
An Overview of the SoBP for Software in the
Context of DS 00-56 Issue 4

Catherine Menon, Richard Hawkins, John McDermid and Tim Kelly

SSEI, University of York

Heslington, York, UK

Abstract Defence Standard 00-56 Issue 4 is the current contractual safety stan-
dard for UK MOD projects. It requires the production of a structured argument,
supported by diverse evidence, to show that a system is safe for a defined purpose
within a defined environment. This paper introduces a Standard of Best Practice
which has been produced by the Software Systems Engineering Initiative to pro-
vide guidance for software compliance with Defence Standard 00-56 Issue 4.

1 Introduction

Defence Standard 00-56 (DS 00-56) Issue 4 (Ministry of Defence 2007) presents a
goal-based, or evidential, approach to ensuring and assuring safety. One of the
major principles of DS 00-56 is the need to demonstrate system safety by means
of a compelling safety argument, supported by rigorous evidence. This represents
a departure from earlier prescriptive UK MOD safety standards in that DS 00-56
Issue 4 states what is required, but not how this is to be achieved.

While this approach permits the software contribution to system safety to be
evaluated contextually in each situation, there is currently a lack of clear guidance
on how to perform this evaluation. The absence of guidance is felt in many pro-
jects, e.g. the Chinook Mark 3, where difficulties have arisen for the Integrated
Project Team (IPT) in determining safety of both the engine control software and
the cockpit display software.

Consequently, the Software Systems Engineering Initiative (SSEI) has been
tasked by the MOD with the production of a Standard of Best Practice (SoBP) for
assessing software compliance with DS 00-56 Issue 4. The remit of this SoBP is to
address all aspects of software contribution to system safety, from the integration
of COTS software into safety-critical systems, to the use of civil standards such as
DO-178B for military applications.

This paper introduces the first issue of the SoBP (Menon et al. 2009), which
was completed in August 2009 and is currently available from the SSEI website.

2

This interim SoBP applies to the activities of contract assessment, software devel-
opment, assurance, verification and validation and initial acceptance. It does not
consider the in-service phase, nor does it consider in detail the concept and as-
sessment phases. Nevertheless, many of the in-service issues are similar in scope
to those presented here, especially considerations such as upgrading systems and
the use of COTS products. It is the intent that further work will be performed to
provide guidance on through-life safety considerations, including operational
safety.

In Section 2 we provide a brief overview of the structure and focus of the
SoBP. Section 3 addresses the managerial issues involved with assessing the con-
tribution of software to system safety, while Section 4 describes the technical as-
pects of assurance. Finally, in Section 5 we conclude and discuss the planned up-
dates to the SoBP.

2 Structure of the SoBP

The SoBP addresses two primary areas of concern for software compliance with
DS 00-56: managerial and technical. This is an essential distinction, but is not al-
ways clear cut in practice. Some of the ‘management’ decisions identified in this
document could be carried out by the prime, some by MOD, or some (more likely)
by the two working together. Further, management decisions may apply at several
levels in the supply chain. Consequently, the SoBP aims to be applicable inde-
pendent of the particular stakeholders in any situation.

The structure of the SoBP is based around a swim-lane diagram (Figure 1 in
Section 3) showing how safety-related communication should be managed
throughout the project. This diagram identifies three major interested parties, or
strands: ‘Management’, ‘Assurance’ and ‘Ensurance’. Relevant portions of this
diagram are enlarged in later sections to enhance readability.

The ‘Management’ strand corresponds to the activities of managerial personnel
and those responsible for project management of the customer-supplier boundary.
Management activities are typically concerned with overseeing safety manage-
ment, facilitating customer-supplier interaction and formally assessing relevant
deliverables for acceptance. Section 3 of this paper describes these managerial ac-
tivities, providing guidance on project decisions which are important when pro-
ducing software which can be shown to be safe with sufficient confidence. The
‘Management’ swim-lane of Figure 1 is the most detailed, as it is assumed that
managerial input and decisions are a primary driver for any project.

By contrast, the ‘Assurance’ strand corresponds to the activities of those per-
sonnel responsible for demonstrating the safety of the software. Assurance activi-
ties are typically concerned with the production of a compelling safety argument,
supported by rigorous evidence. Section 4 of this paper provides a primarily tech-
nical perspective on assurance activities. The swim-lane diagram of Figure 1 is in-
tentionally simplified when representing the Assurance strand. This is because de-

3

cisions about assuring the safety of the software can only be made in the context
of a particular project, and consequently cannot be easily generalised.

Finally, the ‘Ensurance’ strand corresponds to the activities of those personnel
responsible for developing the software. We have deliberately avoided providing
explicit guidance for ensurance activities, as this would not be in keeping with the
goal-based approach of DS 00-56. In practice, the remit of these activities may
overlap. For example, performing hazard analysis and deriving safety require-
ments will require interactions between activities in all three strands.

2.1 Requirements of DS 00-56: Safety Cases

The purpose of the SoBP is to provide guidance for software compliance with DS
00-56. This requires an understanding of the ways in which software can contrib-
ute to system safety, and the recommendations of DS 00-56 which ensure that
these contributions are acceptable. One such recommendation is the production of
a safety case.

From Annex A of DS 00-56, a safety case is ‘a structured argument, supported
by a body of evidence that provides a compelling, comprehensible and valid case
that a system is safe for a given application in a given operating environment’
(Ministry of Defence 2007). A safety case will evolve throughout a project, and
the current state of safety should be reflected via regular safety case reports. The
personnel undertaking ensurance and assurance roles are responsible for produc-
ing these reports, as well as a final safety case report. The acceptability of these
reports may be dependent upon input from the Independent Safety Adviser (ISA)
or Safety Committee. Each software safety case report must consider all relevant
aspects associated with software safety, including the following:

Requirements validity. The argument must demonstrate that all software safety
requirements are complete and accurate for the purposes of mitigating the soft-
ware contribution to system-level hazards.

Requirements satisfaction. The argument must comprehensively demonstrate
satisfaction of all the identified software safety requirements.

Requirements traceability. The argument must demonstrate that the high-level
software safety requirements are traceable to system hazards, and also down
through all levels of development (detailed software requirements, software de-
sign, code etc.).

Software quality. The argument must demonstrate that the software and the de-
velopment processes exhibit the basic qualities necessary to place trust in the evi-
dence presented. For example, the software must be free from intrinsic errors (e.g.
buffer overflows and divide-by-zero errors), and adequate configuration consis-
tency and version control must be demonstrated.

4

All four of the aspects above must be adequately addressed within the safety
case. Fundamental to this concept is the idea of the justifiable confidence in the
truth of a safety claim. This is referred to as the assurance of that claim. A safety
case should provide sufficient assurance of all claims to permit the justified use of
the software in the proposed role. If sufficient assurance is not provided, we say
that there is an assurance deficit. This is an uncertainty or lack of information
which affects assurance. Assurance deficits are almost inevitable; the question is
whether such deficits are justified. An assurance deficit can be justified if the cost
of addressing the deficit (e.g. by providing additional evidence) is out of propor-
tion to the benefit that would be gained from doing so. Section 4 provides further
detail on this.

3 Managerial Issues

This section describes the key management activities and decisions, as well as the
inputs that may reasonably be expected from the Ensurance and Assurance activi-
ties. The SoBP presents this material to be read in conjunction with technical
guidance, which this paper discusses in Section 4.

The Management strand is concerned with the key decisions on a project level,
which include issues of supplier selection (where relevant) and acceptance of the
safety case. For each decision we identify:

• Inputs to the decision making activity from Ensurance, Assurance or external
activities (for example safety case reports or development plans). This list of
inputs is intended to be indicative of the minimum information which will be
needed, and should not be considered exhaustive.

• Comparator data to allow assessment of the inputs. This data may be available
from a wide range of sources.

• Criteria for making the decision (for example, the acceptability of a safety case,
or the extent to which risks are shown to be reduced to an acceptable level). It
is likely that for each decision, the criteria should be weighted according to
their importance.

• Possible outcomes, which in each case will be one of:

– Proceed without change to plans
– Proceed with further safety risk management
– Iterate selected process steps with remedial action
– Terminate the process and end the project development

In all cases, the guidance is framed so that all reasonable ways of proceeding will
have been evaluated before reaching a decision to terminate the development.

Each of these decisions may involve input from the ISA, Safety Committee or
external domain experts. These roles are not distinguished and are assumed to
support the Management decision-making activities. In each case, the identity of

5

personnel involved with this decision must be recorded in relevant project docu-
mentation. Where appropriate, the documents supporting their decision must also
be preserved in order to provide both traceability and accountability.

The SoBP provides detailed guidance as described above on all of the identi-
fied management decisions. In this paper we select two such decisions to discuss
in detail, and refer the reader to the issued SoBP for further guidance.

3.1 Software Safety Management Phases

Software development processes can depend on the organisation, context of the
project, scope of the project, and so on. This guidance identifies four major phases
(Initial, Development, Containment and Acceptance) which can usefully be
mapped to all software development projects. These identified phases are not in-
tended as a software development lifecycle, but rather to identify the key decision
points relevant to DS 00-56 which occur during contractual interactions. They are
orthogonal to the swim-lane strands introduced in Section 2. Figure 1 shows this
interaction.

3.2 Swim-lane Diagram

To reduce complexity, the diagram in Figure 1 reflects only the major input(s) for
each decision. Similarly, there are a number of iterations and ongoing activities in
each lane which are not explicitly shown in the diagram for reasons of clarity.
While major iterations are shown (e.g. the main iteration of the development phase
reflecting ongoing monitoring of safety management and safety case reports),
there will be iteration and ongoing activities within each lane. A single activity –
as represented in the diagram – may correspond to a number of iterations of that
activity, informed by safety dialogues and checkpoints. Relevant portions of this
diagram are enlarged in the following sections, which briefly describe the activi-
ties within each phase and provide detailed guidance for selected decisions.

3.2.1 Initial Phase

There are a number of activities and decisions which take place prior to establish-
ing contractual arrangements. These include gathering requirements, establishing a
project budget, writing an Invitation to Tender, assessing bids against project cri-
teria, and negotiating with selected suppliers.

As DS 00-56 is a contractual standard, it does not strictly apply to these activi-
ties and decisions which take place at a pre-contractual stage. However, this phase
is important from a safety perspective because of the importance of supplier selec-

6

tion. The capabilities of potential suppliers – including in-house developers where
relevant – must be assessed prior to finalising a contract. Any issues identified
during this assessment may then inform the contractual negotiation. Consequently,
adequate assessment of suppliers and bids can enhance the likelihood of eventual
delivery of software which is compliant with the requirements of DS 00-56. Full
details of the decisions and activities in this phase are provided in the complete
SoBP.

Fig. 1. Swim-Lane Diagram

7

3.2.2 Development Phase

The development phase is concerned more directly with achieving software safety
than the Initial phase. Specifically, the managerial decisions in the development
phase are intended to confirm that the software is being developed in an accepta-
bly safe manner according to the requirements of DS 00-56. Figure 2 shows the
development phase from the swim-lane diagram. There are three decisions in the
phase, one of which (Safety Argument Acceptable) is discussed in detail here.

The development phase is iterative as shown in the swim-lane diagram, and
consequently all decisions in this phase may be encountered multiple times.

Fig. 2. Development Phase

3.2.2.1 Decision: Safety Argument Acceptable

Management decisions relating to the safety argument will typically require input
from domain and safety experts. These experts (such as the ISA) can judge the
technical sufficiency of the evidence presented, but the final responsibility for
making the decision may be considered a managerial concern. This decision may
be made multiple times throughout the software development process; for example
when receiving regular safety case reports.

It is worth noting here that this decision will be encountered only where the de-
velopers undertaking assurance activities consider that all assurance deficits iden-
tified thus far are justified as far as is possible at this stage of development, or that
these deficits are likely to be justified by planned future processes. If an assurance
deficit is considered by developers to be unlikely to be justified given future de-

8

velopment, the Containment phase will be entered instead, and this decision will
not be encountered.

Inputs

Report on safety management progress including:

• Development of the safety argument.
• Production of evidence to support the safety argument.

Comparator data

• Safety arguments and evidence for similar projects.
• Software safety argument patterns which illustrate typical successful patterns of

argumentation.

Criteria

The safety argument should satisfy the following criteria:

• It should address all four argument elements (validity, satisfaction, traceability
and quality) with respect to all safety requirements.

• It should be sufficient to provide adequate assurance with respect to all safety
requirements, or indicate how this assurance will be obtained.

• It should identify and justify all assurance deficits
• All assumptions should be identified and where appropriate justified, with ref-

erences to supporting documentation where relevant.
• Evidence of a search for counter-evidence should be presented, and the effect

of relevant counter-evidence upon the argument should be assessed.

The evidence provided to support the safety argument should satisfy the follow-
ing:

• The evidence should adequately support the relevant safety requirements
• The integrity of the evidence chain should be evident, meaning that sufficient

visibility into evidence-gathering procedures is provided.
• The trustworthiness and applicability of the evidence should be justified and it

should be sufficiently diverse

Possible Outputs

The possible outputs for this decision are as listed below. In each case, the identity
of personnel involved with this decision must be recorded in relevant project

9

documentation. Where appropriate, the documents supporting their decision must
also be preserved in order to provide both traceability and accountability.

• Proceed with development. This is represented as iteration in the development
phase of the swim-lane diagram, and occurs when all the above criteria are met.
There is no unjustified assurance deficit.

• Proceed with development where this includes specified further safety
management. This outcome reflects that there is currently an unjustified assur-
ance deficit, but this can be justified by means which have been identified and
which will inform future safety argument development.

• Iterate (repeat) process steps, with remedial action. For this decision, this
outcome reflects that an unjustified assurance deficit is present and can be ad-
dressed only by modifying or repeating activities in the development of the
safety argument.

• Terminate the process. For this decision, this represents an exit to the con-
tainment phase. This occurs when there is an unjustified assurance deficit and
no identified strategy for sufficiently reducing this deficit.

In practice management of information flows across contractual or organisational
boundaries can be problematic. It may be the case that shortfalls in the (demon-
strated) safety of the system are related to such boundaries and interfaces. Conse-
quently, it is desirable that management explicitly consider this flow of informa-
tion. It may also be the case that the flow of information down from the system
level to the software is inadequate. In order to assess the potential for the software
to contribute to system hazards, a degree of information is needed about the sys-
tem context. In some cases, this may mean providing information to the supplier
about the wider system in order to ensure that safety requirements are satisfied.

It should be noted that as shown in the swim-lane diagram, the only way to
proceed to the acceptance phase is by judging the safety argument to be accept-
able. This is in keeping with the requirement for an adequate safety case (Ministry
of Defence 2007).

3.2.3 Acceptance Phase

While the SoBP provides guidance for assessing the completed software against
the requirements of DS 00-56, assessment of the safety case is not the only activ-
ity necessary for acceptance of the software. Consequently, safety considerations
must be balanced against the other acceptance criteria which are relevant for this
project. If the requirements of DS 00-56 are not met (that is, if there is an issue of
safety), then the containment phase is entered to attempt to remedy this problem.
The issued SoBP contains further guidance on this topic.

10

3.2.4 Containment Phase

The containment phase is entered only on encountering a significant problem dur-
ing development which cannot be remedied. Figure 3 shows the containment
phase from the swim-lane diagram. Entry can be triggered in one of two ways.
Firstly, personnel undertaking assurance activities may note that they are unable to
adequately justify all assurance deficits, and that future development is unlikely to
provide information which will justify these deficits. Secondly, management per-
sonnel may consider that significant problems are exhibited by ongoing safety
management, by ongoing safety case development or by the final safety case.
These problems may result in a lack of information which has the potential to af-
fect assurance – an assurance deficit.

We present one of the decisions made during the containment phase in further
detail here, summarising the guidance available in the SoBP.

Fig. 3. Containment Phase

3.2.4.1 Decision: Acceptable Mitigation for Assurance Deficits

The decision is encountered when there is – or is likely to be – an unjustified as-
surance deficit, which is unlikely to be remedied within the bounds of the original
safety management plan and proposed safety case structure. The (potential) pres-
ence of this assurance deficit should be communicated to Management in a timely
manner. In addition to this communication, activities should be undertaken to
identify possible methods of addressing the assurance deficit. These activities are

11

undertaken across all three strands of Ensurance, Assurance and Management, and
in some cases external personnel may also be involved to identify methods to ad-
dress this deficit. Once these methods have been identified, Management must de-
termine whether they represent an acceptable solution to reduce or justify the
presence of this assurance deficit.

Inputs

Safety case report including:

• The safety argument
• Evidence to support the safety argument
• A report on the unjustified assurance deficit

Report on proposed methods for addressing the assurance deficit including:

• Input from Ensurance/Assurance/external personnel as relevant

Comparator data

• Safety arguments and evidence for similar projects
• Software safety argument patterns which illustrate typical successful patterns of

argumentation
• Information on techniques for resolving assurance deficits

Criteria

The supplied safety argument should satisfy the following criteria, with any dis-
crepancies addressed by the proposed methods for resolving the assurance deficit.

• It should address all four argument elements (validity, satisfaction, traceability
and quality) with respect to all safety requirements.

• It should be sufficient to provide adequate assurance with respect to all safety
requirements, or indicate how this assurance will be obtained.

• It should identify and justify all assurance deficits
• All assumptions should be identified and justified, with references to support-

ing documentation where relevant.
• Evidence of a search for counter-evidence should be presented, and the effect

of relevant counter-evidence upon the argument should be assessed.

The evidence provided to support the safety argument should satisfy the follow-
ing, with any discrepancies addressed by the proposed methods for resolving the
assurance deficit:

• The evidence should adequately support the relevant safety requirements.

12

• The integrity of the evidence chain should be evident, meaning that sufficient
visibility into evidence-gathering procedures is provided.

• The trustworthiness and applicability of the evidence should be justified and it
should be sufficiently diverse

The assurance deficit report should provide the following information:

• An assessment of the local and system effects of this deficit, where known.

The report on methods for addressing the assurance deficit should include the fol-
lowing:

• Identification where possible of techniques to address this deficit, with consid-
eration of how these may fit into the safety management plan.

• A comparison of these techniques to demonstrate how they will provide addi-
tional assurance.

Possible Outputs

The possible outputs for this decision are as listed below. In each case, the identity
of personnel involved with this decision must be recorded in relevant project
documentation. Where appropriate, the documents supporting their decision must
also be preserved in order to provide both traceability and accountability.

• Proceed with no change. Not applicable.
• Proceed with further risk management. For this decision, this outcome is

applicable in two cases. Where the identified assurance deficit can possibly be
remedied with further software safety management (there are no scheduled fu-
ture assurance tasks which could address this deficit, but some may be added),
the identified remedial actions should inform the future development of the
safety argument. Where the deficit cannot be remedied (project constraints
mean that it is not feasible to add further assurance tasks to address this deficit)
development may proceed provided that system-level risk management tech-
niques are identified to justify this deficit. This latter choice will require the
cooperation of external developers and approval across the entire system.

• Iterate (repeat) process steps, with remedial action. For this decision, this
outcome reflects that further development cannot proceed until this assurance
deficit is reduced. Alternative verification processes must be undertaken, as this
assurance deficit could render nugatory all further development activities.

• Terminate the process. This outcome reflects that there is no identified strat-
egy to reduce this assurance deficit, and the next step is to consider a possible
change to the circumstances and environment of this software.

13

3.3 Managerial Summary

This section has summarised some of the guidance provided for managers in the
SoBP. In addition to the material presented here, the full SoBP contains detailed
discussions of all activities and decisions. This includes explicit listing of criteria
on which decisions are made, the input which is expected for the decisions, the po-
tential outcome of each decision, and examples to illustrate how these situations
are managed on different projects. This guidance is intended to be read in conjunc-
tion with the technical guidance of the SoBP, which we summarise in the follow-
ing section.

4 Technical Issues

This section provides an overview of the technically-focussed material of the
SoBP. It is intended to support the managerial perspective which was discussed in
Section 3 of this paper.

DS 00-56 requires the production of a safety argument which is commensurate
with system risk:

‘The Safety Case shall contain a structured argument demonstrating that the evidence
contained therein is sufficient to show that the system is safe. The argument shall be
commensurate with the potential risk posed by the system...’ (Ministry of Defence 2007)

The SoBP provides guidance on how to comply with this requirement when con-
sidering the software components of systems. The aim is to provide guidance for
the developers of software safety arguments (both Ensurance and Assurance per-
sonnel) on how to construct arguments which are sufficiently compelling, and how
to justify the sufficiency of those arguments. In addition, the guidance should help
those involved in assessing software safety arguments (Management personnel) to
determine whether or not the arguments provided are sufficiently compelling.

A software safety argument must demonstrate that the software under consid-
eration is acceptably safe to operate as part of the embedding system. This re-
quires a demonstration that the potential contribution made by the software to the
identified system hazards is acceptable. To be compelling, the software safety ar-
gument must provide sufficient confidence in claims which support this objective.
It is inevitable for the software aspects of a system that there will exist inherent
uncertainties that affect the assurance with which it is possible to demonstrate the
safety of the software. The reason for this is that the amount of information poten-
tially relevant to demonstrating the safety of the system is vast. This may be in-
formation relating to the software itself, or to the system within which the soft-
ware operates. There will also be information relating to the environment and
operation of the system, all of which potentially has a role in demonstrating that
the software is acceptably safe.

14

It is simply not possible therefore to have complete knowledge about the safety
of the software. This leads to uncertainty – for example, due to the presence of as-
sumptions or known limitations in the integrity of the evidence provided. For this
reason it is not normally possible to demonstrate with absolute certainty that the
claims made in a software safety argument are true. For a software safety argu-
ment to be compelling it must instead establish sufficient confidence in the truth of
the claims that are made.

It is worth noting at this point that such uncertainties in demonstrating the
safety of the software are always present, but are often left implicit. Adopting a
safety argument-based approach, as is required by DS 00-56, facilitates the ex-
plicit identification of such uncertainties, which makes them easier to reason
about, and therefore justify. Reasoning explicitly about the extent and impact of
the uncertainties in a safety argument aids in the successful acceptance of the ar-
gument as part of a safety case.

The assurance of a claim is the justifiable confidence in the truth of that claim.
A useful approach to ensure that a software safety argument is sufficiently com-
pelling is to consider assurance throughout the development of that argument. The
approach defined in the SoBP is split into two main parts: a software safety argu-
ment pattern catalogue and an assurance based argument development method.

4.1 Pattern Catalogue

The software safety argument patterns introduced above are used to capture good
practice for software safety arguments. These patterns can be instantiated with
specific claims and evidence to create a software safety argument for any system
under consideration. The SoBP provides a pattern catalogue, containing a number
of patterns which have been constructed based on existing software safety argu-
ment patterns, and an understanding of current practice for software safety argu-
ments. The following argument patterns are currently provided in the SoBP:

1. High-level software safety argument pattern. This pattern provides the high-
level structure for a generic software safety argument. The pattern can be used
to create the high level structure of a software safety argument either as a stand
alone argument or as part of a system safety argument.

2. Software contribution safety argument pattern. This pattern provides the
generic structure for an argument that the contributions made by software to
system hazards are acceptably managed. This pattern is based upon a generic
‘tiered’ development model in order to make it generally applicable to a broad
range of development processes.

3. Software Safety Requirements identification pattern. This pattern provides
the generic structure for an argument that software safety requirements (SSRs)
are adequately captured at all levels of software development.

15

4. Hazardous contribution software safety argument pattern. This pattern
provides the generic structure for an argument that potentially hazardous fail-
ures that may arise at each tier are acceptably managed.

5. Argument justification software safety argument pattern. This pattern pro-
vides the generic structure for an argument that the software safety argument
presented is sufficient.

A primary consideration during the development of these patterns was flexibility
and the elimination of system-specific concerns and terminology. Consequently,
these patterns can be instantiated for a wide range of systems and under a variety
of circumstances. To be compelling it is necessary to be able to justify that the in-
stantiation decisions taken in constructing the argument result in a sufficiently
compelling argument for the system under consideration (such as why particular
claims are chosen whilst others are not required). Guidance for justifying such de-
cisions is provided in Section 4.2.

It is intended that the software safety argument pattern catalogue will be up-
dated and expanded over time to ensure that it reflects current understanding of
good practice.

4.2 Assurance-based Argument Development Method

 As discussed earlier, there exist many potential sources of uncertainty in demon-
strating the safety of the software. Any such residual uncertainty can be consid-
ered to be an assurance deficit.

It is possible to identify how assurance deficits may arise by explicitly consid-
ering how information may be lost at each step in the construction of the argu-
ment. As an argument is constructed, decisions are continually being made about
the best way in which to proceed. Decisions are made about how goals are stated,
the strategies that are going to be adopted, the context and assumptions that are
going to be required, and the evidence it is necessary to provide. Each of these de-
cisions has an influence on what is, and is not, addressed by the safety case. The
things that are not sufficiently addressed are referred to as assurance deficits.

The SoBP introduces an approach for systematic consideration of how assur-
ance deficits may be introduced at each step of software safety argument devel-
opment. By identifying where potential assurance deficits may arise, this approach
can be used to inform the decisions that are made on how to construct the argu-
ment. In order to produce a sufficiently compelling software safety argument, all
identified assurance deficits must be satisfactorily addressed, or justification must
be provided that the impact of the assurance deficit on the claimed safety of the
system is acceptable. Section 4.2.2 discusses how such justifications may be
made.

16

4.2.1 Counter Evidence

DS 00-56 states, ‘Throughout the life of the system, the evidence and arguments
in the Safety Case should be challenged in an attempt to refute them. Evidence
that is discovered with the potential to undermine a previously accepted argument
is referred to as counter-evidence.’ (Ministry of Defence 2007). Since an assur-
ance deficit corresponds to a lack of relevant information, an identified assurance
deficit reveals the potential for counter-evidence. That is, there is the possibility
that in addressing the assurance deficit (i.e. gaining the relevant information) the
information gained would reveal previously unidentified counter evidence. Rea-
soning about assurance deficits can therefore be helpful in identifying areas in
which counter evidence may exist. Conversely, where there is knowledge of exist-
ing counter evidence, this can be used to help determine the potential impact of
assurance deficits. For example, if other similar projects have identified counter
evidence which relates to a particular identified assurance deficit, then the ob-
served impact of this counter evidence on the safety of the other project can be
used to indicate the expected impact that such an assurance deficit may imply.

4.2.2 Addressing Assurance Deficits

The discussion above illustrates how assurance deficits may be systematically
identified throughout the construction of a software safety argument. The exis-
tence of identified assurance deficits raises questions concerning the sufficiency of
the argument. Therefore where an assurance deficit is identified it is necessary to
demonstrate that the deficit is either acceptable, or addressed such that it becomes
acceptable (for example through the generation of additional relevant evidence).

There will typically be a cost associated with obtaining the information to ad-
dress an assurance deficit. In practice the benefit gained from addressing each as-
surance deficit does not necessarily justify the cost involved in generating the ad-
ditional information. In order to assess if the required level of expenditure is
warranted, the impact of that assurance deficit on the sufficiency of the argument
must be determined.

To determine the impact of an assurance deficit, it is first necessary to assess
the software safety argument. Such an argument will make certain claims about
the hazard identification, risk estimation, and risk management of the software
contribution to system hazards. Since assurance deficits have the potential to un-
dermine the sufficiency of the argument, the impact of any assurance deficit
should be assessed in terms of the impact it may have on these claims. For exam-
ple, an assurance deficit may be sufficient to challenge the completeness of hazard
identification, or may be sufficient to challenge the estimated residual risk.

In assessing the software safety argument, it is possible to prioritise some
claims as being more important to safety than others. For example claims regard-
ing the behaviour of an architectural component (such as a voter), which carries a
greater responsibility for risk reduction than other components, are more impor-

17

tant to the overall software safety argument. Therefore claims relating to those
components would require a greater degree of assurance (more confidence must
be established). This is exemplified in DS 00-56: ‘An example of a way of defin-
ing the variation of the degree of rigour with potential risk is the specification of a
safety integrity requirement for the system’. The document then goes on to state,
‘In setting safety integrity requirements, it is therefore important to consider how
much confidence is needed.’ (Ministry of Defence 2007). Where safety integrity
requirements have been defined, they can be used as a way of determining the im-
portance of the software safety argument claim to which they relate.

The method introduced in the SoBP to determine the impact of an assurance
deficit has two stages. In the first stage, we analyse the claim to which the identi-
fied assurance deficit relates; the importance of the truth of that claim to the over-
all safety argument must be determined. Secondly, we determine the extent to
which the identified assurance deficit affects the confidence achieved in this par-
ticular safety claim. Not all information relevant to a claim leads to the same in-
crease in confidence in that claim. It is therefore necessary to assess the extent to
which any information provided to address the assurance deficit might increase
confidence in the truth of the claim.

Knowing the importance of the truth of the claim to the safety argument, and
the relative importance of the assurance deficit to establishing the truth of that
claim, it then becomes possible to determine the overall impact of the assurance
deficit. In a similar manner to risks in the ALARP approach (Railtrack 2000), the
impact of the identified assurance deficits may be usefully classified into three
categories. An ‘intolerable’ deficit is one whose potential impact on the claimed
risk position is too high to be justified under any circumstances. A ‘broadly ac-
ceptable’ assurance deficit is one where the impact of this assurance deficit on the
safety argument is considered to be negligible. In such cases no additional effort to
address the assurance deficit need be sought. Finally, a potentially ‘tolerable’ as-
surance deficit is one whose impact is determined to be too high to be considered
negligible, but which is also not necessarily considered to be intolerable. A poten-
tially ‘tolerable’ assurance deficit may be considered acceptable only if the cost of
taking measures to address that assurance deficit is out of proportion to the impact
of not doing so. The greater the impact of the assurance deficit, the more system
developers may be expected to spend in addressing that deficit.

Making decisions relating to the acceptability of residual assurance deficits
should, where necessary, involve personnel undertaking management and ensur-
ance activities as well as those involved in assurance. If unable to form a judgment
on the acceptability of an assurance deficit, then it is advised that expert assistance
should be sought.

Note that the impact of an assurance deficit can only be determined on a case-
by-case basis for a specific argument relating to a particular system. The same
type of assurance deficit (such as a particular assumption) whose impact is catego-
rised as broadly acceptable when present in the software safety argument for one
system, may be considered intolerable when present in the argument for a differ-
ent system. This is because the impact of an assurance deficit considers its impact

18

in terms of the overall safety of the system. It is for this reason that particular ar-
gument approaches (such as the software safety argument patterns discussed in
Section 4.1) cannot be stated as sufficient for particular claims, but must be
adapted on each use to be appropriate for the particular application.

Addressing an assurance deficit requires ‘buying’ more information or knowl-
edge about the system relevant to the safety claims being made. There will typi-
cally be a cost associated with obtaining this information. For those assurance
deficits categorised as tolerable, the value of the information in building confi-
dence in the safety case must be considered when deciding whether to spend that
money. In theory it is possible to do a formal cost-benefit analysis based on a
quantitative assessment of the costs associated with the available options for ad-
dressing the assurance deficit, and the costs associated with the potential impact
on the claimed risk position (such as the necessity to provide additional system
level mitigations). However, in many cases a qualitative consideration of these is-
sues will be more beneficial.

In all cases an explicit justification should be provided as to why the residual
assurance deficit is acceptable and, wherever appropriate, an argument should be
used to provide this justification. The software safety argument pattern catalogue
(discussed in section 4.1) contains an argument pattern for constructing an argu-
ment to justify that the residual assurance deficits are appropriate.

The approach described above, although similar to ALARP, rather than consid-
ering the necessity of adopting measures to directly decrease risk, instead consid-
ers measures intended to increase the confidence that is achieved. As such the
framework could be considered to help establish a claimed risk position in the
software safety case that is ACARP (As Confident As Reasonably Practicable).

5 Conclusions

This paper has introduced the Standard of Best Practice (Menon et al. 2009) for
software compliance with DS 00-56 Issue 4. In Section 2 we described the basic
structure of the SoBP, emphasising the distinction between the managerial and
technical perspectives. Section 3 then summarised the managerial guidance pro-
vided in the SoBP. Four development phases (Initial, Development, Containment
and Acceptance) were identified, and information was provided about the deci-
sions and activities of each phase. Section 4 introduced the technical guidance
which is provided in the SoBP. In this section we described the software safety ar-
gument pattern catalogue, which contains patterns or ‘blueprints’ for constructing
safety arguments. Additionally, this section described the assessment of assurance
deficits to determine whether these can be justified, or whether they must be ad-
dressed by further work on the safety argument. Section 3 and 4 should be read in
conjunction, as they represent different perspectives upon the same issues of soft-
ware contribution to system safety.

19

It is anticipated that this SoBP will continue to be updated regularly. One of
these planned updates will consist of an examination of the issues involved with
using other standards – such as DO-178B – to comply with DS 00-56. Another
planned update will further refine the technical guidance on assurance deficits by
discussing the advantages and limitations of different types of software safety evi-
dence. The SoBP is not intended to be a static document, but rather to represent
current best practice. Consequently, further updates, refinements and validation of
the results will be anticipated throughout the life of DS 00-56 Issue 4.

Acknowledgments The authors would like to thank the UK Ministry of Defence for their sup-
port and funding. This work is undertaken as part of the research activity within the Software
Systems Engineering Initiative (SSEI), www.ssei.org.uk.

References

Menon C, Hawkins R, McDermid J (2009) Interim standard of best practice on software in the

context of DS 00-56 Issue 4. Technical Report SSEI-BP-000001. Software Systems Engi-
neering Initiative, York. https://ssei.org.uk/documents/. Accessed 5 October 2009.

Ministry of Defence (2007) Defence Standard 00-56 Issue 4: Safety management requirements
for defence systems

Railtrack (2000) Engineering safety management – Yellow Book 3, volumes 1 and 2 – Funda-
mentals and guidance. Railtrack PLC

