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Abstract

Machine Learnt (ML) components are now widely accepted
for use in a range of applications with results that are reported
to exceed, under certain conditions, human performance. The
adoption of ML components in safety-related domains is re-
stricted, however, unless sufficient assurance can be demon-
strated that the use of these components does not compromise
safety. In this paper, we present patterns that can be used to
develop assurance arguments for demonstrating the safety of
the ML components. The argument patterns provide reusable
templates for the types of claims that must be made in a com-
pelling argument. On their own, the patterns do not identify
the assurance artefacts that must be generated to support the
safety claims for a particular system, nor do they provide
guidance on the activities that are required to generate these
artefacts. We have therefore also developed a process for the
engineering of ML components in which the assurance evi-
dence can be generated at each stage in the ML lifecycle in
order to instantiate the argument patterns and create the assur-
ance case for ML components. The patterns and the process
could help provide a practical and clear basis for a justifiable
deployment of ML components in safety-related systems.

Introduction
Current state of the art for Machine Learning (ML) focuses
on improving the performance and efficiency of the machine
learnt models (MLM). This has led to an increasing inter-
est in their use as part of systems performing safety-related
tasks, particularly through application to problems in health-
care, e.g. for clinical diagnosis (De Fauw et al. 2018) and
automotive, e.g. for autonomous driving (Burton, Gauerhof,
and Heinzemann 2017). For such domains, it is imperative
that MLMs provide not only excellent performance, but also
that the MLMs can be shown, with sufficient confidence, to
perform the tasks safely, i.e. risk of human harm is as low as
reasonably practicable. Safety cases provide an established
approach for justifying the safety of systems through the
provision of an explicit argument supported by compelling
evidence (Assurance Case Working Group 2018). In (Picardi
et al. 2019) we discussed the need for a safety argument
for MLMs through the consideration of MLMs developed
to support the diagnosis of retinal diseases. We presented an
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initial argument pattern that captured the form of the safety
arguments that would be required to provide the necessary
assurance of safety. In particular, that work highlighted the
need for confidence arguments to support any performance
claim regarding the MLM. We provided only a brief discus-
sion of the nature of these confidence arguments. Argument
patterns provide reusable templates of the types of claims
that must be made in a compelling argument. However, on
their own, they do not identify the assurance artefacts, e.g.
evidence of data coverage and representativeness, that must
be generated to support the safety claims for a particular sys-
tem and MLM, nor do they provide guidance on the activi-
ties that are required to generate these artefacts.

In this paper we therefore extend the existing work in a
number of ways:

• We update the safety argument pattern to better reflect the
relationship between the MLM and the safety of the over-
all system and provide patterns for the confidence argu-
ments that form a crucial part of the MLM safety argu-
ment.

• We develop an assurance process built upon existing best
practice. This process facilitates the instantiation of the
confidence argument patterns through consideration of
the required activities that should be undertaken and the
artefacts that should be generated.

The initial application of the safety argument patterns fo-
cused on clinical diagnosis (Picardi et al. 2019) and au-
tonomous driving (Burton et al. 2019). However, the under-
pinning principles and processes are domain independent.

Arguments for the Safety Assurance of MLMs
Figure 1 shows the safety assurance argument pattern for a
MLM, refined from that presented in (Picardi et al. 2019).
This pattern is for a single component, the requirements
of which have been identified through consideration of the
wider system context, including defined safety requirements
derived from the system safety process. For example, in an
automotive context, this will include the safety requirements
derived from vehicle- and architecture-level hazard and risk
analysis, some of which will be allocated to ML compo-
nents.

The argument pattern is expressed using the Goal Struc-
turing Notation (GSN) (Assurance Case Working Group



2018) as represented in Figure 2. The ML assurance claim
is that the the model satisfies the defined ML saftey require-
ments in the defined operating environment. It is important
to note that the claim does not focus on the performance of
the MLM directly, but instead on the specific ML require-
ments that have been defined to reflect the contribution of
the MLM to safety of the overall system (we discuss the
ML requirements in more detail later in the paper). Simi-
larly, the verification evidence that supports this claim must
not simply be evidence of the performance of the model, but
specifically evidence that shows the ML requirements are
satisfied (again we discuss model verification in more detail
later in the paper). It is critical therefore that this assurance
argument for the MLM must be recognised as one part of a
larger assurance argument considering the safety of the en-
tire system or platform. This is illustrated in Figure 3 where
the ML Assurance Claim is supporting a system-level assur-
ance claim regarding the contribution of the ML component
to the safety of the overall system. The dotted arrow indi-
cates that this will in turn support other claims about the
safety of the system as a whole. Figure 3 highlights how as
well as arguing the assurance of the MLM, it is also nec-
essary to support a number of claims regarding the deploy-
ment of the MLM, including the assurance of the integration
of the MLM into the wider system, the monitoring of the
component during operation, and assurance of any updates
to the component after deployment. We discuss deployment
further in the description of the process.

The ML assurance claim in Figure 1 is made in the context
of artefacts that provide information regarding:
• The operating environment of the system in which the

MLM will be deployed
• The defined ML safety requirements
• The developed ML Model
• The data used for development and testing of the MLM

For each of these items of context, an Assurance Claim
Point (ACP) (Hawkins et al. 2011) is defined. As highlighted
in (Picardi et al. 2019), these ACPs are crucial to the safety
assurance of the MLM as they provide the arguments that
demonstrate confidence in each of these items. Without pro-
viding these confidence arguments, the case for the use of
the MLM in a safety-related task would lack the necessary
clarity and completeness. In Figure 1 we have also indicated
the need for an ACP for the verification evidence to demon-
strate its sufficiency.

To provide guidance on how to develop the confidence ar-
guments for each contextual artefact (e.g data set, ML model
etc.), we have developed a pattern that can be instantiated for
these arguments. Figure 4 shows this pattern which could be
used to support each ACP in Figure 1. In the pattern it can
be seen that the confidence claim for each artefact is made
by considering a set of activities that are undertaken in order
to ensure that some defined desiderata are met. It is impor-
tant that a sufficient set of desiderata are identified for each
artefact. In previous work (Ashmore, Calinescu, and Pater-
son 2019) the authors have proposed sets of desiderata for
the artefacts generated by each lifecycle phase. The strat-
egy adopted is to explicitly show how each desideratum is

satisified. This is achieved by describing the activities that
have been undertaken during the ML lifecycle that ensure
the desideratum is achieved, and providing evidence from
those activities to support the claim. For example, Figure 5
illustrates how the pattern could be instantiated to provide
a confidence argument for the MLM (ACP 3 in Figure 1).
The identified desiderata are that the model is performant,
robust and interpretable. The argument demonstrates how
these desiderata are met through the various activites per-
formed as part of the model learning phase of the lifecycle,
such as the selection and optimisation of hyperparameters
or the augmentation of the training data. In the next section
we discuss the phases of the ML lifecycle, as illustrated in
Figure 6, and the required activities, in more detail.

Overview of ML Assurance Process

Figure 6 illustrates the machine learning assurance process
that we propose as a basis for instantiating the argument pat-
terns described in the previous section. As observed by Mar-
cus and Davis in (Marcus and Davis 2019), “Trustworthy
AI has to start with good engineering practices, mandated
by laws and industry standards, both of which are currently
largely absent”. To this end, the process as shown is de-
rived from existing practice based upon discussions with ex-
perts in organisations that are actively engaged in the devel-
opment of machine learning components for safety-related
tasks. This process is augmented with the identification of
activities and artefacts that are required for the creation of a
compelling assurance argument. The process is designed to
encourage a more systematic and justifiable approach to the
development of ML components.

The process comprises five stages and four swim lanes.
The top and bottom swim lanes contain the artefacts which
are generated as part of the assurance and development ac-
tivities respectively. These artefacts can be used as evidence
to support the claims in the safety argument. The phases in
the lifecycle are conducted sequentially with the previous
stage reducing the possibility of failure in the next stage of
the process. The middle two swim lanes contain those ac-
tivities associated with development and assurance and il-
lustrate that these activities occur in parallel. Solid arrows
within a stage indicate a flow between activities and dotted
lines indicate the flow of information into and out of those
activities. For reasons of clarity, we have not shown in Fig-
ure 6 all of the flows between activities in different phases.
It is important to note however that the ML lifecycle is an it-
erative process that may require multiple cycles through the
different activities before an acceptable model is produced.
We use two separate swim lanes to indicate the preference
for independence between the development of the ML com-
ponents and the assurance of the development process.

In the following sections we describe the process of as-
suring the machine learning lifecycle and the activities and
artefacts associated with each process stage.
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Figure 1: Safety Assurance Argument Pattern for a Machine Learned Model
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Figure 2: GSN Graphical notation

Assurance of Requirements Elicitation
(ACP1,2)

This phase of the ML lifecycle focuses on the specification
of the ML safety requirements. The ML safety requirements
must be developed to take account of the system safety re-
quirements and the environmental and operating context of
the system. The system safety requirements arise from the
system safety activities (which are outside of the scope of
this paper). The relevant system safety requirements will de-
fine the required behaviour of the ML component to ensure
its contribution to system level hazards is acceptable within
the defined operational context. These safety requirements
must be interpreted to a set of ML safety requirements that
can be used to guide the development of the MLM.

Requirements Elicitation Activities
Activities in this phase determine the ML safety require-
ments that will be used throughout the rest of the ML life-
cycle. It is important from an assurance perspective that the
sufficiency of the defined ML safety requirements can be ex-
plicitly demonstrated. This is done through a confidence ar-
gument provided at ACP 1. In particular this argument must
demonstrate that the ML safety requirements maintain the
intent of the original system safety requirements (Hawkins,
Habli, and Kelly 2013), are complete with respect to those
requirements and to the defined operating conditions, and
are unambiguous in their definition. The input to this process
is the system safety requirements, a description of the in-

tended operation of the system and the environment in which
it will operate. The output is a set of ML safety requirements
along with a requirements confidence argument instantiated
from these assurance activities.

Assurance of Data Management(ACP4,5)
Machine learning is a data centric development activity and
any models produced are only as good as the data upon
which they are based. The aim of the data management
stage is to collect data that satisfies the defined data manage-
ment desiderata, and to generate assurance evidence which
demonstrates that they are satisfied. The data management
desiderata we identified in (Ashmore, Calinescu, and Pater-
son 2019) are that the data is: relevant, complete, balanced,
and accurate. The following activities are required to be un-
dertaken in order to achieve this.

Data Management Activities
During the data management stage the development team
collects data sets that satisfy the data management desider-
ata. Table 1 shows examples of the data requirements rele-
vant to the complete and balanced desiderata. Data may be
collected from live or test systems and augmented through
synthesis and data processing techniques. Typically two dis-
tinct sets are created. The development data is used to train
the model and will be split into training and test data. The
test data is used to assess the model‘s ability to generalise
and reduce over-fitting. In parallel a third data set should be
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Figure 3: The MLM Safety Assurance Argument Within a Larger System Argument
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Figure 4: Confidence Argument Pattern for MLMs

created by the assurance team, which will be used in model
verification. This data set varies from the development test
set in two important ways. Firstly it will never be shared
with the development team until a final published model has
been created. In this way we avoid data leakage (Kaufman
et al. 2012) and ensure that the generalisability claims of the
model are strengthened. Secondly the assurance team take
an adversarial approach, looking for difficult and rare edge
cases. This type of verification testing is common in tradi-
tional software engineering. The assurance team also gen-
erates data assurance evidence through the examination of
each data set.

The outcome of this lifecycle phase should produce the
artefacts necessary for instantiating the confidence argu-
ments for ACPs 4 and 5.

Table 1: Examples of requirements and associated assurance
evidence for data management

Data Management

Original requirement The component should be able to identify conditions
from a scan obtained in UK hospitals

Desiderata Completeness
ML requirements Data should be gathered from all four of the models of

MRI machines currently used in UK hospitals
Evidence The training set contains scans from all four of these

machines.

Original requirement Pedestrians pushing bicycles have previously been
found to lead to system failures. The system must be
able to identify these cases.

Desiderata Balanced
ML requirements There should be sufficient samples in the training set

showing pedestrians with bicycles.
Evidence Exploratory data analysis shows that this subclass is not

under-represented.

Assurance of Model Learning (ACP3)
Having provided assurance of the data to be used, the model
learning phase aims to use that data to construct models
which demonstrably meet the model learning desiderata,
and to generate assurance evidence which demonstrates the
sufficiency of those models. The model learning desiderata
we identified in (Ashmore, Calinescu, and Paterson 2019)
are that the model is: performant, robust, interpretable and
reusable. The first three of these desiderata are the most rel-
evant from a safety assurance perspective. The following ac-
tivities are required to be undertaken in order to achieve this.

Model Learning Activities
Model learning is a highly iterative process in which models
are repeatedly created and then tested with the results of tests
used to inform the next iteration of the development process.
The model creation activity involves the selection of a model
type and structure that the developer believes will satisfy the
model learning desiderata. Table 2 shows examples of the
model learning requirements relevant to the performant and
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Figure 5: Example Confidence Argument for Model Learning

robust desiderata. The development data is repeatedly split
into training and validation sets in order to learn model pa-
rameters such that errors in modelling are minimised. If a
model fails to produce an acceptable level of performance
against the development set then hyper-parameters (those
parameters which control the learning process) are modified
and the model creation process is repeated.

Once the model is able to meet the performance criteria
with respect to the development data we move into the test-
ing activity where the model is exercised with the internal
test set. It is against this test set that the performance criteria
are measured for comparison to the mandated acceptance
criteria and a model performance report is generated. As
well as data-centric testing the model may also be tested at
this stage against acceptance criteria such as computational
complexity and interpretability criteria.

The development of machine learnt components is com-
monly undertaken in an experimental manner with model
structures and hyper-parameters varied by hand in an at-
tempt to meet the, possibly numerous and conflicting, accep-
tance criteria. Such ad hoc processes are not acceptable for
safety-related systems and as such we introduce an impor-
tant development artefact, the development log. These de-
velopment log serves a number of purposes. Firstly it en-
courages a systematic approach to development. Record-
ing changes in software using version control repositories

is common practice in traditional software development but
is missing from most Machine Learning projects. The de-
velopment log should document the changes that have been
made to the training process at each iteration, with respect
to the issues highlighted in the model performance report,
as well as a rationale to support the choices made. A de-
velopment process which is systematically documented in
this way prevents unnecessary experimentation as well as al-
lowing new team members to learn from failed experiments.
From a safety perspective the development log provides evi-
dence that activities have been undertaken to mitigate issues
identified during the learning phase, e.g. over-fitting tackled
by introducing dropout.

During the development and testing process we generate
development assurance evidence through an examination of
the development and testing process and the development
log produced. The outcome of this lifecycle phase should
produce the artefacts necessary for instantiating the confi-
dence argument for ACP 3.

Assurance of Model Verification (ACP6)
Once the development team have created a model which
they believe meets the ML requirements the model verifica-
tion stage is undertaken. In this stage the model is indepen-
dently evaluated and a verification report generated which
serves as an assessment that the the model will continue to
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Table 2: Examples of requirements and associated assurance
evidence for model learning

Model Learning

Original requirement the impact of misclassification should be used to train
and evaluate the ML perception function, e.g. misclassi-
fying an adult as a child is better than misclassifying an
adult as a tree.

Desiderata Performant
ML requirements The cost function used in training should reflect the

safety implications of inter-class classification errors.
Evidence Performance metrics calculated as a function of inter-

class confusion.

Original requirement Small scratches to the camera lens should not overly
impact the accuracy of the classification.

Desiderata Robust
ML requirements When a scratch of no more than 1mm is present on the

lens the accuracy of classification should ≥ 0.98.
Evidence The training data was augmented with synthetic

scratches. Test data was generated in from lab based
experiments in which scracthes where administered to
a lens before data was gathered.

satisfy its requirements when exposed to inputs which were
not available during training. The verification should be con-
ducted in such a manner that the defined verification desider-
ata are shown to be met. The verification desiderata we iden-
tified in (Ashmore, Calinescu, and Paterson 2019) are that
the verification is: comprehensive, contextually relevant, and
comprehensible. In addition it must be demonstrated that the
verification activities are performed independently of the de-
velopment process. The verification activities are discussed
below.

Model Verification Activities
During the verification phase, the assurance team is respon-
sible for performing verification activities that provide a suf-
ficient independent evaluation of the MLM. Table 2 shows
examples of the verification requirements relevant to the
comprehensive and comprehensible desiderata.

Testing and verification consists of three sub-tasks. Firstly
independent requirements encoding ensures that any as-
sumptions made by the development team are validated and
any ambiguity in the requirements are highlighted.

Secondly test-based verification is undertaken. Since the
development test data has been used to inform interactive
model development this can no longer be considered an in-
dependent data set. The verification stage must, therefore,
use the verification data set gathered during the data man-
agement stage. Evaluation of the model with respect to this
independent test set allows for confirmation that the results
reported in the model learning stage generalise beyond the
development data and demonstrate a form of robustness con-
cerned with over-fitting. The assurance data set includes ad-
ditional samples which have been collected from challeng-
ing, or rare, input spaces. Testing against this set will there-
fore provide a measure of robustness to known cases. Where
collecting such data is impossible, contextually relevant data
augmentation may be used to provide evidence of robustness

Table 3: Examples of requirements and associated assurance
evidence for model verification

Model Verification

Original requirement The component should continue to operate when pre-
sented with adversarial inputs.

Desiderata Comprehensive
ML requirements For any given input, a small change to the inputs should

not change the result returned by the component.
Evidence Mathematical guarantees of robustness have been

demonstrated using SMT.

Original requirement Verification evidence should be understood by safety
experts without an deep understanding of machine
learning techniques.

Desiderata Comprehensible
ML requirements Any failures reported by formal verification techniques

should facilitate remedial action.
Evidence SMT analysis of the model reports bounds on robust-

ness which have been mapped to limits in the input
space.

to variations in the input space, for example adding synthetic
samples of terminal failure.

Finally formal verification may be undertaken, using
mathematical techniques to provide irrefutable evidence that
a model satisfies formally-specified properties. Such a pro-
cess allows for unknown unknowns to be considered. Whilst
mapping such cases to contextually relevant inputs is often
challenging for high dimensional input spaces such tech-
niques provide guarantees of robustness for a class of input
which may be important due to environmental conditions.

Although testing the MLMs is the most common ap-
proach to verification, it is for the assurance team to decide
what combination of testing and formal verification may be
required for the MLM. This will depend upon the nature of
the model, the system and the properties that are to be veri-
fied.

The output of this phase is not just the results of the indi-
vidual tests that are undertaken, but also a verification report
that documents and justifies the verification activities that
are undertaken. In this way we provide evidence that the re-
sults obtained can be trusted. The outcome of this lifecycle
phase should produce the artefacts necessary for instantiat-
ing the confidence argument for ACPs 6.

Model Deployment
Once the MLM has been developed and verified, the model
deployment phase considers how that model can be safety
deployed and utilised within a system. This phase of the life-
cycle is crucial to the completeness of the overall safety case
for the MLM. This is an area requiring further research and
will be the focus for much of our future work. There are
a number of important assurance considerations during this
phase. Firstly, the integration of the MLM must consider the
architecture of the system into which it is being deployed.
This will include linking the MLM with the system inputs,
such as from sensor systems, as well as protecting the wider
system from hazardous effects that may arise from any in-
correct outputs from the MLM. There are many architec-
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tural approaches that could be used for this, such as validity
checkers or aggregators. We discuss integration strategies in
more detail in (Ashmore, Calinescu, and Paterson 2019).

Secondly it is important to monitor the MLM during oper-
ation to ensure that it continues to perform as intended once
deployed. In particular we must monitor for any deviations
that could lead to violation of system safety requirements. It
is important not just to monitor the outputs of the MLM, but
also to monitor the environment (to check assumptions re-
main valid), to monitor the inputs provided to the MLM (e.g.
to check these are within acceptable bounds), and to monitor
the internals of the MLM (to identify failure events).

Thirdly it is expected that, like all software components,
MLMs will be updated during their lifetime. Although the
frequency of those updates may vary between models and
between systems, it is crucial that any updates are prop-
erly managed to ensure that potentially hazardous errors are
not introduced, and that evidence to demonstrate this is pro-
vided. Some MLMs may be updated as part of an on-line
learning process, for example with a reinforcement learning-
based model. Such cases bring with them additional and sub-
stantial open assurance challenges, and we do not currently
anticipate the use of on-line learning for safety-critical sys-
tems.

Conclusions
This paper presented a machine learning process that cov-
ers both the development and assurance of the MLM and
described the types of evidence and arguments that are nec-
essary to generate a compelling and credible safety case. Im-
portantly, the process shows how such a case can be devel-
oped incrementally, where each lifecycle phase in the pro-
cess contributes the relevant contextual and evidential arte-
facts, e.g. concerning the quality and quantity of the training
and verification data.

Several areas for further work exist, three of which are
as follows. Firstly, the process by which the ML require-
ments are generated remains an open challenge. Particularly
for safety-related tasks, these requirements should be gen-
erated from rigorous hazard and risk analysis that considers
the overall system risks and system safety requirements, in-
cluding factors such as the criticality of the domain, the nov-
elty of the application and the level of autonomy associated
with the use of the system. This would dictate not only the
types of performance requirements needed but also socio-
technical factors such as the degree of explanation expected
by the users and policy makers. Secondly, our process fo-
cuses on the generation and verification of the MLM. How-
ever, this has to be considered in the context of the wider
systems architecture, e.g. considering the availability and
performance of the sensing technology and the level of re-
dundancy in the system. Take scanning technologies in the
healthcare domain for example, the output of which would
dramatically change the performance of the used MLM in
clinical diagnosis. Thirdly, the evaluation of the process is
on-going, largely in collaboration with our industrial part-
ners that represent different critical domains (healthcare,
automotive and manufacturing). This comprises both lab-
based experiments, largely based on historic and synthetic

data, and pilot applications, which expect the MLM out-
puts to shadow more conventional technologies and human-
based decision making. In this respect, we expect the assur-
ance argument and evidence for the MLM to evolve based on
real-time feedback from the environment, the overall system
and the actual output and performance of the MLM (Cali-
nescu et al. 2017).
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