
Service Level Agreements for Safe and
Configurable Production Environments

Mohammad Ashjaei∗, Kester Clegg†, Lorenzo Corneo‡, Richard Hawkins†,
Omar Jaradat∗, Vincenzo Massimiliano Gulisano§, Yiannis Nikolakopoulos§

∗Mälardalen University, † University of York, ‡Uppsala University, §Chalmers University

Abstract—This paper focuses on Service Level Agreements
(SLAs) for industrial applications that aim to port some of
the control functionalities to the cloud. In such applications,
industrial requirements should be reflected in SLAs. In this paper,
we present an approach to integrate safety-related aspects of an
industrial application to SLAs. We also present the approach in
a use case. This is an initial attempt to enrich SLAs for industrial
settings to consider safety aspects, which has not been investigated
thoroughly before.

I. INTRODUCTION

With emerging smart factories as part of the recent Industry
4.0 initiatives, several technologies have been exploited to
obtain flexibility, adaptability and evolvability in production
management. Technologies such as cloud computing, and the
recent fog-computing trend, offer a large virtualized compu-
tation power to support part of the production complexity.
As the mentioned technologies were developed in different
context (IT), they provide support for industrial services with
technical limitations without fulfilling all industrial require-
ments. Therefore, several works addressed various aspects of
using these technologies in industrial domains, such as overall
technological issues [1], integration to the Internet of Things
(IoT) [2], robustness and scalability of cloud services [3] and
timeliness properties of cloud services [4].

One of the main challenges is that the quality of services
that are offered by cloud providers cannot be controlled by
cloud consumers. Therefore, the quality of cloud services are
negotiated and defined in an agreement. This agreement, which
is known as Service Level Agreement (SLA) [5], contains
a description of services with various parameters, such as
availability. Although the research community on industrial
cloud computing has paid a lot of attention on technical aspects
of cloud computing, not much research has been done in
the area of SLA management, modeling and definition for
industrial cloud computing, as identified in [6]. In particular,
research in defining parameters that industrial applications
are interested in is still very young. For example, parameters
related to safety and security are either not defined or they are
defined qualitatively. Moreover, given the complicated inter-
actions between various technologies in cloud-based systems,
it is crucial for users to have a way of measuring how mature
a certain group of technologies is. In this sense, SLAs could
easily quantify the technological readiness. Nonetheless, SLAs
in the current form are not adequate in covering safety related
aspects due to the following challenges:

• Many important services in industrial domains are safety-
critical functionalities, which should be reflected in SLAs.

• One of the biggest challenges in safety assurance is
dealing with reconfiguration. Safety goals, evidence and
argument are highly dependent on assumptions made
about operating context and system configuration. The
SLAs should define how the reconfiguration can be done.

• Upcoming technologies like osmotic computing [7]
demonstrate the dynamicity of service placement and the
possibilities for delegation across different parts of the
system. This can result in systems having vastly different
configurations, which can be defined in SLAs.

• With workloads consisting of a mix of safety critical
as well as other production-related functionalities, it is
expected that the overall system performance may have
to be balanced against safety requirements.

SLAs could be used as a potential means of addressing these
challenges by specifying what is expected from each element
in an industrial setting. This would require SLAs to define the
minimum properties of a system or subsystem that should be
maintained in order to assure the safety of the overall system.
This will allow for the implementation of any element within
the system to change, without affecting the safety of the overall
system, as long as it can be guaranteed that the respective SLA
is still honoured. This paper is an initial attempt to address
the above mentioned challenges by presenting an approach on
defining SLAs considering safety-related aspects of industrial
applications. Moreover, a concrete case study is presented to
better clarify the proposed approach.

The rest of the paper is organized as follows. The next
section describes the safety challenge. Sections III, IV and
V present three main components of a generic cloud-based
system with intra and inter dependencies. Section VI presents
a use case and Section VII concludes the paper.

II. SAFETY AND DERIVING SLAS

There are many systems within factories whose failures,
under certain conditions, can lead to human harm or dam-
age to property or the environment, e.g. due to the use
of heavy machinery or hazardous substances [8]. Therefore
risks associated with the manufacturing processes and the
resulting products are analysed, controlled and monitored. In
comparison to conventional manufacturing, Industry 4.0 tends
to be more re-configurable, modular and dynamic in nature.
This poses significant additional safety assurance challenges



since a more re-configurable design often means there is less
control over that design, which in turn gives rise to uncertainty
(more unpredictable situations or behaviours). Changing or re-
configuring the factory will often invalidate the operational
or environmental assumptions that are made as part of the
safety assurance process. This can impact the evidence that has
been generated regarding the operation of the system (which is
often valid only in the operational and environmental context
in which it is obtained). The evidence might no longer support
the developers’ claims because it could reflect old development
artefacts or old assumptions about operation or the operating
environment [9]. This uncertainty implies less confidence in
the safety performance of the factory systems.

SLAs can be used to describe the dependencies between the
different parts of systems in a “Guarantee-Assumptions” form.
This means that an SLA can describe a property important to
the safety of the system (parameter, value, behaviour, etc.)
together with whatever assumptions are required to guarantee
that property. These required properties can be determined
from the safety requirements of the factory systems. When
constructing an SLA, it is desirable to make the SLA specifi-
cation as flexible as possible, as this supports the Industry 4.0
desire to change and reconfigure the factory. For example, the
safe stopping time for an autonomous vehicle on the factory
floor in normal circumstances may be determined from safety
analysis of the factory to be three seconds. This requirement
could be incorporated into an SLA. However it might be the
case that the stopping time is actually longer than this under
certain conditions (e.g., in case of slippery or steep floors).
Thus, when designing SLAs the possible anticipated changes
to the SLA’s guarantees must also be considered.

In this paper, we suggest an approach for deriving and
refining SLAs for use in safety assurance of factories as
presented in Fig. 1.

Perform 
Safety 

Analysis

Specify safety 
Requirements 

(SRs)

Derive SLAs 
for some 

selected SRs

Refine SLAs for conditional 
guarantees and determine the 
dependencies between SLAs

Fig. 1. The derivation process of SLAs.

Deriving and refining of SLAs are done within different
parts of a system, which we call them pillars. In this paper
we identify three pillars: the communication, virtualization and
processing pillars. However, the approach can work for more
or different pillars based on the system’s requirements.

III. THE THREE PILLARS

This section presents the three pillars that set the basis for
the fine-grained details of SLAs requirements.

a) Communication: The communication pillar covers
the objective of reliably and timely disseminating messages
between several entities of the system (e.g., physical system
and cloud/fog devices). In order to ensure safety, monitoring
applications must have real-time guarantees. Real-time behav-
iors are usually provided by selecting suitable communication
technologies, protocols and metrics.

b) Virtualization: The virtualization pillar embraces the
partitioning of computation or communication services with
the aim of supporting isolation and flexibility in a cloud-based
system. In computing services, virtualization is realized by
hypervisors and virtual machines, or other related techniques
such as containers. The networks can also be partitioned for
various services using Software Defined networking (SDN).

c) Processing: The processing pillar defines the tech-
nology used to analyze the data retrieved from the sensors
distributed in a production environment and transform them
into valuable information that can be used to take decisions
(with or without the involvement of humans) and adjust the
production process depending on the information being sensed,
as we further elaborate in the use case of Section VI. In the
context of Industry 4.0, modern data processing paradigms
such as data streaming [10] fit well to the need for high-
throughput and low-latency analysis.

IV. INTRA-PILLAR SLA DEPENDENCIES

In order to define SLAs that embrace the whole spectrum of
requirements, we first focus on requirements that exist within
each pillar (independently of dependencies with other pillars,
discussed later in Section V).

a) Communication: Communication is responsible of
delivering information within the system enforcing safety
through real-time behavior. When translating this to SLAs, the
goal is to provide metrics that reflect the quality of real-time
aspects achieved by the network infrastructure. In particular,
potential communication SLAs must take into account infor-
mation quality (e.g., data freshness) and necessary latency for
reacting to events in the physical system (e.g., actuation).

b) Virtualization: Virtualization acts as a technique to
provide isolation between services, thus not only the system
management reduces but also the temporal and performance
metrics can be analyzed without considering the whole system.
This means that the performance and temporal aspects of a
service can be evaluated in isolation of other services. Con-
sidering this aspect in SLAs, the key goal is to provide metrics
that can support virtualization in a cloud-based system with
required and desired performance metrics. Note the system
should consider that the effect of live reconfiguration, either
manual or automatic, could adversely affect the virtualization
performance and this should be declared in the SLAs.

c) Processing: As discussed in [10], one of the main
advantages of processing paradigms such as data streaming is
the possibility of transparently (from the programmer perspec-
tive) distributing and parallelizing data analysis. The advantage
in this case, is the possibility of pushing the analysis to
the edge, thus leveraging the considerable cumulative com-
putational power of devices (from embedded to server-like
ones) available in large production systems. In this context,
the challenge stems from the need of properly mapping the
analysis tasks to the existing devices since this affects the
overall throughput and latency that can be achieved by the
system. When translating this into SLAs, a key question is
how deployment and adaptive actions of the data analysis



frameworks can be taken, either manually or via autonomous
reconfigurations.

V. INTER-PILLAR SLA DEPENDENCIES

As we exemplify in this section, once the requirements of
each pillar are defined (as discussed in Section IV) their inter-
dependencies must also be addressed in SLAs.

a) Communication: Virtualization and processing deci-
sions heavily depend on data freshness (i.e., the time separat-
ing sensing and actions based on it). For virtualization choices,
decrements in data freshness could mean, for example, that
the allocated resources (i.e. bandwidth) for a particular sub-
network are not enough and must be increased in order to meet
time and safety requirements. For processing, when analyzing
a stream of data coming from several devices for instance, data
freshness can be used to prioritize the scheduling of tasks with
hard real-time requirements.

b) Virtualization: Virtualization happens on both compu-
tation and communication parts of a system. Therefore, it has
dependencies with both communication and processing pillars.
In case of computation, the main aim is to keep the processing
delays in a bounded value as well as availability in bandwidth
to operate different functions. A challenging task is to consider
the delays and bandwidth availability when reconfiguration of
the system occurs. In the communication case, the network
can be partitioned into several sub-networks to serve various
services. Therefore, latencies of traffic in each sub-network
and bandwidth availability in case of reconfiguration in sub-
networks should be foreseen.

c) Processing: Throughput and latency of a certain
application depend on decisions taken (at the deploy and
at run time) about how analysis tasks are mapped to the
available computational units in the production environment.
In this sense, a tight connection exists with respect to both
communication and virtualization, since both will frame the
set of possible deployment choices. More concretely, the
choice framing stems from the available bandwidth and the
latency introduced when delivering information (communica-
tion) and from the available computational power (i.e., CPU
and memory) available at each unit (virtualization). Together,
communication and virtualization decisions will affect how
close to the edge the analysis can be pushed.

VI. USE-CASE STUDY

The use-case, based on a real system implementation, in-
volves an automated factory in which a number of robots are
required to move autonomously around the factory in order
to transport goods from one location to another. The robots
operate as independent agents, meaning they calculate their
own required route through the factory without knowledge
of the position of other robots operating within the factory
(there is no communication between robots). It is necessary
from a safety perspective (but also operationally) that the
robots achieve their objectives without colliding with other
peers. This is achieved through the use of Ultra Wide Band
(UWB) radio devices to provide indoor localisation services.

The system consists of robots, each one carrying a ‘tag’, that
are tracked by a series of ‘anchors’ (or beacons) that receive
the tags signals and compute their positions. The anchors
communicate with the tags via UWB radio. Additionally, the
system includes a wifi network located between the anchors
and the fog (or cloud) based UWB location service software
as shown in Fig. 2.

Fig. 2. The system architecture.

In order to ensure that the robots operate safely, it is nec-
essary to enforce an invariant safety property: the tags on the
robots must always maintain a minimum separation distance
from each other. Although the precise required separation
distance between the tags may vary (mainly due to the size
of the robots used in the factory), the mechanism by which
the minimum separation is achieved, using UWB localisation,
remains the same. In this use case, in order to ensure that min-
imum separation distance between the robots is not violated, it
is necessary to enforce a safe stopping distance (SSD) between
the target and the robot as a safety invariant. The SSD in this
use case is equal to the minimum separation distance plus a
decision distance (DD) and the maximum error distance at a
required confidence level. The minimum separation distance is
the distance that allows the robot stop safely. Maximum error
distance is an error margin due to technological limitations.
Therefore, the only part of SSD that can be reflected in
parameters in SLAs is the DD, which is the delay of the whole
process between sensing the environment and issuing a stop
command. In order to define SLA parameters to ensure that the
safety invariant is fulfilled, a high level SLA for a maximum
DD is defined. We then decompose the SLA into parameters
that affect the DD. In this example, the SLA is divided into
three pillars, i.e., communication, processing and virtualization
components. Figure 3 shows this process.

A. Communication pillar

For distributed real-time systems the communication in-
duced latency must be bounded for the system to work
correctly. The application must check if it can meet the real-
time requirements given the time-stamp of the data in the
sensor. Even if a periodic application produces a result in time,



Decision Distance

Communication

Age of 
Information

E2E 
Actuation 

time

Processing

Processing 
delay

Processing 
Throughput

Virtualization

VM 
response 

time

Migration 
latency

Maximum 
downtime

Fig. 3. The break down components for SLA.

the data available may be too old to give a correct real-time
response. For this reason, the following metrics for SLAs are
defined as below:

• Age of information [11]: the age of information is a
metric for measuring data freshness received by the
cloud/fog.

• End-to-end actuation time: time elapsed between the
sensing of an event in real world and the response to
it (e.g., actuation).

B. Virtualization pillar

SLA parameters with respect to virtualization (both com-
munication and computation) to maintain minimum separation
distance are as follows:

• Application response time: the response time of applica-
tions that reside on the cloud or fog.

• Migration latency: in case there is an application migra-
tion between two servers in a data center or between two
data centers, the delay of migration should be bounded.

• Maximum downtime: in case of an application migration,
there will be a time where the application is not executing,
known as downtime, which should be bounded.

C. Processing pillar

We consider the aspect of the data processing that needs to
take place in order for the positioning system to be updated
and potential breaches of the minimum separation distance
to be detected. We model the UWB location service as a
streaming event-based system where every position update
causes a continuous query on the minimum separation distance
to be evaluated. The parameters are defined as below:

• Processing delay: the delay between receiving a position
update and updating a dynamic map to find any potential
breaches in the minimum seperation distance.

• Processing throughput: the number of events that the
system is capable of handling per unit of time, without
penalizing the processing latency.

The defined parameters should be defined in the SLA with
a maxium and minimum acceptable values. Violation of each
parameter from the defined range leads to violation of the
defined safety variant.

VII. CONCLUDING REMARKS

In this paper, we suggested an approach to derive and refine
SLAs to use in safety assurance of factories. Moreover, we
showed that a safety property can be decomposed into various
parameters in an SLA with possible dependencies among
different components using a case study. In the use case we
show three pillars, however in other industrial applications
these pillars may vary. The proposed approach is an initial
attempt to address challenges related to integrating safety in
SLAs. Ongoing work aims at investigating the dependencies of
parameters and their reflections to SLAs in such an approach.
Moreover, we are aiming at proposing a formal way of
capturing the dependencies, possibly developing a supporting
tool so to show whether, for each parameter instantiation, the
safety invariant is violated.

ACKNOWLEDGEMENTS

This work is supported by SSF foundation via the project
Future Factories in the Cloud (FiC) and in the context of
XPRES framework. The authors have equal contributions and
listed alphabetically.

REFERENCES

[1] O. Givehchi, H. Trsek, and J. Jasperneite. Cloud computing for industrial
automation systems - a comprehensive overview. In 18th Conference on
Emerging Technologies Factory Automation, September 2013.

[2] P. Persson and O. Angelsmark. Calvin – merging cloud and iot. Procedia
Computer Science, 52:210 – 217, 2015. The 6th International Confer-
ence on Ambient Systems, Networks and Technologies (ANT-2015),
the 5th International Conference on Sustainable Energy Information
Technology (SEIT-2015).

[3] T. Goldschmidt, A. Jansen, H. Koziolek, J. Doppelhamer, and H. P.
Breivold. Scalability and robustness of time-series databases for cloud-
native monitoring of industrial processes. In 7th International Confer-
ence on Cloud Computing, June 2014.

[4] T. Hegazy and M. Hefeeda. Industrial automation as a cloud service.
IEEE Transactions on Parallel and Distributed Systems, October 2015.

[5] Editor: D. Kyriazis. Cloud computing service level agreements -
exploitation of research results. European Commission Directorate
General Communications Networks, Content and Technology Unit E2
– Software and Services, Cloud, 2013.

[6] S. Mubeen, S. Abbaspour Asadollah, A. Papadopoulos, M. Ashjaei,
H. Pei-Breivold, and M. Behnam. Management of service level agree-
ments for cloud services in iot: A systematic mapping study. Journal
of IEEE Access, August 2017.

[7] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan. Osmotic
computing: A new paradigm for edge/cloud integration. IEEE Cloud
Computing, November 2016.

[8] O. Jaradat, I. Sljivo, I. Habli, and R. Hawkins. Challenges of safety as-
surance for industry 4.0. In 2017 13th European Dependable Computing
Conference (EDCC), pages 103–106, Sept 2017.

[9] O. Jaradat, P. Graydon and I. Bate. An approach to maintaining safety
case evidence after a system change. In Proceedings of the 10th
European Dependable Computing Conference (EDCC), UK, 2014.

[10] Ivan Walulya, Yiannis Nikolakopoulos, Vincenzo Gulisano, Marina
Papatriantafilou, and Philippas Tsigas. Viper: Communication-layer
determinism and scaling in low-latency stream processing. In Euro-
Par 2017: Parallel Processing Workshops, pages 129–140, Cham, 2018.
Springer International Publishing.

[11] S. Kaul, R. Yates, and M. Gruteser. Real-time status: How often should
one update? In 2012 Proceedings IEEE INFOCOM, pages 2731–2735,
March 2012.


