
The Visual Inheritance Structure to Support the
Design of Visual Notations

Nungki Selviandro∗†, Tim Kelly∗, Richard Hawkins∗
∗Department of Computer Science, University of York, UK
†School of Computing, Telkom University, Indonesia

{ns1162, tim.kelly, richard.hawkins}@york.ac.uk

Abstract—It is a common practice in modelling languages
to provide their users with a set of visual notations as a
representation of semantic constructs. The use of visual notation
is believed to help communicate complex information, especially
when communicating with non-technical users. Therefore, re-
search in the design of visual notation continues to evolve, e.g.
research to provide an effective and efficient design approach.
There are approaches exist to support the designer in designing
the visual notation such as the Cognitive Dimensions and the
Physics of Notations. As the current metamodeling approach is
widely adopted as a mechanism for improving standardisation
and interoperability in modelling languages, it is important to
provide a guideline that focus on the design of visual notation
for a predefined metamodel. In this paper, we address the visual
inheritance structure to support the design of visual notations for
a predefined metamodel. This approach emphasises the design
coherence between classes and sub-classes. To demonstrate that
it is possible to apply our approach, we use part of the OMG
Structured Assurance Case Metamodel as a case study.

I. INTRODUCTION

In developing a system model using a particular modelling
language, it is essential for the designer to understand the se-
mantic constructs, the compositional rules, and the constructs
representation (e.g. in textual or visual forms). It is now a
common practice in modelling languages to provide users with
a set of visual notations for the representation of the semantic
constructs. UML, for example, as a general-purpose modelling
language, has a visual notation to help the designer visualise
system models.

The visual communication aspect itself in modelling lan-
guages is crucial. It can be seen as the interface of the
modelling language and users, and helps communicate com-
plex information, especially when communicating with non-
technical users. A well-designed visual notation is also easier
to learn and to remember than textual syntax [1], [2]. To
be more effective, the design of the visual notation should
intuitively represent the semantic constructs [3], [4].

In the visual modelling language development process,
the semantic constructs and the language rules are typically
defined in a metamodel by the language developers together
with the end-users, who help to refine the language concepts.
Based on the defined metamodel, notation will be developed
as a representational form of the language [3]. The design of
the notation should be accompanied by a design rationale, that

Supported by Indonesia Endowment Fund for Education (LPDP).

is, explicit reference to theories and empirical evidence for de-
signing the notations [5]. Some approaches exist to support the
designer in designing the visual notation such as proposed in
[3], [6], [7]. In this paper, we address the visual inheritance to
support the design of a visual notation based on a metamodel.
We show the applicability of this approach by designing a
set of visual notation for the Argumentation Metamodel of
the OMG Structured Assurance Case Metamodel (SACM)
[8]. This metamodel describes and defines the concepts that
are required to model structured arguments (e.g. for safety).
However, the current version of the SACM Argumentation
specification is not equipped with any visual notation.

The remainder of this paper is organised as follows: Section
2 presents related work on the visual notation design theory,
visual inheritance design, and the concept of structured argu-
ments in SACM. Section 3 describes the visual inheritance
notation design. In Section 4, we discuss the applicability
of the proposed approach. In Section 5, we describes the
limitations to the current version of the proposed approach.
Finally, Section 6 gives conclusions and discusses future work.

II. RELATED WORK

A. State-of-the-Art of Visual Notation Design Theory

Visual notations form an integral part of the language of
computer science and software engineering. Many of visual
notations have been developed to facilitate communicating
complex information between technical and non-technical
users. They are also used in different stages of software
engineering, from requirements engineering through to main-
tenance. Visual notations are also adopted by practitioners
in industry for strategic planning in the design of software
systems. In industry, visual notations play a critical role in
communicating with internal and external stakeholders [9].
This encourages visual notation researchers to conduct studies
as to how to maximise the effectiveness of visual notations.

Research in notation design is closely associated with
research in conceptual modelling languages, specifically in
evaluating the quality of the conceptual model [10]. Several
frameworks have been proposed to evaluate and improve
the quality of conceptual models, and some of them, such
as SEQUAL [11] and GoM [12], partially paid attention to
the visual notation aspect. However, they were not designed
exclusively to focus on the visual notation.



Recently, a theory that focuses on visual notation design
has been proposed, which is called The Physics of Notations
(PoN). This theory aimed to ensure that visual notations are
designed to be cognitively effective (i.e. the speed, ease, and
accuracy with which a representation can be processed by the
human mind) [3]. PoN provides nine principles that can be
used either to design or to evaluate the visual notation. There
are numbers of existing notations that has been evaluated
using the PoN principles such as UML [13], I* [14], SEAM
[9], UCM [15], and BPMN [5]. There are also several new
notations that are designed using the PoN principles, such
as VTML (The Visual Traceability Modelling Language)
[16] and Larman’s Operation Contracts [17]. However, this
framework has received some criticism in the literature, mainly
focused on the validation and difficulty in applying the princi-
ples since PoN does not prescribe any systematic method for
the implementation. Several works, such as in [18]–[20], have
been proposed to address this issue.

Besides PoN, the Cognitive Dimensions (CDs) theory is
also frequently discussed in notation design literature. CDs
framework was introduced by Green, who emphasised the
use of this framework as a ”discussion tool” to aid non-HCI
specialists in evaluating the usability of notational systems
and information artifacts [6]. To do this, the CDs provides
a vocabulary that can be used by designers when investigating
the cognitive implications of their design decisions. Therefore,
it does not explicitly provide any guideline or procedure for
designing or evaluating a visual notation [21].

With the advancement of meta-modelling standards, the
semantic constructs and grammatical rules of modelling lan-
guages tend to be defined in the metamodel to facilitate
communication and tool support [14]. The notation should
be defined afterwards referring to the defined metamodel.
Therefore, in this paper we focus on providing a guideline
to support the design of the notations based on a metamodel.

B. Visual Inheritance

The term inheritance is commonly used in object-oriented
methodology. Inheritance can be defined as a mechanism
which allows new classes to be defined based on existing
classes; a new class can be defined as a specialisation of one
that has already been defined. In this case, the specialised class
inherits the characteristics (attributes and methods) of the class
it is created from. This specialised-class is also known as a
sub-class or child-class, while the existing class that inherits
its characteristics is also known as a general-class, super-class,
or parent-class [22].

There are two types of inheritance: single and multiple [22],
[23]. Single inheritance can be described as a condition where
a child-class has exactly one parent-class. For example, in
Fig. 1(a), a child-class ”B” has only one parent-class ”A”.
Multiple inheritance can be described as a condition where a
child-class has more than one parent-class. However, multiple
inheritance tends to be hard to implement due to ambiguity.
For example, Java programming language does not support the
multiple inheritance mechanism since it could cause ambiguity

Fig. 1. (a) Single Inheritance; (b) Multiple Inheritance

Fig. 2. An Example of Visual Inheritance in UI Design

when compiling the program. A popular case of this ambiguity
is known as a ’diamond problem’. The diamond problem can
be illustrated as an ambiguity that arises when a parent-class
A inherits its attributes and methods to child-classes B and C,
while there is a sub-class D that inherits from both class B
and C (see Fig. 1(b)). In this case, the problem occurs when
there exist methods with the same signature in both parent
and child-classes. On calling the method, the compiler cannot
determine which class method to be called and even on calling
which class method gets the priority [22].

In user interface (UI) object-oriented programming, the
concept of inheritance is also being adopted to maximise
efficiency. For example, in the case when we have a common
(base) design that can be reused further by inheriting this base
design [24], [25]. For example, in designing a UI frame, we
can create the base design as a rectangle that has common
functionalities (methods), e.g. close. This frame base design
and functionalities can be reused by more specialised frames
(e.g. login frame) by implementing the inheritance mechanism.
This process can be called visual inheritance. An illustration
of this is provided in Fig. 2.

The concept of inheritance has inspired the idea of visual
inheritance design in designing visual notations based on the
metamodel. The implementation of this idea only applies for
single inheritance scenarios because of the ambiguity in the
case of multiple inheritance. The concept of visual inheritance
for designing visual notations will be discussed in Section 3.

C. Argumentation Metamodel in SACM

The concept of an assurance case is that it provides a
framework for analysing and communicating the assurance
arguments and evidence about a particular system in a specific
environment (e.g. covering safety requirements of the systems)
[8]. In [26], an assurance case is defined as a reasoned and
compelling argument, supported by a body of evidence, that a



system, service or organisation will operate as intended for a
defined application in a defined environment. These structured
arguments, for example in complex systems, sometimes can
be very large and complicated. Therefore, it is necessary for
them to be clearly documented.

The Structured Assurance Case Metamodel (SACM) is a
specification that defines a metamodel for representing struc-
tured assurance cases. It is published by The Object Manage-
ment Group to improve standardisation and interoperability for
assurance cases [8]. Part of the SACM specification defines a
metamodel for representing structured arguments (see Fig. 3).
In SACM, structured arguments are represented explicitly by
the Claims, citation of artifacts or ArtifactReferences (e.g. Ev-
idence and Context for claims), and the relationships between
these elements [8]. The following relationships are defined:

• AssertedInference for relationship between Claims
• AssertedEvidence for ArtifactReference (as Evidence)

and Claims
• AssertedContext for ArtifactReference (as Context) and

Claims
• AssertedArtifactSupport for ArtifactReference (as Evi-

dence) supporting ArtifactReference (as Evidence and
Context)

• AssertedArtifactContext for ArtifactReference (as Con-
text) supporting ArtifactReference (as Evidence and Con-
text)

In addition to these core elements, it is also possible to
provide:

• Description of the ArgumentReasoning associated with
AssertedInference or AssertedEvidence

• Counter-Argument and Counter-Evidence (via isCounter:
Boolean)

• Modular structured argument (via ArgumentPackage) in-
cluding the mechanism to organise a specific selection of
the ArgumentElements contained within the package (via
ArgumentPackageInterface), and a mechanism to bound
two or more argument packages (via ArgumentPackage-
Binding)

• An association of a number of ArgumentElements to a
common group (via ArgumentGroup)

The current version of the SACM argumentation specifi-
cation is not equipped with any visual notation. It is believed
that the visual notation is an integral part of modern modelling
languages and can help users in communicating their intended
message in the form of a model (or models) to the reader [3]. It
would therefore be beneficial if we provide the visual notation
for the SACM argumentation metamodel, and we shall use this
as an example application of our approach.

III. VISUAL INHERITANCE AS PART OF NOTATION DESIGN

In this section, we describe the visual inheritance process
as part for designing a visual notation based on a predefined
metamodel. This approach emphasises the design coherence
between parent and child-classes, where the basic design
characteristics of a parent-class must be inherited to its child-
classes. We hypothesise that by inheriting the base design of

a parent-class to its child-classes, this could help the user of
the notation inferring the semantic meaning of the classes and
reduce the cognitive overload [3] in memorising the number
of the notations.

As an input to start the visual inheritance process, we need a
predefined metamodel as our main reference for designing the
visual notation. This process can be applied only for single
inheritance relationship scenarios, where a child-class in a
metamodel only has exactly one parent-class. This condition
is important to avoid ambiguity such as a ”diamond problem”
in programming multiple inheritance. The output of the visual
inheritance process is the visual notation that consists of visual
representations, the visual semantics, and the compositional
rules based on the metamodel.

Before designing the visual notation, it is important to study
all concepts of the metamodel to capture the core aspects and
elements in the metamodel. We also suggest to observe the
following elements in the metamodel:

• Type and attributes of each class.
A class in a metamodel could be defined either as an
abstract- or concrete-class. Unlike the concrete-class, an
abstract-class cannot be instantiated. A certain class can
have one or more attributes. An attribute is a feature
within a class that describes a range of values that the
instances of the class may hold. The attribute may be
grouped by visibility. A visibility keyword can be given
once for multiple features with the same visibility.

• Type of each relationship.
A relationship is a semantic connection among model
elements. For example, in UML there are several types
of relationships such as association, generalisation, ag-
gregation, and composition.

After studying the overall concept of the metamodel, we
can begin the visual inheritance process. At first, we need to
choose a root class. In selecting the root class, we suggest
considering the scope of the concept that needs to be visually
modelled. Note that we only create visual representation for
the root class and its successors. We then need to see if
the root class has any attribute that must be inherited from
its predecessors. An attribute that exists in a class is always
inherited to its successors.

Because we use visual inheritance approach, we need to
start the design process from the root and inherit any base
design to its child-classes by using depth first traversal. An
abstract-class does not have a visual representation, but it
still need to be analysed to see if we can define any design
constraint from its semantic. In addition, an abstract class
could have an attribute which must be inherited to its child-
classes. A visual representation of attributes in an abstract-
class might as well be defined based on the semantic of each
attribute. Hence, in analysing an abstract-class we might get a
design constraint or a base design for attributes to be inherited
to its child-classes.

On the other hand, a concrete-class must have a visual
representation. In creating a visual representation of a class,
we need to consider a base design or a design constraint that



Fig. 3. UML Class Diagram of SACM Argumentation Metamodel [8]

is inherited from its parent-class (if any). Then in creating a
visual representation of an attribute in a concrete-class, if there
exists a base design that is inherited from a parent-class, we
need to combine the base design with the base design of the
concrete-class. If there is no base design of the attribute, then
we need to create a base design from its semantic. The detail
of the process can be seen in Fig. 4.

In designing the visual representations, we can adopt
Bertin’s visual variables that can be used to graphically encode
information: shape, colour, size, texture, orientation, bright-
ness, position (horizontal and vertical). These visual variables
can be used to develop numbers of graphical symbols by com-
bining the variables together in different ways [27]. Besides
that, we suggest to apply the following design principles:

• Semantic transparency
In creating the visual representation, we suggest cre-
ating the design of visual representation that conveys
the meaning of the semantic definition of the identified
class (Semantic Transparency) [3], [4]. If no visual rep-
resentation directly conveys the meaning of the semantic
definition, then create the visual representation design that
can provide a clue to the (majority) of targeted users.
If there is still no visual representation that can provide
a clue to the majority of the targeted users, create the
visual representation design that consensually (as a norm)
provides a closer meaning to the domain of the language.
Peirce’s theory of signs [28] influences the idea of this
guideline. Peirce stated that the form of a sign could be
classified as one of three types:
– An Icon has similar characteristics to the object that

is being referred, e.g., a photograph as it certainly
resembles whatever it depicts.

– An Index shows factual connection or clue to its object,
e.g., using an image of smoke to indicate a fire.

– A Symbol provides interpretive habit or norm of ref-
erence to its object. Therefore, it needs to be learned,
e.g., numbers. There is nothing inherent in the number

7 to indicate what it represents. So, it must be culturally
learned.

• Graphic Economy
It is also essential to keep the number of the visual
representations as minimal as possible (Graphic Econ-
omy) [3]. This is to make sure not to overload the total
number of the visual representations that could cause
difficulty for the users in remembering all the notations
[3]. We suggest to keep the visual representations simple
by reusing the same visual representation for sub-classes
that has close semantic meaning (e.g. relationship-types
class); meanwhile, we can still distinguish their meaning
while implementing them in the diagram by utilising the
compositional rules of the visual representation which is
can be defined based on the relationship between classes
in the metamodel.

IV. APPLICABILITY

In this section, we present a case study to apply the visual
inheritance. In this case, we adopt the SACM Argumentation
Metamodel since currently there is no available visual notation
for this metamodel. A metamodel of SACM Argumentation
(see Fig. 3), that is documented in SACM manual [8], is used
as an input to conduct the visual inheritance process. This
argumentation metamodel does not have any multiple inheri-
tance in it, so this approach is applicable for this metamodel.

To begin the visual inheritance process, we need to choose
a root class. Here, we choose the ArgumentAsset as the root
class because it contains the core concept of the structured
argument. The ArgumentAsset is inherited public attributes
from the SACMElement class (in the Structured Assurance
Case Base Classes): gid (an element unique ID), isCitation
(indicate whether an element cites another element), isAbstract
(indicate an abstract element). The ArgumentAsset itself is an
abstract-class, and there is no design constraint that we can
define from its semantic. However, we still need to see the
semantic of its attributes to see if we can have a base design
for each attribute.



Fig. 4. The Visual Inheritance Process

Based on the semantic definition of gid attribute, it is a
unique identifier for the SACM element. The type of the
gid attribute is string, therefore we decided to represent this
attribute as a string that indicate the ID of the element. Then
for the attribute +isAbstract: True, because we could not find
any visual representation that can convey directly the meaning
of abstract, we decided to use an arbitrary design choice. In
this case, we will consistently use a dashed line to represent an
abstract meaning. Meanwhile, for +isCitation, we consistently
use a closed square bracket to represent a citation, as is
commonly used in academic writing.

The ArgumentAsset class has three child-classes: Assertion,
ArtifactReference, and ArgumentReasoning. Hence, we inherit
the attributes and their base design to the child-classes.

Assertion is an abstract-class, so we do not need to create
a visual representation for this class. However, in addition to
attributes that are inherited from its parent-class, this class
has an attribute, +assertionDeclaration with six enumeration
literals: Asserted, Axiomatic, Defeated, Assumed, NeedsSup-
port, and AsCited. From their semantics, we only can create
a base design for Defeated and AsCited. For defeated, it is
“indicating that the Assertion is defeated by counter-evidence
and/or argumentation”. Hence, we use a cross to convey this
meaning. Then for AsCited, it is “indicating that because
the Assertion is cited, the AssertionDeclaration should be
transitively derived from the value of the AssertionDeclaration

of the cited Assertion”. Here, we use the same representation
as +isCitation as both have related semantic meaning. All
attributes in Assertion then must be inherited to all its child-
classes: Claim and AssertedRelationship.

Claim is a concrete-class, so we need to create a visual
representation for this class. In creating the visual repre-
sentation we should consider its semantic definition so we
can visually convey its meaning: “Claims are used to record
the propositions of any structured argument contained in an
ArgumentPackage. Propositions are instances of statements
that could be true or false, but cannot be true and false
simultaneously” [8]. Based on the semantic definition of a
Claim, we could not find any visual representation that can
directly infer the meaning of the semantic. Therefore, we
adopt the visual representation that might provide a cue to
the majority of targeted users that are already familiar with an
existing assurance case notation. In this case, we reuse a visual
representation of a Goal from a widely used assurance case
notation (i.e. The Goal Structuring Notation (GSN) [26]), that
has similar semantics with the Claim. Hence, we decided the
visual representation for a Claim is a rectangle where the user
can write down the propositional statement in it and the ID as
its attribute (gid) in the top left. Fig. 5 illustrates the visual
representation for a Claim. Then for the attribute +isAbstract:
True, the AbstractClaim is visually represented as a dashed line
rectangle. Meanwhile, for +isCitation, we place the rectangle



Fig. 5. The visual representation of a Claim

in a closed square bracket.
There is also an attribute (i.e. assertionDeclaration) of the

Assertion class that is inherited to the Claim class. This
attribute has six enumeration literals (Asserted, Axiomatic,
Defeated, Assumed, NeedsSupport, and AsCited) that the
visual representations of each attribute values need to be
created as instances in the Claim class. In this case, the
instances of the Claim class are: Asserted Claim, Axiomatic
Claim, Defeated Claim, Assumed Claim, NeedsSupport Claim,
and AsCited Claim. As mentioned in the visual inheritance
approach guideline process in the previous section, the base
design for these attribute values need to be inherited from the
base design of the class, in this case is the Claim class. Then,
we need to modify their base design to convey the semantic
definition of these attribute values. As follows we describe the
semantic definition of each attribute value (based on [8]) along
with the proposed design of the visual representation and the
rational behind the design.

• asserted, “the default enumeration literal, indicating that
an Assertion is asserted”. Based on this definition, the
default Claim that being asserted is called as as asserted
Claim, the visual representation of the asserted Claim is
the visual representation of the Claim.

• axiomatic, “indicating the Assertion being made by the
author is axiomatically true, so that no further argumen-
tation is needed”. Here, we use a thick line below the
rectangle to indicate a sign of “no further argumentation
is needed” (i.e. declaring axiomatically true).

• defeated, we already have a base design for this attribute,
which is a cross. Hence, we add a cross on top of the
rectangle to convey the meaning of defeated Claim.

• assumed, “indicating that the Assertion being made is
declared by the author as being assumed to be true rather
than being supported by further argumentation”. Here, we
add a gap in the bottom part of the rectangle to represent
that there is no supporting evidence or argumentation.

• needsSupport, “indicating that further argumentation has
yet to be provided to support the Assertion”. For this, we
add three dots in the bottom-centre part of the rectangle
to represent that further evidence or argumentation is
required.

• asCited, we already have a base design for this attribute,
which is a closed square bracket. Therefore, we use the
same representation as +isCitation.

Fig. 6 shows the summary of all Claim types.
After designing all Claim types, we continue to the other

child-class of the Assertion class: the AssertedRelationship
class. The semantic definition of this class is: “the abstract
association class that enables the ArgumentAssets of any
structured argument to be linked together” [8]. Based on this

Fig. 6. Types of Claim

definition, this class is an abstract-class, so we do not need to
create a visual representation for this class. Besides that, the
semantic definition describes that this class is used to declare
a type of association, which then became the design constraint
to be inherited to its child-classes. There are several visual rep-
resentations that can be used to represents an association e.g.
colours and lines. We decided to adopt a ’line’ to represents
the AssertedRelationship since it can give information about
the source and target of the AssertedRelationship. In this case,
the types of the line can vary based on the semantic definition
of the AssertedRelationship concrete child-classes.

AssertedRelationship class has attributes that need to be
inherited to its child-classes: isCounter, assertionDeclaration,
gid, isAbstract, and isCitation. From all these attributes, only
isCounter that has no base design yet. However, from its se-
mantic, we can not define its base design without having a base
design of the class, so we can not create it in an abstract-class.
The AssertedRelationship class has five concrete child-classes
for which visual representations need to be created including
visual representations as instances of the inherited attributes.
We proposed design, based on the semantic definition (on
[8]) of all the AssertedRelationship’s concrete child-classes.
In each case, we could not find any visual representation that
intuitively conveys the semantic definition, so we used either
visual representations from existing notations or proposed an
arbitrary design. As follows we describe the result of the
design process:

AssertedInference
• Definition:“records the inference that a user declares

to exist between one or more Assertion (premise) and
another Assertion (conclusion)”.

• Visual representation: We use a solid arrowhead line to
visualise an AssertedInference. This visual representation
is influenced by a SupportedBy visual representation in
GSN that indicating an inferential relationship. Then for
the attributes, we already have a base design for each
attribute except for isCounter, which has semantic defini-
tion “indicating that the AssertedRelationship counters its
declared purposes”. We use a hollow-head line to indicate
the counter purpose of the AssertedInference and we use
this consistently to represent isCounter attribute for all
types of relationship. Then to create the visual represen-
tation for each attribute, we only need to combine the



defined base design of each attribute with the base design
of AssertedInference. Note that the other child-classes of
AssertedRelationship also have the same attributes as this
class, so the process of creating the visual representation
of the attributes is similar to this.

AssertedEvidence
• Definition: “records the declaration that one or more

artifacts of Evidence (cited by ArtifactReference) provide
information that helps establish the truth of a Claim”.

• Visual representation: We adopted the visual represen-
tation from GSN, that is a solid arrowhead which is
representing the evidential relationships. In this case, the
visual representation is similar to the visual representation
for AssertedInference, but we can distinguish them by
identifying the source of the relationship (line). The
source is an Evidence for AssertedEvidence (cited by
ArtifactReference), and a Claim for AssertedInference.

AssertedContext
• Definition:“can be used to declare that the artifact cited

by an ArtifactReference(s) provides the context for the
interpretation and scoping of a Claim or ArgumentRea-
soning element”.

• Visual representation: We cannot use the existing vi-
sual representation from GSN visual representation that
conveys similar meaning (i.e. hollow arrowhead line for
inContextOf ) because we already used this type of visual
representation. Therefore, we decided to create our own
design for AssertedContext, with requirements: the design
needs to be a line-type to represents a relationship type;
and the type of the line-head can be designed as a solid
or hollow. As the result, we use solid diamondhead line
for AssertedContext and hollow diamondhead line for
representing Counter AssertedContext.

AssertedArtifactSupport
• Definition: “records the assertion that one or more arti-

facts support another artifact”.
• Visual representation: Here, we reuse the visual represen-

tation of AssertedInference since the main idea from its
semantic meaning also supporting the targeted elements.
We believed reusing the same visual representation to
represents different classes that have a closer semantic
meaning can help to minimise the number of the visual
representations. To distinguish them, we identify the
source and target elements. For AssertedArtifactSupport,
the source and target elements must be of type ArtifactRe-
ference (as described in [8] for AssertedArtifactSupport
constraints).

AssertedArtifactContext
• Definition: “records the assertion that one or more arti-

facts provide context for another artifact”.
• Visual representation: Here, we reuse the visual repre-

sentation of AssertedContext because the main idea from
their semantic meaning are providing context for the
targeted element. To distinguish them, we can identify the
source and the targeted elements. For AssertedArtifact-
Context the source and target elements must be of type

Fig. 7. Types of Relationship

Fig. 8. The visual representation of a MetaClaim

ArtifactReference (as described in [8] for AssertedArti-
factContext constraints).

As the result of the design combinations and as summary
of all types of AssertedRelationship can be seen in Fig. 7.

We have finished designing the visual representations for
classes that are successors of the root. Next, we see if all
relationships have been represented. From all relationship-
types only metaClaim, which is an association relationship
between Assertion and Claim, has not been represented. The
+metaClaim association indicates ”references Claims concern-
ing the Assertion”. Therefore, we need to create a visual
representation that can convey the semantic meaning of the
+metaClaim, in this case as a type of relationship visual
representation that the source of the relationship is a Claim and
the targeted of is the Assertion types (i.e. the concrete child-
classes of the Assertion) [8]. Based on the semantic definition,
we decided to use a ’line’ to represent the +metaClaim. Here,
we use the ”crow’s foot line” since we do not have a constraint
such as ”counter” +metaClaim that need to be visualised in the
form of a hollow head-line. The illustration of the +metaClaim
visual representation can be seen in Fig. 8.

After designing the visual representation of the Assertion
class, we need to design the visual representation of the other
child-classes of the ArgumentAsset class: ArtifactReference
and ArgumentReasoning. According to [8], “ArtifactReference
enables the citation of an artifact as information that relates
to the structured argument.” This semantic definition inspired
us to create the visual representation of ArtifactReference in a
form of a file or document icon because we think it infers the
semantic meaning. Besides that, for the ArgumentReasoning,
we created a visual representation in a form of an annotation-
type icon that can be attached to the instances of Asserte-
dRelationship class. This is to convey the semantic meaning
of the ArgumentReasoning: “can be used to provide additional
description or explanation of the asserted relationship”. Fig. 9



Fig. 9. The visual representations of an ArtifactReference and an Argumen-
tReasoning

shows the visual representations of the ArtifactReference and
the ArgumentReasoning.

V. LIMITATIONS

There are some limitations to the current version of the
proposed approach. First, in selecting the root in the meta-
model, the scope of the concept is used as the only consid-
eration. This aspect could be explored further to have more
specific justification in selecting the root. Second, the proposed
approach highly depends on the predefined metamodel, and
the metamodel is depended on the method and style used
by the meta-modeller. Third, currently, the proposed approach
is being applied in a case study since it is part of work in
progress. It is important to explore the applicability of the
visual inheritance mechanism in another case study in order
to evaluate the validity aspect.

VI. CONCLUSION AND FUTURE WORK

We have outlined the visual inheritance as part of visual
notation design (considered as an extension of the Semiotic
Clarity principle of PoN [3] regarding a guideline about a
complete monosemy [27] through the inheritance mechanism).
The proposed approach emphasises the design coherence be-
tween parent- and child-classes to provide design efficiency
(in terms of reusability and extensibility) as well as to help
notation users to easily infer the semantic meaning of the
visual representations that have a similar base design. We
have also described the applicability of the proposed approach
by designing the visual notations for SACM Argumentation
metamodel. As the future work, we are planning to conduct
empirical studies to test the effectiveness [3], [4] of the visual
inheritance. In this case, we are interested in observing how
effective is the idea of design coherence. We are also interested
in testing the semantic transparency [3], [4] of the notation as
a result of adopting the visual inheritance process.

REFERENCES

[1] R. M. A. El-Ghafar, A. M. Ghareeb, and E. S. Nasr, “Designing user
comprehensible requirements engineering visual notations: A systematic
survey,” in Informatics and Systems (INFOS), 2014 9th International
Conference on. IEEE, 2014, pp. SW–10.

[2] A. El Kouhen, A. Gherbi, C. Dumoulin, and F. Khendek, “On the
semantic transparency of visual notations: experiments with uml,” in
International SDL Forum. Springer, 2015, pp. 122–137.

[3] D. Moody, “The physics of notations: Toward a scientific basis for con-
structing visual notations in software engineering,” IEEE Transactions
on Software Engineering, vol. 35, no. 6, pp. 756–779, 2009.

[4] K. Arning and M. Ziefle, “”it’s a bunch of shapes connected by lines”:
Evaluating the graphical notation system of business process modeling
languages,” in Full paper at the 9th International Conference on Work
With Computer Systems, WWCS, 2009.

[5] N. Genon, P. Heymans, and D. Amyot, “Analysing the cognitive effec-
tiveness of the bpmn 2.0 visual notation,” in International Conference
on Software Language Engineering. Springer, 2010, pp. 377–396.

[6] T. R. Green, “Cognitive dimensions of notations,” People and computers
V, pp. 443–460, 1989.

[7] G. Costagliola, A. Delucia, S. Orefice, and G. Polese, “A classification
framework to support the design of visual languages,” Journal of Visual
Languages & Computing, vol. 13, no. 6, pp. 573–600, 2002.

[8] O. M. G. (OMG), Structured assurance case metamodel (SACM),
Version 2.0, 2018, https://www.omg.org/spec/SACM/About-SACM/.

[9] G. Popescu and A. Wegmann, “Using the physics of notations theory
to evaluate the visual notation of seam,” in Business Informatics (CBI),
2014 IEEE 16th Conference on, vol. 2. IEEE, 2014, pp. 166–173.

[10] D. van der Linden, I. Hadar, and A. Zamansky, “What practitioners
really want: requirements for visual notations in conceptual modeling,”
Software & Systems Modeling, pp. 1–19, 2018.

[11] J. Krogstie, G. Sindre, and H. Jørgensen, “Process models representing
knowledge for action: a revised quality framework,” European Journal
of Information Systems, vol. 15, no. 1, pp. 91–102, 2006.

[12] R. Schuette and T. Rotthowe, “The guidelines of modeling–an approach
to enhance the quality in information models,” in International Confer-
ence on Conceptual Modeling. Springer, 1998, pp. 240–254.

[13] D. Moody and J. van Hillegersberg, “Evaluating the visual syntax of
uml: An analysis of the cognitive effectiveness of the uml family of dia-
grams,” in International Conference on Software Language Engineering.
Springer, 2008, pp. 16–34.

[14] D. L. Moody, P. Heymans, and R. Matulevičius, “Visual syntax does
matter: improving the cognitive effectiveness of the i* visual notation,”
Requirements Engineering, vol. 15, no. 2, pp. 141–175, 2010.

[15] N. Genon, D. Amyot, and P. Heymans, “Analysing the cognitive ef-
fectiveness of the ucm visual notation,” in International Workshop on
System Analysis and Modeling. Springer, 2010, pp. 221–240.

[16] P. Mäder and J. Cleland-Huang, “A visual traceability modeling lan-
guage,” in International Conference on Model Driven Engineering
Languages and Systems. Springer, 2010, pp. 226–240.

[17] A. Algablan, “A visual notation and an improvement for the syntax of
larman’s operation contracts,” Ph.D. dissertation, University of Ottawa,
2016.

[18] M. d. G. da Silva Teixeira, G. K. Quirino, F. Gailly, R. de Almeida Falbo,
G. Guizzardi, and M. P. Barcellos, “Pon-s: a systematic approach for
applying the physics of notation (pon),” in Enterprise, Business-Process
and Information Systems Modeling. Springer, 2016, pp. 432–447.

[19] H. Störrle and A. Fish, “Towards an operationalization of the ”physics
of notations” for the analysis of visual languages,” in International
Conference on Model Driven Engineering Languages and Systems.
Springer, 2013, pp. 104–120.

[20] D. van der Linden, A. Zamansky, and I. Hadar, “A framework for
improving the verifiability of visual notation design grounded in the
physics of notations,” in Requirements Engineering Conference (RE),
2017 IEEE 25th International. IEEE, 2017, pp. 41–50.

[21] T. R. Green, A. E. Blandford, L. Church, C. R. Roast, and S. Clarke,
“Cognitive dimensions: Achievements, new directions, and open ques-
tions,” Journal of Visual Languages & Computing, vol. 17, no. 4, pp.
328–365, 2006.

[22] R. Ducournau and J. Privat, “Metamodeling semantics of multiple
inheritance,” Sci. Comput. Program., vol. 76, no. 7, pp. 555–586, 2011.

[23] G. B. Singh, “Single versus multiple inheritance in object oriented
programming,” ACM SIGPLAN OOPS Messenger, vol. 6, no. 1, pp.
30–39, 1995.

[24] R. A. Cain, J. A. De Lu, and R. E. Lemke, “Development system with
methods for visual inheritance and improved object reusability,” Jul. 22
1997, uS Patent 5,651,108.

[25] C. P. Jazdzewski, “Development system with methods providing visual
form inheritance,” Dec. 14 1999, uS Patent 6,002,867.

[26] GSN, Goal Structuring Notation (GSN) Community Standard, Ver-
sion 1, 2011, http://www.goalstructuringnotation.info/documents/GSN\
Standard.pdf.

[27] B. Jacques, “Semiology of graphics: diagrams, networks, maps,” Uni-
versity of Wisconsin Press, Madison, Wisconsin, 1983.

[28] A. Atkin, “Peirce’s theory of signs,” in The Stanford Encyclopedia of
Philosophy, summer 2013 ed., E. N. Zalta, Ed. Metaphysics Research
Lab, Stanford University, 2013.


