications and
independence from the design team. Secondly, the argument contains a claim that the
process of generating, executing and analysing test cases is systematic (Goal 9). This
claim is supported by items of evidence showing that the test cases cover all defined

 380 I. Habli et al.

safety requirements and executed on the final source code and target platform. Finally,
the argument shows that the black-box testing process is traceable. However, in order to
avoid complicating the representation of the argument, the justification argument for
traceability is documented elsewhere (module: ‘ConfigProcessArg’).

In short, without focused and explicit process-based arguments which justify the level
of assurance needed for the items of evidence in the product-based argument, the overall
software safety case may be undermined by highlighting uncertainties about the
provenance of these items of evidence. It is also important for the process argument to
show that the degree of rigour in the process activities is proportionate to the level of
assurance in the evidence as required by the product-based safety argument. Prescriptive
process-based software standards offer guidance on ‘good practise’ software engineering
methods and techniques and the way in which factors such as independence in the
process can improve confidence. However, in the context of the approach presented in
this paper, the use of these methods and techniques to produce evidence should be
justified against the degree of assurance as defined in the product-based argument. In
other words, the use of these methods and techniques should not be linked with the direct
achievement of the quantitative safety integrity requirements.

9 Discussions and conclusions

In this paper, we discussed the limitations of demonstrating the satisfaction of safety
integrity requirements allocated to software by means of quantitative evidence. We also
discussed the weaknesses of addressing these limitations by directly appealing to process
assurance, through compliance with the process defined in prescriptive software
standards. We contended that there is a ‘large inductive gap’ between the quantitative
integrity required for a safety function and the assurance of the development process for
that function, i.e., good tools, techniques and methods do not necessarily lead to the
achievement of the required integrity (e.g., in the form of failure rates). The direct
correlation between the quality of the process and the failure rate of the safety function is
almost infeasible to justify.

We proposed that this large inductive gap between software integrity and software
process assurance could be narrowed down by an explicit definition of a product-based
software argument. The role of this argument is to justify the transition from arguing
about software integrity to arguing about software assurance by showing how the
evidence, in the context of the software product argument, provides assurance which is
commensurate with the required integrity. By openly recognising and reasoning about,
this inductive gap, the sufficiency of the evidence, produced by the process through
testing and analysis, can be more easily determined and justified.

That said, it is reasonable to pose the following three questions:

Question one: Can the software engineer be able to confirm to the systems engineer that
the allocated integrity requirements have been achieved by the software?

One of the problems that is currently experienced by systems engineers is that the utility
of what is presented back to the system level by the software engineer is often unclear. In
previous sections we described how integrity requirements are allocated to software
based on system level analysis. Due to the problems that have been discussed, the
software engineer will rarely be able to confirm to the systems engineer that such an

 Software safety 381

integrity requirement has been achieved. Instead, as a result of following a prescriptive
approach, the software engineer is only able to confirm that the processes defined for that
level of software have been followed. Such information, although perhaps of comfort to
software regulatory authorities, is in fact is of little relevance with relation to overall
system safety. To be of more relevance, the software safety process must provide
information which is more closely related to the original requirement allocated from the
system level. We feel that an approach based on product assurance is more likely to
provide such information, since the claims that can be made for the software relate
specifically to the properties of the software in which the integrity is required (the safety
functions).

Question two: What role can existing highly prescriptive standards play in assuring the
adequacy of the process in producing intended evidence?

Highly prescriptive certification approaches, such as DO178B, provide valuable guidance
on how to implement high-quality and repeatable software engineering processes.
However, the problem lies in explaining the rationale as to why the achievement of the
software safety integrity requirements is assured by compliance with the prescribed
techniques and methods that the standards associate with these integrity requirements.
The processes prescribed in these standards can be used if the relationship between the
required software integrity and the assurance in the evidence produced by these processes
is justified in the context of the properties of the software product.

For example, the safety argument developed for the software will often consider
traceability and verification of software requirements. In such cases, much of the
evidence generated through following a standard such as DO178B may be relevant to
supporting claims made in the argument. However, the primary focus for the safety
argument is upon demonstrating the required safety properties of the software. Therefore,
rather than providing general claims about requirements traceability and verification, the
software safety argument must provide specific claims relating to the safety requirements
identified for the software. In addition, to be compelling, the safety argument must
consider all aspects of the safety of the software which may undermine assurance in the
specific safety claims made about the product. This may, for example, involve analysing
the potential failure modes of the software design. The software safety argument may
therefore lead to a requirement for evidence additional to that which is generated from
following any particular standard. It is only through constructing the software safety
argument that the sufficiency of any existing approach can be determined.

It is important to note here that moving away from prescription to a safety case
approach will involve the development of clear guidelines for developing and reviewing
software safety arguments. Rather than merely showing the satisfaction of a list of
objectives which are associated with the achievement of a particular SIL, it is the
responsibility of the software and safety engineers, in a safety case approach, to present
an argument as to why the contribution of their software to system safety is acceptable.
Similarly, it is the responsibility of the certification authorities to be able to objectively
review the suitably of the presented software safety argument, e.g., uncovering fallacious
reasoning and counter-evidence rather than merely auditing compliance with the process
defined in applicable standards. In other words, a safety case approach to software
assurance will require a shift from “a tick-box mentality to argument-based mind-set”
(Penny et al., 2001). Any new guidelines for software safety arguments should provide

 382 I. Habli et al.

worked examples and patterns, based on actual successful software safety cases,
illustrating how good arguments can be constructed and supported by trustworthy items
of evidence. However, the development of such guidelines may be hindered by two
factors. Firstly, many developers may regard these worked examples and patterns as the
preferred means for compliance rather than an example means for compliance. Secondly,
it is often difficult to publish successful software safety cases as they include
commercially sensitive data.

Question three: Integrity in hardware is often demonstrated quantitatively. How does
hardware integrity relate to assurance? Do we need to assure hardware integrity?

In this paper, we addressed the justification of the transition from software integrity to
software assurance mainly because software failures are purely systematic, due to design
faults which are difficult to avoid because of the complexity of the software design. In
hardware, and despite the ability to quantity hardware failure rates, complex hardware
systems also suffer from systematic faults, which are also hard to quantify due to the
complexity of the hardware design. So, applying standard statistical hardware reliability
techniques to complex hardware systems may not be sufficient to estimate the actual
failure rates, i.e., considering both random and systematic failures. For example,
Littlewood and Strigini argue that “the ‘solution’ we sometimes hear to the software
problem – ‘build it in hardware instead’ - is usually no solution at all. The problem of
design dependability arises because the complexity of the systems is so great that we
cannot simply postulate the absence of design faults”. Therefore, even for demonstrating
the integrity of complex hardware designs, there is a need for assuring the quantitative
evidence by explicitly addressing potential sources of systematic failures such
incompetent personnel, ambiguous notations or flawed tool-support. In fact, the same can
be said about software systems which are formally verified, e.g., by means of
mathematical proofs. These proofs can demonstrate mathematically the satisfaction of
safety requirements (i.e., not just meeting, but rather exceeding the required reliability
targets). However, complex designs verified mathematically using formal methods are
also prone to design faults, i.e., mistakes in proofs, flaws in automated theorem provers
or weaknesses in the correspondence between the system and the mathematical model
representing it. So, assuring the mathematical evidence, e.g., resulting from model
checkers and theorem provers, will often be necessary. In summary, whenever there is
complexity, in both the problem and the solution, and regardless of the implementation
technology (hardware or software) and methodology (testing or formal methods),
assurance has to be considered.

References
Avizienis, A. and Laprie, J. (1986) ‘Dependable computing: from concepts to design diversity’,

Proceedings of the IEEE, Vol. 74, No. 5, pp.629–638.
Baggini, J. and Fosl, P. (2003) The Philosopher’s Toolkit – A Compendium of Philosophical

Concepts and Methods, Blackwell.
Butler, R. and Finelli, G. (1991) ‘The infeasibility of experimental quantification of life-critical

software reliability’, ACM SIGSOFT Software Engineering Notes, Vol. 16, pp.66–76.
Hall, A. (1990) ‘Seven myths of formal methods’, IEEE Software Archive, Vol. 7, No. 5.
IEC (1998) IEC 61508 – Functional Safety of Electrical/Electronic/Programmable Electronic

Safety-Related Systems, International Electrotechnical Commission.

 Software safety 383

Kelly, T.P. (1998) ‘Arguing safety – a systematic approach to managing safety cases’, PhD thesis,
Department of Computer Science, The University of York.

Littlewood, B. and Strigini, L. (1993) ‘Validation of ultrahigh dependability for software-based
systems’, Communications of the ACM, Vol. 36, No. 11, pp.69–80.

Menon, C., Hawkins, R. and McDermid, J.A. (2009) ‘Defence standard 00-56 issue 4: towards
evidence-based safety standards’, Proceedings of the Seventeenth Safety-critical Systems
Symposium.

McDermid, J. (2001) ‘Software safety: where’s the evidence?’, Australian Workshop on Industrial
Experience with Safety Critical Systems and Software.

McDermid, J.A. and Kelly, T.P. (2006) ‘Software in safety critical systems: achievement and
prediction’, Nuclear Future, Thomas Telford Journals.

MoD (2007) Defence Standard 00-56 Issue 4: Safety Management Requirements for Defence
Systems, UK Ministry of Defence.

Penny, J., Eaton, A., Bishop, P.G. and Bloomfield, R.E. (2001) ‘The practicalities of goal-based
safety regulation’, Proceedings of the Ninth Safety-Critical Systems Symposium.

Redmill, F. (2000) ‘Understanding the use, misuse and abuse of safety integrity levels’,
Proceedings of the Eighth Safety-critical Systems Symposium.

RTCA (1992) DO 178B – Software Considerations in Airborne Systems and Equipment
Certification, Radio and Technical Commission for Aeronautics.

SAE (1994) ARP 4761: Guidelines and Methods for Conducting the Safety Assessment Process on
Civil Airborne Systems and Equipment, Society of Automotive Engineers, 400
Commonwealth Drive, USA.

Shooman, M.L. (1996) ‘Avionics software problem occurrence rates’, Proceedings of the 7th
International Symposium on Software Reliability Engineering, White Plains, NY, pp.53–64.

Weaver, R. (2003) ‘The safety of software – constructing and assuring arguments’, PhD thesis,
Department of Computer Science, The University of York.

Wu, W. and Kelly, T. (2004), ‘Safety tactics for software architecture design’, Proceedings of the
28th Annual International Computer Software and Applications Conference (COMPSAC’04),
IEEE Computer Society.

