
The Need for a Weaving Model in Assurance Case
Automation
R. Hawkins, I. Habli, T. Kelly
The Department of Computer Science, The University of York, York, YO10 5GH. Tel: +44 1904 325463; email:
{richard.hawkins|ibrahim.habli|tim.kelly}@york.ac.uk

Abstract

In this paper we describe how the automated
instantiation of assurance case arguments will
require information to be extracted from multiple
models of a system and its environment and
engineering processes, e.g. safety and verification
processes. For this to be done successfully the
dependencies between the models must be explicitly,
completely and correctly captured. We describe how
a model-based approach, model weaving, provides an
excellent mechanism for modelling the
correspondences that exist between models and
discuss how model weaving can be applied in the
context of assurance cases.

1 Introduction

Assurance cases provide an explicit means for justifying
and assessing confidence in critical properties of interest
such as safety or security properties. An assurance case
should contain a reasoned and compelling argument,
supported by a body of evidence [1]. We are concerned
with the challenge of how to make it easier for system
developers to create valid and compelling arguments for
their systems. To help to guide assurance argument
development, the concept of providing reusable patterns of
argument and evidence was developed [2]. Assurance
argument patterns allow the desired structure of the
argument to be captured, whilst abstracting from the details
of a particular target system. An assurance argument can be
created for a system by instantiating the argument pattern
with information about the target system. Assurance
argument patterns have been shown to be useful in helping
developers create arguments [3]. However current practice
is mainly to instantiate argument patterns manually.

There are a number of advantages to be gained from
automating the generation of assurance arguments:

 Human error in instantiating patterns is
eliminated.

 The argument can be generated directly from, and
is therefore consistent with and traceable to, the
design and development models of the system
themselves.

 Instantiations can be produced quickly and easily
to reflect the current state of development.

 Change management of the argument becomes
automatic.

 Consistent, reusable instantiation rules can be
established, ensuring consistent and repeatable
pattern instantiation.

Any approach for automating assurance argument
generation requires as a minimum:

 model(s) of the required assurance argument
structure - for this we use the assurance argument
patterns;

 model(s) of the system - containing the
information necessary to instantiate the patterns,
often including models of the environment and
development processes

 transformation rules to generate the output model
(the assurance argument).

If we assume that we have available the required assurance
argument patterns, the challenge becomes one of
identifying the necessary system models, and defining a set
of transformation rules. These are the focus of this paper.
Section 2 discusses the system models that are required to
generate an assurance argument. Section 3 discusses an
approach to defining transformation rules – model weaving.
Section 4 describes how model weaving can be applied to
assurance cases. In section 5 we discuss related work and
describe our conclusions.

2 System Models for Assurance

Assurance argument patterns can be captured using the
graphical notation GSN [1]. Instantiation of assurance
argument patterns involves both instantiating ‘roles’ in the
argument patterns, and making instantiation choices. Roles
are instantiable entities within elements of the argument
pattern. They represent an abstract entity that needs to be
replaced with a concrete instance appropriate for the target
system. For example in Figure 1, the role within this
assurance claim, represented in curled braces is ‘Function’.
This entity must be replaced with the name of the relevant
function of the system. In addition, argument patterns will
often include multiplicity relations, where the number of
required argument elements must also be determined (e.g.
an entity created for each of the functions present in the
system design).

Template for Ada User Journal

Ada User Journal

Figure 2. An example pattern for part of a D-MILS system assurance case

Assurance argument patterns will also often represent
choices for different argument approaches that may be
adopted. At instantiation, the assurance claims most
appropriate for the target system must be chosen from the
options provided in the pattern. A more detailed example of
an assurance argument pattern is provided in Figure 2.

Figure 1. A GSN Argument Element Requiring Instantiation

All of these instantiation decisions are made using
information about the system. The nature of the claims
made in an assurance case can vary enormously between
systems and domains, but in all cases there will be a
requirement to include two types of argument, technical
risk arguments and confidence arguments [4]. The technical
arguments reason about risk reduction and the mitigation of
system hazards. These will include consideration of
specific design features and properties of the system. The
technical argument requires consideration of design,
analysis and verification artefacts. Arguments of
confidence document the reasons for having confidence in
the technical argument. The confidence argument will in

general require consideration of the processes used to
generate the development artefacts.

In most cases it is not possible to acquire all the
information that is required for a complete and compelling
assurance case including both technical and confidence
arguments from a single model of the system. In work such
as [5] it is described how it is possible to extract a lot of
information required to create an assurance argument from
system specifications such as AADL models. However
such specifications would not contain all the information
required for the assurance case. For example, although
development artefacts themselves, such as safety analyses,
are often integrated into such system specifications (e.g. as
AADL error models), information to support a confidence
argument (about the way in which those artefacts were
generated) is not included (and it wouldn't be appropriate to
do so). Information regarding verification is also not
commonly included in such specifications. Clearly multiple
models will be required to generate a complete assurance
argument.

As an example we present in Figure 2 an example argument
pattern that we created to form part of the assurance
argument for a Distributed MILS (D-MILS) system [6].
There can be seen in this argument pattern to be a number
of roles that it was possible for us to instantiate using

A N Author

information extracted from an extended MILS-AADL
model of the system, such as:

 formal properties (the properties to be
demonstrated);

 trusted software components

 assumed platform properties.

However there can also be seen to be other claims within
the argument where information will be required that is not
available from the MILS-AADL model. For example the
claim that the application of a particular technique to verify
a formal property is sufficiently trustworthy will require
information about the process for applying the technique,
and about the tools used (similarly for claims regarding the
translation from informal to formal representations). We
obtained this information from models produced of the
verification process and tool chain. Another example is the
formal verification results, which are not part of the MILS-
AADL model, but contained within a separate verification
model.

3 Model Transformation

In the previous section we described how the instantiation
of assurance argument patterns will normally require
information from multiple source models. There will be
(often complex) relationships between these models.
Relationships will exist both between the source
information models and the instantiable elements of the
argument pattern models, and also between elements of the
different source models. Successful pattern instantiation
requires that the relationships between model elements are
correctly specified.

Figure 3. The weaving metamodel

Model weaving, is described in [7] as “a method of
establishing correspondences with semantic meaning
between model elements”. The central concept is a weaving
model which is “a special kind of model used to save these
correspondences”. Like all other models the weaving
model must conform to a weaving metamodel. The basic
form of the weaving metamodel, taken from [8] is shown in
Figure 3. Weaving models can be created to define links
between model elements. The semantics of the link can be
defined for specific links in the weaving model. The

weaving metamodel also includes associations that can
define relationships between the links in the weaving
model. In Section 4 we describe how associations and links
may be used in a weaving model for an assurance case.

The weaving model that is created can then be used as the
specification for model transformations to generate the
output model or models from the set of source models.
Model weaving can bring a number of advantages when
compared with other approaches to model transformation.
The weaving model specification is independent of
implementation, which means that the same weaving model
can be used to create multiple transformations. The
semantics of the transformations in the weaving model are
defined by the user. This allows much greater flexibility
when applying the weaving model. In addition, as the
weaving model is itself a model, it allows a seamless
model-driven approach to be adopted for all aspects of the
assurance case process.

4 Applying Model Weaving to Assurance
Cases

In [9] we have described an approach that uses a weaving
model to create an assurance argument from assurance
argument pattern(s) and a set of system models. Figure 4
provides an overview of our current prototype tool that
implements this approach. Below we briefly describe each
of the elements.

Figure 4. An implementation of a model weaving approach for

assurance cases

1. The argument patterns must be provided in machine-
readable format. For this we have developed a graphical
editor that creates a model in an XML form from a
graphical representation of the argument pattern in GSN.
We refer to these files (that are compliant with the GSN
metamodel) as GSNML files.

2. Any system models that conform to a defined metamodel
may be taken as input.

3. The current version of the tool uses an interim solution
for creating weaving models that involves creating the
weaving models graphically and importing them to the tool

1. GSN Pattern
Models: gsnml

2. System
Models: xml

3. Weaving
Model:

graphML

4. MBAC
program: eol

Configuration

5. GSN
Argument

Model: gsnml

Metamodels: ecore

Template for Ada User Journal

Ada User Journal

as graphML files. Future development of the tool will
include the creation of weaving models directly from the
metamodels, rather than graphically. The weaving model is
represented using typed nodes and edges with properties
declared to specify additional attributes such as the
metamodel element type or the name of the target model.
Figure 5 shows an example weaving model created in this
manner. The nodes on the left hand side represent roles
within the argument patterns whereas the nodes on the right
hand side are elements of the source metamodels. The
edges represent weaving links and associations.

Figure 5. An example weaving model for an assurance

argument pattern instantiation

Note that changes to the system models should not
normally require changes to the weaving model, so long as
no changes are made to the existing argument patterns and
only system models conforming to the same metamodels
are used. This means that changes to the system design can
be quickly reflected in the assurance case.

4. The MBAC (Model Based Assurance Case) program is
an Epsilon Object Language (eol) program [10] that runs
on the Eclipse platform. It takes the GSNML argument
pattern files, the system models and corresponding
metamodels, and the weaving model as inputs. The output
is a GSN argument model for the target system that has
been instantiated using information extracted from the
system models.

5. The argument model is generated as a GSNML file. This
GSNML file can then be used to present information to the
user in a number of ways. Firstly, the argument model can
be represented graphically as a GSN structure. Secondly,
the model can be queried in order to provide a particular
view on the assurance case. For example it is possible to
just select those argument elements that remain
undeveloped, requiring additional support from the system
developer. Finally an instantiation table can also be
generated that summarises how the pattern has been
instantiated in tabular form, rather than having to consult
the entire argument structure.

The GSN argument model can also be used as the basis for
performing verification of the assurance argument
structure, as well as validation of the argument with respect
to the system models. These verification and validation
activities are the subject of on-going research.

5 Conclusions

It is a shared goal of many researchers [11, 12, 13] to
increase automation in the generation and maintenance of
assurance arguments. Our approach complements these
approaches, but crucially, it does not depend on having to
extract and pre-process assembly and instantiation data. By
automatically extracting information directly from the
design and safety analysis models themselves, a model
weaving approach ensures traceability between the sources
of information, e.g. in design, process and analysis models,
and the assurance case. Automation in this way also has the
potential to support the coevolution of system design and
assurance cases.

The correct definition of the weaving model is of course
crucial to the success of this approach. Although our initial
work has demonstrated the feasibility of the approach,
further work is required to more fully understand and
model the relationships and constraints that exist between
system design models (such as AADL) and other models
required for the assurance case (such as process models).

Acknowledgements

This work was part funded by the European Union FP7 D-

MILS project (www.d-mils.org).

References

[1] GSN Community Standard Working Group (2011), GSN Community

Standard, Available at www.goalstructuringnotation.info/.

[2] T. Kelly and J. McDermid (1997), Safety Case Construction and

Reuse Using Patterns, in proc. Safecomp 97, pp 55-69, Springer.

[3] R. Hawkins et. al. (2011), Using a Software Safety Argument Pattern

Catalogue: Two Case Studies. In proc. of Safecmp 11, Springer.

[4] R. Hawkins et. al. (2011), A New Approach to Creating Clear Safety

Arguments, In proc. of the Nineteenth Safety-Critical Systems

Symposium, pp 3-23, Springer.

[5] A. Gacek et. al. (2014), Resolute: An Assurance Case Language for

Architecture Models, In proc. of the 2014 ACM SIGAda Annual

Conference on High Integrity Language Technology. pp 19-28

[6] J. Rushby (2008). Separation and Integration in MILS (The MILS

Constitution,. Technical Report, SRI International

[7] M. Didonet et. al. (2005), Applying generic model management to

data mapping, in proc. Bases de Données Avancées (BDA05).

[8] M. Didonet et. al. (2005), AMW: A generic model weaver, in proc.

1ères Journées sur l’Ingénierie Dirigée par les Modèles.

[9] R. Hawkins et. al. (2015), Weaving an Assurance Case from

Design: A Model-Based Approach, In proc. of 16th IEEE

International Symposium on High Assurance Systems Engineering.

[10] D. Kolovos et. al. (2013), The Epsilon Book, available at

http://www.eclipse.org/epsilon/doc/book/.

[11] E. Denney et. al. (2012), Advocate: An Assurance Case Automation

Toolset. in  proc. Workshop on Next Generation of System

Assurance Approaches for Safety Critical Systems, pp 8-21.

[12] Y. Matsuno and S. Yamamoto (2013), An implementation of GSN

community standard, In proc. of Assurance Cases for Software-

Intensive Systems (ASSURE).

[13] J. Rushby (2013), Mechanized support for assurance case

argumentation, in proc. 1st International Workshop on Argument for

Agreement and Assurance (AAA 2013), Springer LNCS.

