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Abstract. Due to their ability to efficiently process unstructured and
highly dimensional input data, machine learning algorithms are being
applied to perception tasks for highly automated driving functions. The
consequences of failures and insufficiencies in such algorithms are severe
and a convincing assurance case that the algorithms meet certain safety
requirements is therefore required. However, the task of demonstrating
the performance of such algorithms is non-trivial, and as yet, no con-
sensus has formed regarding an appropriate set of verification measures.
This paper provides a framework for reasoning about the contribution
of performance evidence to the assurance case for machine learning in
an automated driving context and applies the evaluation criteria to a
pedestrian recognition case study.

Keywords: Highly Automated Driving · Machine Learning · Safety As-
surance.

1 Introduction

Highly Automated Driving (HAD) has the potential to radically decrease the
number of road accidents as well as introducing significant convenience and eco-
logical benefits. At the same time, HAD functions are themselves safety-critical
and must therefore be demonstrated to meet strict safety criteria before their
release for use on public roads. Existing safety standards such as ISO 26262 [3]
define prerequisites that must be fulfilled to minimise the risk of hazards caused
by random hardware and systematic failures in the electrical/electronic systems.
Due to the complexity of the systems and inherent uncertainty in the operating
environment, HAD systems also require an increased focus on demonstrating
that hazards are not caused by inherent restrictions in the sensors, actuators or
decision logic. ISO PAS 21448 [1] addresses the “Safety of the intended function”
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by considering such effects. However, this standard is currently focused on Level
1 to 2 [4] driver assistance systems rather that Level 3-5 HAD systems which
include higher levels of authority and for which machine learning is seen as a
key enabling technology.

Machine learning algorithms and in particular Deep Neural Networks (DNNs)
[15] are being applied to the task of providing an accurate perception for highly
automated driving functions. One of the challenges caused by applying machine
learning methods to these tasks is that a precise specification of the required be-
haviour is often not possible. Indeed, it is the very fact that the machine learning
functions are able to infer the target function without a detailed specification,
based on the presented training data that makes them so appealing. The lack
of a precise specification combined with the unpredictable and opaque nature of
the algorithms introduce high degrees of uncertainty into the safety assurance
process.

This paper is organised as follows: A generic safety case pattern for arguing
the performance of machine learnt models previously proposed by the authors
is summarised in Section 2. This is then used to derive a model for reasoning
about the contribution of evidence to this assurance case pattern in Section 3 and
used to formulate a corresponding confidence argument approach. In Section 4,
the confidence argument approach is then applied to techniques that have been
developed for verifying DNN-based perception functions for highly automated
driving. Feature map sensitivity analysis is also used to provide counter-evidence
for the confidence argument. The paper closes with a discussion of the need for
a more rigorous approach to developing and proposing performance evaluation
methods within a safety context and proposes future work in this area.

2 Safety Case Patterns for Machine Learning

In order to support the claim that the Machine Learnt Model (MLM) meets
its performance requirements, it is important to understand the causes of such
insufficiencies. As interest in machine learning safety has grown, a number of
authors [6], [25], [26] have investigated different causes of performance limitations
in machine learning functions. Some examples applicable to HAD are described
below:

– Distributional shift: Critical or ambiguous situations, within which the
system must react in a predictably safe manner, may occur rarely or may be
so dangerous that they are not well represented in the training data. It must
be argued that the training data contains an appropriate distribution of all
classes of critical situations and object classes or that the selected training
leads to an appropriate level of generalisation. In addition, the system should
continue to perform safely even if the operational environment differs from
the training environment over time [6].

– Robustness deficits of the trained function: An adversarial perturba-
tion [16], [19], [20] is an input sample that is similar (at least to the human
eye) to other samples but that leads to a completely different categorisation
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with a high confidence value. It has been shown that such examples can
be automatically generated and used to trick the network. The challenge,
therefore, is to ensure that the machine learning algorithms focus on those
properties of the inputs relevant to the target function without becoming
distracted by irrelevant features. In other words, act within the same hier-
archical dimensions as the target function [18].

– Differences between the training and execution platforms: When
using machine learning to represent a function that is embedded as part of
a wider system, the input to the neural network will have typically been
processed by a number of elements already [25], such as lenses, image filters
and buffering mechanisms. These elements may vary between the training
and target execution environments leading to the trained function becoming
dependent on hidden features of the training environment not relevant in
the target system.

Previous work by the authors as well as others have introduced concepts
of applying assurance case structures to arguing the performance of an MLM
within a safety-critical context [8], [17], [22]. Figure 1 describes a generic assur-
ance case pattern for arguing the safety properties of a machine learning function
(derived from the description in [23] using GSN [2]). This assurance case pattern
is centered on discharging the claim that the MLM fulfills its safety properties
(defined by benchmarks) to a required level of performance in a defined opera-
tion environment. A contract-based approach to specifying safety properties of
the MLM was proposed in [8], by which the MLM is specified as a component
within its system context and defined by a set of assumptions on its operating
environments under which certain safety guarantees (for example formulated as
benchmark performance requirements) must hold. These performance require-
ments could include definitions of accuracy and failure rates to be achieved by
the function. This allows for the assurance case for the MLM to focus on the
safety-relevant properties of the trained function whilst the validity of the as-
sumptions and appropriateness of the guarantees are discharged as part of a
system level assurance activity.

Assurance Claim Points (ACPs) [12], indicated by the black squares in the
pattern, are used to represent points in the argument where further assurance
is required through the provision of a more detailed confidence argument. The
confidence in the assurance case is therefore achieved by supporting the claims
within the following ACPs. ACP1 and ACP2 must be supported by arguments
that consider the overall system context [11], whilst ACPs 3. . . 6 are specific to
the machine learning function:

– ACP1: Argument that the assumptions made on the operational design
domain as well as on the interfaces to other technical components within the
system are valid.

– ACP2: Argument that the benchmark performance requirements allocated
to the guarantees of the safety contract for the MLM are sufficient to fulfill
the overall system safety requirements.
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Fig. 1: Safety case pattern for machine learnt model

– ACP3: Argument that the adopted training process and the choice of model
and hyperparameters lead to a function that fulfills its requirements.

– ACP4: Argument that the training data are sufficient to lead to a MLM
that fulfills its performance requirements.

– ACP5: Argument that the test data that is used is sufficient to support the
performance claim.

– ACP6: Argument that the performance evidence generated from the test
data is sufficient to support the performance claim.

3 Confidence Arguments for Performance Evidence

In this section we develop the concept of performance evidence confidence. This
confidence argument will then support the claim that the provided evidence
sufficiently supports the performance claim. In order to derive the set of side
conditions to be discharged by the confidence arguments we introduce a number
of definitions. In general, the performance claim can be formulated as a simple
equivalence between the specified behaviour of the system and actual behaviour.

∀i ∈ I.M(i) = S(i) (1)

Where i is a sample from the actual input domain I, M represents the trained
model and S the specification (or ground truth) for a given input. In other words,
for all possible inputs of the input domain, the implementation provides the same
result as the specification. The application of the design-by-contract approach
allows us to formulate a more restrictive form of equivalence that constrains
the input space that fulfills the set of assumptions and limits the properties of
interest to those formulated in the guarantees. This can be formulated as follows:
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∀i ∈ I ∧A(i).G(i,M(i)) (2)

In other words, for all possible inputs in the domain that fulfill the set of
explicitly specified assumptions A, the implementation provides a result that
meets the safety guarantees G for the given inputs. The negation of Equation 2
can be used to formulate test goals. These may be used, for example to formulate
the conditions for search-based testing. Fulfilling the conditions of Equation 3
will lead to input data that meet the assumptions but demonstrate that the
guarantees of the safety contract are not met:

∃i ∈ I ∧A(i).¬G(i,M(i)) (3)

Equation 2 can now also be used to define the concept of contract performance
by defining the probability a safety contract being fulfilled over the set of inputs
that fulfill its assumptions. The assurance case claim that the machine learning
function fulfills its guarantees with a certain probability (ρ) can therefore be
defined as follows:

∀i ∈ I ∧A(i).ρ(G(i,M(i))) > ContractPerformance (4)

The confidence argument that a given evidence leads to an adequate assess-
ment of the actual performance of the machine learning function can therefore
be couched in terms of the relationship between the measurement provided by
the evidence and the actual contract performance as described in Equation 4. In
order to perform this comparison, it is necessary to define a measurement value
threshold (MeasurementTarget) provided by the evidence E that, if reached, is
postulated to imply that the actual probability (ρ) of reaching the ContractPer-
formance target is sufficient. This allows for the following definition of Evidence-
Contribution to the safety case performance claim:

∀i ∈ I ∧ ∃s ⊆ I ∧A(i) ∧A(s).
E(s) > MeasurementTarget⇒

ρ(G(i,M(i))) > ContractPerformance
(5)

Where E is a function that takes as input a set of samples (s) from the
input domain and returns a quantifiable measure that can be compared against
a target value. In its simplest form, the E could represent simply tests on selected
inputs and return the proportion of tests that passed. Equation 5 can also be
easily extended to combine a number of different evidences which must all fulfill
their measurement targets in order to imply that the ContractPerformance is
met, thus allowing for combining of a mixture of techniques and measurements
into E and MeasurementTarget as follows:

∀i ∈ I ∧ ∃s1 ⊆ I ∧ . . . ∧ ∃sn ⊆ I ∧A(i) ∧A(s1) ∧ . . . ∧A(sn).
E(s1) > MeasurementTarget1 ∧ . . . ∧ E(Sn) > MeasurementTargetn

⇒ ρ(G(i,M(i))) > ContractPerformance
(6)
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This definition of evidence contribution allows us to identify several claims
that need to be made as part of the confidence arguments ACP5 and ACP6
as described in Section 2. ACP5 can be strengthened by providing evidence to
support the claims:

– The sample set used to provide performance evidence is capable of detecting
faults in the machine learning function that would lead to a violation of
performance requirements.

– The sample set is representative of the input domain and the application
of the performance evaluation on this sample set leads to a representative
indication of the measurement target for the entire domain.

ACP6 can be strengthened by providing evidence to support the claims:

– There is a demonstrable correlation between the MeasurementTarget and
the ContractPerformance.

– The measurements based on the sample set can be extrapolated to provide
an indication of the expected performance for the entire input domain even
in the case of root unknown causes of insufficiencies (in ISO PAS 21448
defined as unknown triggering events).

4 Case Study

In this section we apply the assurance case structure described above to the
pedestrian recognition case study introduced in [10] and demonstrate how argu-
ments regarding typical performance evaluation techniques can be strengthened
or refuted. The performance requirements of the function used for the case study
can be summarised as follows:

– Pedestrians of width X pixels and height Y pixels are classified.
– Pedestrians are detected if C% of the person is occluded.
– There are less than FP% of false positive classifications per frame.
– There are less than FN% of false negative classifications per frame.
– Vertical deviation from the ground truth is less than V pixels.
– Horizontal deviation from the ground truth is less than H pixels.

For the purpose of our case study we focus on the requirement that pedestri-
ans should be detected even if certain portions of the person are occluded. This
is based on the assumption that in the operating environment pedestrians may
be partially occluded by objects such as street furniture or baby strollers. A typ-
ical approach to collecting performance evidence for such requirements would be
to ensure that the test data contained examples of occluded and non-occluded
persons. This would lead to the following instantiation of Equation 5 to describe
the relationship between the testing approach and the performance claim:

∀i ∈ I ∧ ∃testset ⊆ I ∧Aocclusion(i) ∧Aocclusion(testset).
T estsPassed(testset) > TestBenchmark
⇒ ρ(G(i,M(i))) > ContractPerformance

(7)
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Image example from CityPersons includ-
ing the ground truth as green bounding
boxes [27]

Lower part of predictions are masked. The
woman is predicted correctly, while the
road sign is a false positive.

Fig. 3: Image example from CityPersons [27] with ground truth and partly masked

Where Aocclusion describes the assumption that pedestrians may be occluded
and TestsPassed returns the proportion of tests passed based on the sample set
testset which also includes occluded persons. The Guarantee functionG here rep-
resents the combination of performance requirements described above. In reality,
a set of assumptions and evidence measures would be combined to evaluate the
performance requirements, not just relying on assumptions regarding occluded
persons. This could be formulated based on the pattern given in Equation 6 but
is omitted here for brevity.

In order to evaluate the confidence arguments related to “Adequacy of the
sample set to discover faults” and “Representativeness of the sample set”, we ap-
plied an experimental approach to investigate the correlation between occlusion
of parts of the pedestrian and activations within the DNN. In [9] a visualization
technique was introduced that gives insight into intermediate feature layers of
a DNN. This method demonstrates which input pattern of the image causes
the activation of a particular feature map. In our experiment, we use the same
diagnostic method to trace the feature map activities back to the input pixel
space [9]. For this purpose, we trained a Squeeznet [14] on the CityPersons [27]
dataset. We then evaluated the resulting activation map not only manually, but
also statistically for a particular dataset.

For our experiment, we apply the diagnostic method to search for the feature
maps which are activated by the lower part of the body by investigating the
activation map [9]. After identifying the relevant feature maps, we verify this
dependency through statistical evaluation. We mask the lower 50% of all detected
pedestrians from the CityPersons dataset, as shown in Figure 3, and compare
the activations against unmasked images. If the feature map is activated, the
mean pixel value of the lower part of the bounding box in the activation map
ActiveMaplowBB is higher than the mean pixel value of the total activation map
ActiveMaptotal. Eq.: 8 describes the activation of the feature map:

#ActiveMaplowBB∑
p=1

ActiveMaplowBB [p]

#ActiveMaplowBB
>

#ActiveMaptotal∑
d=1

ActiveMaptotal[d]

#ActiveMaptotal

(8)
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Layer Name
Output Activation for Activation for
Channel No. human lower part, human lower part

unmasked Image masked Image

fire5/expand3x3 108 80.68% 25.0%

maxpool5 236 84.81% 25.0%

fire6/squeeze1x1 5 81.62% 14.67%

fire6/expand3x3 72 84.63% 5.0%

fire6/concat 264 84.63% 25.0%

fire7/expand3x3 74 80.29% 19.67%

fire7/concat 266 80.29% 17.67%

fire8/concat 20 85.3% 18.33%

fire8/concat 165 80.52% 21.67%

fire9/squeeze1x1 49 80.95% 20.5%

Table 1: Sensitivity analysis of feature maps for unmasked images and masked lower
part of pedestrians. Chosen layers are mainly activated for lower part of pedestrians.

The sensitivity analysis in Table 1 is conducted on the Munich test dataset
of CityPersons[27] with 383 images. The layers are mainly activated, when the
lower part of the detected pedestrian is visible (third column). However, they
are less activated, when the lower part is masked (forth column in Table 1). This
analysis confirms the activation of the feature map is particularly sensitive to the
visibility of the lower part of body. Consequently, we provide evidence that the
relevant feature map for detecting the lower body is not activated, when the lower
body is masked. This shows that the DNN has learned features and is sensitive to
particular body parts. Evaluation only of the number of false positives and false
negatives for occluded pedestrians would not reveal what caused each prediction.
This leads us to reassess the potential of the test data sets at detecting faults
related to occlusion of different body parts. Furthermore, this sensitivity analysis
can be now extended to other feature maps to find additional weaknesses in the
DNN and identify suitable counter-measures. These could include the retraining
of particular layers or of the whole DNN.

5 Evaluation of Performance Evidence Approaches

Based on the confidence argument structure described in Section 3, we can now
assess performance evaluation techniques regarding their contribution to the
perfromance claim that a particular MLM fulfills its performance criteria. Table 2
summarises an evaluation of confidence case elements for testing based on test
datasets including some insights provided by the case study described above.
This analysis highlights several of the weaknesses associated with test data driven
verification of machine learning functions and demonstrates the need for strong
supporting evidence in the confidence argument to ensure that issues such as
fault coverage and sample set representativeness are addressed.
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Confidence
Argument

Description

Adequacy to
discover faults

Test datasets can give an overall evaluation of performance. However,
they do not necessarily reveal specific systematic performance issues
(such as undue focus on lower body when detecting pedestrians). In
addition, this technique is not well suited to uncover robustness issues
of the trained function.

Measurement
relevance

Faults discovered when applying the Test dataset directly indicate
weaknesses in the trained model with respect to realistic input data.
However, issues regarding differences between the target environment
and environment used to collect training and test data must also be
addressed.

Sample set is
representative

The test dataset is likely to contain similar biases caused by scalable
oversight, distributional shift to that of the training data. In addition,
the sample set may be representative of the distribution of features
in the input domain, however this may not guarantee the detection of
critical rarely occuring corner cases.

Extrapolation
of results

The performance targets that can be argued are limited with respect
to the size and distribution of the dataset and are not focused towards
particular causes of insufficiencies.
Table 2: Summary of confidence claims for test datasets

A key weakness associated with such techniques is their apparent inability to
detect robustness deficits that may not be related to feature dimensions directly
relevant to the properties of the operating environment of interest.

Next, we assess confidence arguments for techniques that analyse the robust-
ness of a trained function against adversarial perturbations, and in particular
those that make use of introspection techniques. In Table 3 we investigate the
concept outlined in [13]. In this approach, the robustness of the trained network
is verified by demonstrating that regions within the input space exhibit a sim-
ilarity within the activation network such that misclassifications in the case of
adversarial inputs cannot occur, where the adversarial inputs may be deliber-
ately manipulated or due to other effects such as sensor noise.

6 Summary and future work

The evaluations described in Section 5 highlight the fact that each individual
performance evaluation technique is limited according to a certain set of con-
straints and assumptions. By better understanding these, for example through
the use of techniques such as sensitivity analysis of feature maps (as described
in our experiment), introspection methods [21, 5], fault injection [24], mutation
testing [7], a combination of evidence may be found that provides a convincing
argument that the performance requirements are met. Explicitly evaluating the
machine learning approach and its performance evaluation measure against the
set of claims defined in the assurance claim points leads to a greater level of
confidence that the performance requirements have been met.
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Confidence
Argument

Description

Adequacy to
discover faults

The analysis focuses on faults caused by adversarial perturbations that
exploit robustness deficits in the trained function. A fault model is
defined in the form of perturbations against which the trained function
shall be robust and the region within the input space in which the
perturbations are deemed relevant.

Measurement
relevance

The technique relies on a number of assumptions to allow for a tractable
analysis. These include the relevance of features within (hidden) layers
of the network and the size of the regions to be analysed (amount of
perturbation). The correlation between the parameters of the analysis
and their relevance to the overall performance in relation to the actual
ContractPerformance is unclear.

Sample set is
representative

The technique performs an exhaustive search of particular regions of
the neural network. The analysis is sound for a given bounded input
space region. However the analysis is only performed for specific images.
Therefore the results will depend greatly on the selection of the images
as a starting point for the analysis.

Extrapolation
of results

Due to the uncertainty regarding the relevance of the performance mea-
surement and the representativeness of the sample set, a method for
extrapolating the results of the performance evaluation across the en-
tire input domain was unclear and is likely to rely on a number of
specific assumptions and constraints.

Table 3: Summary of confidence claims for analysing robustness against adversarial
perturbations [13]

This paper has shown that existing approaches to evaluating the performance
of machine learning in the context of safety-related automated driving functions
provide evidence of only limited value for a safety assurance case. This is ad-
mittedly a non-trivial task and as yet no industry consensus or standards exist
regarding which combination of techniques should be applied for the performance
evaluation of such functions. An approach was provided for constructing confi-
dence arguments for performance evaluation techniques which could be used
in future work to demonstrate their contribution to the assurance case, and
the conditions under which the contributions are valid. The approach was used
to evaluate a pedestrian recognition function and sensitivity analysis of feature
maps was used to highlight weaknesses in the trained function and also to reflect
on the contribution of typical performance evaluation techniques.

Future work will focus on deepening the understanding of insufficiencies in
the MLMs by performing sensitivity analysis for a wider range of features whilst
providing stronger confidence arguments for any proposed evidence to support
the performance claim. The authors also propose the use of confidence arguments
in future standardisation efforts in order to better motivate the contribution of
particular evaluation techniques, or to provide a framework by which the use of
any particular combination of techniques can be justified for a particular system
context.
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