
50	 IEEE Software | published by the IEEE computer societ y � 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

Conformance to software
assurance standards plays an essen-
tial role in high-integrity (particularly
safety-critical) systems across many
domains. Such standards can guide
or constrain development processes,
prescribe or proscribe product features,
and dictate assessment practices. They
help establish a consistent benchmark
against which we can measure projects,
define both minimum standards and
best practices, and improve maturity in
software development and assessment.

Transferring confidence between
stakeholders in high-integrity software
projects is essential. For example, air-
line customers want assurance that
airborne software won’t compromise
their safety. However, neither self-re-
ports of conformance nor independent

confirmation of conformance is a per-
fect means to effect this transfer. Prob-
lems stem mainly from the need to in-
terpret the text of a standard to fit the
specifics of a particular application.
Although documenting conformance
is commonplace, the quality, transpar-
ency, and scrutability of documentation
can vary significantly. This results in a
lack of clarity as to exactly what a con-
formance claim signifies. We propose
using explicit, rigorous, and structured
conformance arguments to transfer
confidence in software integrity.

Software Assurance
Standards
Standards and their assessment mecha-
nisms vary widely. Some, such as CAP
670 SW01, specify high-level goals,

requiring applicants to provide “argu-
ment and evidence … which show that
the software satisfies its safety require-
ments.”1 Others, such as IEC 61508,
mandate low-level details: applicants
must use “static synchronization of ac-
cess to shared resources” or justify their
failure to comply.2 Some standards, such
as RTCA DO-178B, specify some details
of the assessment process.3 Others—
such as IEC 61508—don’t, although ap-
plicants can choose to pay a third party
to audit their conformance claims.

Transferring Confidence
Conformance to an assurance stan-
dard serves two main purposes in the
development of high-integrity software.
First, conformance can help ensure in-
tegrity by influencing software design
and implementation. For example, IEC
61508 dictates the use of best practices
in design and implementation.2 Second,
conformance can help establish assur-
ance of integrity by influencing soft-
ware assessment practice and guiding
the acceptable forms of evidence. For
example, DO-178B requires developers
to collect test, analysis, and review re-
ports as evidence that a system satisfies
the standard’s objectives.3

In many contexts, it’s necessary to
transfer confidence in a software sys-
tem’s integrity to stakeholders who
aren’t developers. In some cases, trans-
ferring confidence requires conveying
detailed information about a system’s
specific properties. For example, sup-
pose that a commercial aircraft reuses
an operating system originally designed
for automobiles. Aircraft designers and
regulators must have confidence that
the properties that made the operating
system adequately safe for automobiles
also make it adequately safe for com-
mercial aircraft.

Confidence derived from the use of
a software assurance standard is gen-
erally transferred via conformance or

FOCUS: Software Engineering for Compliance

Arguing
Conformance
Patrick Graydon, Ibrahim Habli, Richard Hawkins,
and Tim Kelly, University of York

John Knight, University of Virginia

// Explicit and structured arguments can clarify

and substantiate claims of conformance to

software assurance standards and improve the

process of conformance assessment. //

	 May/June 2012 | IEEE Software � 51

compliance mechanisms. An artifact
conforms to a standard if it voluntarily
meets the requirements of that standard.
Transferring confidence in self-assessed
conformance requires that the stake-
holder trust the developers’ claims of
conformance. In contrast, an artifact
complies if a regulator forces it to meet
the requirements; this typically results
in a certificate attesting to compliance.
Transferring confidence through this
mechanism requires that the stakeholder
trust that the regulator’s assessment es-
tablished all the required properties.
Neither conformance nor compliance
mechanisms are wholly sufficient.

The Shortcomings of
Confidence-Transfer
Mechanisms
Standards requirements fall into four
categories on the basis of whether they
constrain

•	 the development process,
•	 internal product attributes,
•	 external product attributes, or
•	 resources used in production.4

Unlike standards in other industries or
software interface and product stan-
dards, software assurance standards
have a high proportion of process re-
quirements. For example, the XML
standard comprises mainly external
product attribute requirements.5 In
contrast, IEC 61508 contains many re-
quirements such as, “The compatibility
of the tools of an integrated toolset shall
be verified” (7.4.4.9) and “Program-
ming languages for the development of
all safety-related software shall be used
according to a suitable programming
language coding standard” (7.4.4.12).2

Determining conformance with such
requirements isn’t as simple as just test-
ing whether a given XML document
has the required structure. Despite calls
to avoid these kinds of requirements,4

current standards (including the re-
cently updated IEC 61508) contain
them. Moreover, it might be impossible
to completely eliminate such require-
ments in software assurance standards.

Software assurance standards are
meant to apply to broad classes of soft-
ware. Standards authors aim to both
ensure and assure integrity as much
as is practicable without unnecessar-
ily constraining the development pro-
cess. As a result of these laudable goals,
software assurance standards contain
requirements that we must interpret in

the context of each system; neither self-
assessment of conformance nor indepen-
dent assessment of compliance is always
straightforward and unambiguous. Fa-
cilitating adequate transfer of confi-
dence requires greater exposition and
transparency than existing conformance
and compliance practices provide.

Standards and Interpretation
Standards authors are well advised to
make requirements as clear and objec-
tively verifiable as possible. Nonethe-
less, there are at least three distinct
scenarios in which interpretation is still
necessary:

•	 the use of high-level goals in the
standard,

•	 deliberate nonspecificity in the stan-
dard, and

•	 the possibility of meeting the letter
but not the spirit of the standard.

A few examples will help us illustrate
this.

High-level goals. As an example of how
high-level goals require interpretation,
consider CAP 670 SW01’s requirement
that “software implemented as a result
of software safety requirements is not
interfered with by other software.”1 If
safety requirements constrain execu-
tion time, we must interpret interfer-
ence to include cache contention. If not,
this interpretation is too broad.

Nonspecificity. Many assurance stan-
dards contain deliberate nonspecific-
ity. For example, IEC 61508 requires

the developer to “select and justify an
integrated set of techniques and mea-
sures necessary during the software
safety lifecycle phases to satisfy the
Software Safety Requirements Speci-
fication.”2 To achieve this (in part),
developers must use “cyclic behav-
ior, with guaranteed maximum cycle
time,” a “time-triggered architec-
ture,” or an event-driven architecture
“with guaranteed maximum response
time,” or else justify an alternative
choice. Deliberate nonspecificity per-
mits developers to accommodate both
a wide variety of systems and the ef-
fects of other design and development
choices. This flexibility, however, re-
quires interpretation.

Spirit of the standard. As an example of
how it’s possible to meet the letter but
not the spirit of a standard, consider
IEC 61508’s requirements that “source
code shall … be readable, understand-
able, and testable” and that “each mod-
ule of software code shall be reviewed.”

Transfer of confidence requires greater
exposition and transparency than existing

conformance ... practices provide.

52	 IEEE Software | www.computer.org/software

FOCUS: Software Engineering for Compliance

The standard’s authors might have in-
tended “review” to include both ex-
amining the code for readability and
computing and analyzing appropriate
metrics, with adequate reporting and
follow-up. However, if the developers
interpret “review” to include only is-
sues of code correctness, fail to use ap-
propriate techniques, or don’t act with
the required diligence, the software
won’t meet the objective.

The necessity of interpretation also
raises the possibility of misinterpreta-
tion. Some standards require rationales
or justifications that partially address
this problem. For example, DO-178B re-
quires developers to prepare a software
accomplishment summary describing
how the standards’ requirements have
been met.3 If these rationales and jus-
tifications were fully detailed and care-
fully structured and presented, they
might form partial or complete confor-
mance arguments. However, standards
don’t generally require developers to
present rationales or justifications in the
form of rigorous arguments, and this
isn’t common practice.

Compliance Assessment
One way to transfer confidence de-
spite the need for interpretation is
for an independent party—either a
regulator or a third-party company

hired by the developers—to assess
compliance. The independent party
contributes an impartial viewpoint
and can refuse certification if the de-
velopers’ interpretation is inappro-
priate. Unfortunately, compliance
assessment isn’t a complete solution
for three reasons:

•	 it’s imperfect,
•	 it’s costly, and
•	 it can obscure details needed for

reuse.

If compliance assessment were per-
fect, it would be repeatable: different
assessors would always return similar
judgments for similar applications. Ad-
equate processes, appropriately skilled
and trained assessors, and accreditation
of assessment services increase repeat-
ability. However, anecdotes about de-
velopers shopping around for lenient as-
sessors suggest that assessments aren’t
always perfectly repeatable in prac-
tice—we need greater transparency.

Independent compliance assessment
is valuable. Unfortunately, it’s also ex-
pensive. For example, the US Govern-
ment Accountability Office found that
Evaluation Assurance Level 4 Com-
mon Criteria evaluations take between
nine and 24 months and cost between
US$140,000 and $340,000.6 Concerns
about the cost of compliance assess-
ment inhibit its use. For example, the
US Federal Aviation Administration is
replacing its system of assessment by
designated engineering representatives
with a system in which development
organizations self-assess conformance.
When conformance is self-assessed,
transfer of confidence to stakeholders

requires a reason to believe that the de-
velopers have interpreted the standard
appropriately.

Present compliance assessment prac-
tice can also be insufficient when de-
velopers attempt to reuse software in a
different domain. Assessing software
for cross-domain use requires knowing

what specifically can be claimed of the
software and its development process
and having evidence substantiating those
claims. A certificate of compliance is evi-
dence that the system complies in some
way with the text of each of the stan-
dard’s requirements but it doesn’t give
the details of how the system complies.

Conformance Arguments
Our prior work with safety arguments
suggested a new approach to transfer-
ring confidence: argue conformance
explicitly. A safety argument is a struc-
tured argument that makes explicit the
developers’ rationale for the claim that
a system is adequately safe to operate in
a given context. The argument explains
the available evidence, showing how
it supports this conclusion. A confor-
mance argument brings rigor and trans-
parency to a different conclusion: not
safety, but conformance. We define a
conformance argument as a structured,
comprehensive, and defensible argument
demonstrating that the evidence is suffi-
cient to show that an artifact adequately
meets the standard’s requirements.

Conformance arguments, like safety
arguments, are rigorous, but necessar-
ily informal, logical arguments. Each
decomposes a main claim into a series
of subclaims until these can be solved
with evidence. The novelty of a confor-
mance argument lies in using explicit
and structured argumentation to solve
the problem of transferring confidence.

The difference in focus between
safety arguments and conformance ar-
guments leads to different main claims
and different structures. A safety argu-
ment documents how evidence supports
a belief in system safety, and we can use
it even where no safety standard pre-
vails. Typical safety arguments decom-
pose the main safety claim over system
hazards, showing how each hazard has
been sufficiently managed.

In contrast, a conformance argu-
ment justifies belief in conformance,
even if there’s no compelling reason to

A conformance argument ... show[s]
that an artifact adequately meets

the standard’s requirements.

	 May/June 2012 | IEEE Software � 53

believe that conformance is adequate
evidence of safety. As a result, the first
level of decomposition in a confor-
mance argument is over the standard’s
requirements. Claims that each require-
ment has been satisfied are further de-
composed until each subclaim can be
supported by evidence.

Notation
Conformance arguments can be re-
corded in any suitably expressive argu-
ment notation. Assurance arguments
have been recorded in structured text,
the graphical Goal Structuring Nota-
tion (GSN),7 and the Claims-Argument-
Evidence (CAE) notation.8 Work con-
tinues on a unifying argumentation
metamodel.9 Support for argument con-
struction includes a Visio plug-in for
GSN, the commercial Adelard Safety
Case Editor for CAE and GSN, and
other tools.

Use Cases
Three use cases exist for a conformance
argument:

•	 Self-assessment. Developers self-
assess conformance. They prepare
a conformance argument to help
them both identify any nonconfor-
mities and question their interpre-
tation of the standard.

•	 Independent assessment, includ-
ing argument. Developers prepare a
conformance argument and submit
it and the conformance evidence
to independent conformance asses-
sors. The argument both conveys
and justifies the developers’ inter-
pretation of the standard.

•	 Preassessment check. Developers
prepare a conformance argument
prior to independent conformance
assessment but don’t submit it. The
argument serves to help them en-
sure that their interpretations are
reasonable, their evidence sound,
and their justifications defensible
before the assessment begins.

In all three cases, developers can
show the argument to potential users
or customers as needed to transfer con-
fidence. For example, returning to our
earlier example of an automotive oper-
ating system reused in an aviation con-
text, aerospace developers practicing
self-assessing might use an argument
showing the OS’s conformance to an
automotive safety standard to under-
stand whether and how the OS might
conform to DO-178B.

Also, in any of the three cases, the

developers might create both a safety
argument and a conformance argu-
ment. For example, a single product
used in both the UK military and US
civil aerospace contexts would require
both a safety argument and confor-
mance to DO-178B. In such cases, the
safety and conformance arguments
might overlap significantly. For ex-
ample, a safety argument might refer-
ence a conformance subargument that
shows that a system uses a fault-toler-
ant architecture as required by a stan-
dard to show mitigation of a particu-
lar hazard.

Conformance
Arguments’ Benefits
The chain of reasoning in a confor-
mance argument both illustrates the de-
velopers’ interpretation of the standard
and defines what each item of evidence
must show if a specific system is to con-
form to a given standard. This trans-
parency facilitates greater confidence
in a conformance claim, improved pre-
dictability and repeatability of assess-
ment outcomes, and cross-domain re-
use of high-integrity software.

Explicitness
Making a conformance argument ex-
plicit enables careful review—by devel-
opers, regulators, third parties, or some
combination of these—which can find
defects in its reasoning. Because these
defects might hide instances of noncon-
formance, confidence in conformance
can be raised by detecting and repair-
ing them.

Consider again our example of
software that must be readable and
understandable to conform to IEC

61508. For a code review to satisfy this
requirement,

•	 the review procedure would have to
direct reviewers to consider these
matters,

•	 adequately skilled and trained
reviewers would have to follow it
faithfully, and

•	 developers would have to redress
unreadable or incomprehensible
code flagged during the review.

A careful and thorough compliance
assessor might raise questions about
these details. However, once the com-
pliance logic is documented explicitly,
criticism of that logic easily raises these
questions. Moreover, having addressed
them in an argument submitted to as-
sessors signals that the developers were
aware of the issues.

Transparency
In traditional compliance assessment
processes, assessors converse with de-
velopers to explore the developers’ un-
derstanding of the standard and ra-
tionale for believing that the program

A conformance argument ... illustrates
the developers’ interpretation

of the standard.

54	 IEEE Software | www.computer.org/software

FOCUS: Software Engineering for Compliance

met its requirements. In the indepen-
dent assessment, including argument
use cases, introducing a rigorous ar-
gument makes these ad hoc, undocu-
mented conversations both transparent
and explicit. The added structural rigor
that comes from treating the compli-
ance rationale as an argument enables
greater criticism, whereas the written
record increases the transparency of the
process.

Confidence
Some might hypothesize that criti-
cal examination of the argument is
less useful than a more detailed pre-
scription for acceptable evidence. For
example, either a standard or its pre-
scribed conformance assessment pro-
cedure might specify inspection of a
randomly selected subset of code as a
means of demonstrating conformance
with a readability requirement. The
prescription might require the subset
to cover a specified percentage of the
code and inspectors to have certain

qualifications. Extending the prescrip-
tion in this way does reduce the scope
for developers to meet the letter of the
standard, but not its spirit. However,
it does so at the cost of flexibility: al-
ternative approaches would be pre-
cluded, even if they provide greater
confidence. For example, to confirm
that software exhibits a required be-
havior, a standard could require test-
ing that achieves branch coverage com-
puted in a specified manner. However,
that requirement might preclude the
use of languages for which the speci-
fied procedure is inappropriate. More-
over, the requirement codifies the

assumption—perhaps incorrectly in
some applications—that branch cover-
age is adequate.

Design Efficiency
Critics might say that a prescribed evi-
dence approach might spare inspec-
tors the difficulty of approaching novel
reasoning in each application. We
don’t anticipate developers inventing
new forms of evidence with each ap-
plication. They have incentive to use
known forms of evidence to reduce
both cost and risk. The use of well-
explored lines of reasoning can be en-
couraged through the publication of
patterns of known approaches to argu-
ing conformance with each standard
or regulation. Pattern documentation
carries information that’s useful to
both developers and assessors, includ-
ing specifications of circumstances in
which the pattern is indicated or con-
traindicated as well as notes about
known pitfalls. Publishing a catalog
of conformance-argument patterns re-

lated to each standard or regulation
would allow an argument-based ap-
proach while retaining the advantages
of prescribed evidence.

Predictability and Repeatability
Compliance assessments should be
both predictable and repeatable. If as-
sessment is unpredictable, developers
unnecessarily risk rework. An unre-
peatable assessment doesn’t accurately
measure the property of interest. Mak-
ing and criticizing a conformance ar-
gument improves the predictability
and repeatability of compliance assess-
ment outcomes by facilitating developer

self-check and bounding the scope for
assessor judgment, thus letting us use
precedent to guide judgment.

Every conformance rationale, im-
plicit or explicit, includes appeals to
engineering judgment. For example,
if a standard calls for modular design,
we must judge whether a design is suf-
ficiently modular; if a standard calls
for testing to have structural coverage
adequate to demonstrate that software
meets its requirements, we must judge
whether a test plan meets that crite-
rion. A more detailed prescription can
reduce the scope of judgment, but only
at the cost of flexibility. Conformance
argumentation can help eliminate the
variability associated with judgment
by limiting its scope. It does this by let-
ting the developer encode a very spe-
cific scope and context for each judg-
ment. For example, a developer might
claim that a test plan is adequate be-
cause it achieves Modified Condition/
Decision Coverage (MC/DC) and in-
cludes test cases for boundary values.
In contrast to this broad judgment, a
conformance argument might decom-
pose this claim across types of defects,
claiming that the test plan is adequate
to detect defects in the source code’s
branch and loop structure because it
achieves MC/DC as measured at the
source code level. The narrower scope
of this judgment offers less room for
disagreement and thus greater predict-
ability and repeatability in the certifi-
cation process.

An Example
In collaboration with industrial part-
ners, we have constructed conformance
arguments for a variety of aerospace,
automotive, and naval applications.
These experiences demonstrate the fea-
sibility of constructing conformance
arguments and highlight the transpar-
ency that they bring. Here, we present
a simplified extract from one of our ar-
guments to illustrate how conformance
arguments transfer confidence in

Compliance assessments should
be both predictable and repeatable.

 may/JunE 2012 | IEEE SoftwarE 55

integrity. The example shows how soft-
ware for a commercial aircraft meets
one of the objectives of DO-178B.

Figure 1 shows part of a confor-
mance argument represented in GSN.
The top-most claim in the fi gure, O5T6,
is a subclaim of the portion of the argu-
ment (not shown) that decomposes the
main claim of DO-178B conformance
over the standard’s requirements (called
objectives). Claim O5T6 is that objective
6 in Table A-5 of the standard, which
requires that the source code be ac-
curate and consistent, has been met.3
The top-level strategy describes our
approach: we argue over the different
conditions that would violate source
code consistency and accuracy. We in-
clude a reference to the standard’s list
of such conditions to justify this de-
composition. For brevity, we elaborate
on only one subclaim.

Figure 2 presents the rationale for
believing that fl oating-point exceptions
won’t be raised at runtime. Rounded
context element ExceptCause makes

explicit our assumption that fl oating-
point runtime exceptions are caused
only by division by zero or by storing
values that exceed type bounds. We
support claim FPExcep by appealing to
the use of a formal analysis technique,
the Floating-Point Analysis Method
(FPAM). The context element FPAM_Ref,
associated with the strategy ExceptCause,
summarizes the elements of FPAM and
refers to the method’s guide. Next are
two claims concerning the freedom of
the source code from conditions that
could lead to fl oating-point runtime
exceptions, as FPAM demonstrates.
Figure 2 elaborates on the claim con-
cerning the freedom of the source code
from division by zero. This claim is
eventually supported by two items of
evidence: AN0803 and PR0804. AN0803 ref-
erences documentation of the FPAM
error model of possible errors in fl oat-
ing-point representation along with a
rule base that defi nes how to process
fl oating-point representations in terms
of error bounds. PR0804 references three

reports documenting test cases that
demonstrate the ability of FPAM, us-
ing the rule base, to confi rm absence of
divide-by-zero problems where previ-
ously, pessimistically, code would have
required further testing.

We presented the complete con-
formance argument from which this
example was taken to auditors from
certifi cation authorities in the US and
Europe. We intended for the argument
to explain how the evidence FPAM
generated can be used to meet a DO-
178B objective. Our experience was
encouraging: the regulators found that
the arguments helped them understand
the FPAM evidence.

B ecause standards must be in-
terpreted in the context of
each software system, the

possibility of misinterpretation is un-
avoidable. Transferring confi dence that
the benefi ts of a standard have been
realized from the developers to other

Claim: FPExcep
Source code is free from
�oating-point runtime
exceptions

Completed in Figure 2

Context: CertObjective
Objective 6 in Table A-5:
source code is accurate
and consistent

Claim: O5T6
System meets Objective 6,
Table A-5

Strategy: Top-level
Argument by demonstrating absence
of conditions violating source code
consistency and accuracy

Claim: DataCurrp
Source code is free from
data corruption due to task
or interrupt con�icts

Claim: Over�ow
Source code is free from
�xed-point arithmetic
over�ow

Claim: Initialization
Source code is free from
uninitialized variables and
constants

Context: DO178B6.3.4.f
Description of source code accuracy
and consistency conditions in
Section 6.3.4.f in DO178B

Completed elsewhere Completed elsewhere

Completed elsewhere

Completed elsewhere

......

figUre 1. This conformance argument fragment shows how software for a commercial aircraft meets one of the objectives of DO-178B.

56 IEEE SoftwarE | www.computEr.org/SoftwarE

FOCUS: Software engineering for ComplianCe

stakeholders requires transparency. A
structured conformance argument can
provide this transparency, facilitating
the transfer of confi dence.

A conformance argument exposes
the developers’ interpretation of the
standard to scrutiny. By doing so, con-
formance arguments facilitate greater
confi dence and should improve the pre-
dictability and repeatability of compli-
ance assessment outcomes. Our expe-
rience with conformance arguments

suggests that regulators fi nd them use-
ful as a means of understanding and
criticizing the rationale for confor-
mance claims.

acknowledgments
We thank Jim Moore for sharing helpful in-
formation about current conformance mech-
anisms. US National Science Foundation
grant 0716478 partially funded this work.

references
 1. CAP	670,	Air	Traffi	c	Services	Safety	Require-

ments, UK Civil Aviation Authority, 2010.

 2. 61508-3,	Functional	Safety	of	Electrical/Elec-
tronic/Programmable	Electronic	Safety-Relat-
ed	Systems	—	Part	3:	Software	Requirements,
Int’l Electrotechnical Commission, 2010.

 3. DO-178B,	Software	Considerations	in	Air-
borne	Systems	and	Equipment	Certifi	cation,
RTCA, 1992.

 4. S.L. Pfl eeger, N. Fenton, and N. Page,
“Evaluating Software Engineering Standards,”
Computer, Sept. 1994, pp. 71–79.

		 5. T. Bray et al., eds., Extensible	Markup	Lan-
guage	(XML)	1.0, 5th ed., World Wide Web
Consortium, 2008; www.w3.org/TR/2008/
PER-xml-20080205.

Context: ExceptCause
Floating-point runtime exceptions arise
from divide-by-zero or storage of results that
are outside declared type bounds

Claim: FPExcep
Source code is free
from point runtime
exceptions

Claim: FPExcep
Source code is free
from point runtime
exceptions

View 1

Strategy:ExceptCause
Argument by addressing causes of �oating-point
runtime exceptions identi�ed by the use of
Floating-Point Analysis Method (FPAM)

Claim:DivZero
FPAM demonstrates that source code
is free from division by zero resulting
from �oating-point approximation

Claim:GBounds
FPAM demonstrates that values
stored in variables lie within the
bounds of those variables

Context: FPAM_Ref
FPAM is an extension to the SPARK toolset, which comprise
(a) an algorithm to update veri�cation conditions; (b) error bounds
on �oating-point representation; and (c) rules for reasoning about
�oating-point error (FPAM Guide)

Completed elsewhere

Claim:FPAMCore
The FPAM identi�es �oating-point
representation and provides rules to
reason about that representation

Claim: SparkDivZero
Identi�ed representation and
rules are used to show that
division by zero does not occur

Evidence: AN0803
analysis report
TR/2008/03

Evidence: PR0804
proof/test cases
WP/2008/04,06,14

figUre 2. An argument concerning freedom from � oating-point runtime exceptions. Formal analysis evidence shows that the source code

doesn’t contain divide-by-zero or over� ow errors.

 6. Information	Assurance:		National	Partnership	
Offers	Benefi	ts,	but	Faces	Considerable	Chal-
lenges, report GAO-06-392, US Government
Accountability Offi ce, 2006.

 7. T. Kelly, “Arguing Safety—A Systematic Ap-
proach to Managing Safety Cases,” doctoral
dissertation, Dept. Computer Science, Univ. of
York, 1998.

 8. ASCAD:	The	Adelard	Safety	Case	Develop-
ment	Manual, Adelard, 1998.

 9. Argumentation	Metamodel	(ARM), beta 1,
Object Management Group, 2010; www.omg.
org/spec/ARM/1.0/Beta1.

PatrICK GraYDon is a research associate at the University of York.
His research interests include safety and security argumentation, soft-
ware engineering for certifi cation, and certifi cation processes. Graydon
has a PhD in computer science from the University of Virginia. Contact
him at patrick.graydon@cs.york.ac.uk.

IBraHIm HaBLI is a research and teaching Fellow in safety-critical
systems at the University of York’s Department of Computer Sci-
ence. His research interests include software safety and certifi cation,
dependable architectures, and model-based development. Habli has
a PhD in computer science from the University of York. Contact him at
ibrahim.habli@cs.york.ac.uk.

rICHarD HawKIns is a research associate at the University of York.
His research interests include software assurance and safety case de-
velopment. Hawkins has a PhD in computer science from the University
of York. Contact him at richard.hawkins@cs.york.ac.uk.

tIm KeLLY is a senior lecturer at the University of York. His research
interests include safety case management, software safety analysis
and justifi cation, software architecture safety, certifi cation of adaptive
and learning systems, and the dependability of “systems of systems.”
Kelly has a DPhil in computer science from the University of York.
Contact him at tim.kelly@cs.york.ac.uk.

JoHn KnIGHt is a professor of computer science at the University of
Virginia. His research interests include software dependability and net-
work security. Knight has a PhD in computer science from the Univer-
sity of Newcastle upon Tyne. He was the recipient of the IEEE Computer
Society’s 2006 Harlan D. Mills award and of the ACM SIGSOFT’s 2008
Distinguished Service award. Contact him at knight@cs.virginia.edu.

a
B

o
U

t
 t

H
e

 a
U

t
H

o
r

S

How to
reaCH Us

wrIters

For detailed information on submitting articles,
write for our Editorial Guidelines

(software@computer.org) or access
www.computer.org/software/author.htm.

Letters to tHe eDItor

Send letters to

 Editor, IEEE Software
 10662 Los Vaqueros Circle
 Los Alamitos, CA 90720
 software@computer.org

Please provide an email address
or daytime phone number with your letter.

on tHe weB

www.computer.org/software

sUBsCrIBe

www.computer.org/software/subscribe

sUBsCrIPtIon
CHanGe of aDDress

Send change-of-address
requests for magazine subscriptions

to address.change@ieee.org.
Be sure to specify IEEE Software.

memBersHIP
CHanGe of aDDress

Send change-of-address requests for
IEEE and Computer Society membership to

member.services@ieee.org.

mIssInG
or DamaGeD CoPIes

If you are missing an issue or you
received a damaged copy, contact

help@computer.org.

rePrInts of artICLes

For price information or to order reprints,
send email to software@computer.org

or fax +1 714 821 4010.

rePrInt PermIssIon

To obtain permission to reprint an article,
contact the Intellectual Property Rights Offi ce

at copyrights@ieee.org.

 may/JunE 2012 | IEEE SoftwarE 57

