Using Process Models in System Assurance

Richard Hawkins, Thomas Richardson, and Tim Kelly

Department of Computer Science, The University of York, York, YO10 5GH, UK

Abstract. When creating an assurance justification for a critical sys-
tem, the focus is often on demonstrating technical properties of that
system. Complete, compelling justifications also require consideration of
the processes used to develop the system. Creating such justifications
can be an onerous task for systems using complex processes and highly
integrated tool chains. In this paper we describe how process models can
be used to automatically generate the process justifications required in
assurance cases for critical systems. We use an example case study to il-
lustrate an implementation of the approach. We describe the advantages
that this approach brings for system assurance and the development of
critical systems.

1 Introduction and Motivation

Systems used to perform critical functions require justification that they exhibit
the necessary properties (such as for safety or security). The assurance of a sys-
tem requires the generation of evidence (from the development and analysis of
the system) and also a reasoned and compelling justification that explains how
the evidence demonstrates the required properties are met. The evidence and
justifications are often presented in an assurance case. A compelling justification
will always require both a technical risk argument (reasoning about assurance
mitigations of the system) and confidence arguments (documenting the reasons
for having confidence in the technical argument). Although both technical argu-
ments and arguments of confidence are included in most assurance cases, we find
that often the focus is on the technical aspects of assurance and that confidence
is often dealt with in very general terms. In [8] we discuss the need for confidence
arguments to be specific and explicit within an assurance case. The confidence
argument should consider all the assertions made as part of the technical argu-
ment. In this paper we focus on one important aspect of this - demonstrating
the trustworthiness of the artefacts used as evidence in the technical argument.

As an example, figure 1 shows a small extract from an assurance argument
that uses evidence from formal verification to demonstrate than an assurance
property of the system is satisfied. Figure 1 is represented using Goal Structuring
Notation (GSN). In this paper we assume familiarity with GSN, for details on
GSN syntax and semantics we refer readers to [5] and [11].

Figure 1 can be seen to present a technical argument (the left-hand leg), and
also a claim that there is sufficient confidence in the verification results that are
presented in that technical argument (Goal: formalConf). The level of confidence

Goal: propSat Eo

{formal property} is
satisfied in the system
model

Goal: formalConf

Con: components
There is sufficient confidence
in the formal verification

results

Goal: verification

trusted software
components: {trusted
software components}

Goal: verifResults

Results of formal verification
demonstrate {formal
property} is satisfied

Con: enviroProps

assumed environmental
properties: {assumed
environmental
properties}

Verification using
{technique} gives
trustworthy results

4&

{technique}
process

Sol: verifResults

Con: platformProps —
{formal verification
results for {formal
property}}

properties of system
platform: {assumed
platform properties}

Goal: activityTrust _Process

{Activity} is sufficiently
trustworthy

B Process

Fig. 1. Example assurance argument pattern

required in the verification results is determined by both the assurance required
for the system as a whole, and the role of those verification results in the overall
system argument. This issue of establishing confidence in an evidence artefact
is a complex one. As discussed in [20], both the appropriateness of the artefact
in supporting the argument claim and the trustworthiness of that artefact must
be considered. In this paper we focus on the trustworthiness of the artefact.
The notion of evidence trustworthiness has been widely discussed, such as in the
Structured Assurance Case Metamodel standard (SACM) [16]. Trustworthiness
(sometimes also referred to as evidence integrity) relates to the likelihood that
the artefact contains errors. It has long been understood that the processes used
to generate an artefact are one of the most important factors in determining how
trustworthy an artefact is. This is discussed further in work such as [18], and is
also seen in standards such as [9] and tool qualification levels in [10]. The basis
for such an approach is that a trustworthy artefact is more likely to result form
the application of a rigorous, systematic process undertaken by suitable partici-
pants using appropriate techniques and incorporating thorough evaluation. This
includes consideration of the assessment and qualification of tools used as part of
a tool chain. In figure 1 it is seen how the claim ‘Goal: formalConf’ can be sup-
ported by reasoning over the trustworthiness of the verification results (Goal:

verification), and then in turn by arguing over the formal verification process
that generated that result (Goal: activityTrust_Process)®.

Modern critical systems often require the use of complex processes involv-
ing the integration of multiple development tools and techniques. Creating a
compelling justification for each process adopted can be a huge challenge, and
indeed this may be a reason why this is often overlooked in favour of more gen-
eral demonstrations of process compliance. We believe that it should be possible
to make the generation of confidence arguments from processes easier and more
systematic. This paper therefore provides the following solution:

“Using process models generated as part of system development, and a set of
confidence argument patterns, the required confidence arguments for assurance
artefacts can be automatically generated.”

Firstly, in Section 2 we discuss the process models, in Section 3 we describe
the confidence argument patterns, finally in Section 4 we describe how the pro-
cess models and argument patterns can be linked together to create the required
confidence arguments for the target system. We use an example throughout to
illustrate our approach.

2 Process Models

Our approach permits the use of any process model in order to generate the pro-
cess argument. This provides important flexibility for system developers to use
any existing process models and tooling. A defined meta-model must however be
provided for all models used (in order to create a weaving model for instantiation
- see Section 4) and the process models must be valid instances of the defined
meta-model. It should be noted that for most commonly used process modelling
approaches such as SPEM [13] meta-models already exist. For the purposes of
our example we have chosen to use the process meta-model that is summarised in
Figure 2, which is based upon that created as part of the OPENCOSS project?.
We used the OPENCOSS process meta-model [2] as the basis for this since it
has been developed based upon a cross-domain consideration of safety standards
and processes and with input from industrial partners from many industries.

Here we provide a summary of the main elements of the meta-model in Fig-
ure 2. Processes entail Activities, which may themselves entail other Activities
(sub-activities). Any activity may have related Participants (which could be a
Person, Tool or Organisation (see Figure 3)). Activities may require and produce
Artefacts. Any artefact may be defined as a ManageableAssuraceAsset (defined
as part of the evidence meta-model (see Figure 3)) for which evaluations (Assur-
anceAssetEvaluation) may be created (such as review or testing of the generated
artefact). Activities may also be associated with a particular Technique that is
used to carry out that activity.

In Figure 4 we show an example process model created from the meta-model
described above. The example process used is the process of formally checking

1 As described later, we use the term ‘Activity’ to refer to the relevant process.
2 See http://www.opencoss-project.eu/

[E pro cessModel

‘Lﬁ AssuranceAssetEviZli ¢
|

rancea

= type : EventKind
| © time : EDate

0.* 0." | assetEvent
triggeredAssetEvent opnedActivity
0.7
precedingActivity
0»‘0"]FdPamo ant o | . & Activity e ownedTechnique| ¢ «
—=— = EDa subActivity R T
H particpant |, . startTime : EDate achn H Technique
[<P 9. = endTime : EDate } technique, S L 1!
5 partiapant [o ‘ o | 1
! 1
sourde targdt enumeration->@|
£ ActivityRelKind
requiredArtefact fr " eNera
0.* opmedArtefact 0 9“ . | ——
[=] - ownedRel = Decomposition
H Artefact] 0." = Precedence
from evidence) producedAftefact
— DS ‘ B ActivityRel *
T versionl tring 3 e A T e o=t
o dste ED ke 0 | © type : ActivityRelKind
= changes : EString
© jsLastVersion : EBoolean
= isTemplate : EBoolean 0.*

= jsConfigurable : EBoolean .
! s createdArtefact

Fig. 2. EMF [19] core meta-model of processes

contracts specified using OCRA [14]. The results of the contract checking can be
used to provide evidence as part of an assurance justification for the system by
demonstrating that important security properties hold. As seen in Figure 4, the
contract checking activity can be broken down to two sub-activities. Firstly the
system model specified in AADL [15] must be translated to an OCRA specifica-
tion. The second sub-activity is to perform the refinement check on the OCRA
specification. The translation activity uses a tool called Compass [1], that has
been evaluated for its correctness through testing. This activity requires the
AADL specification, and produces a specification in the form of OCRA con-
tracts. The contract specification is evaluated using consistency checking. The
refinement activity requires the OCRA contract specification and uses another
tool, the OCRA tool, in order to do the refinement. This tool has also been
tested.

3 Confidence Argument Patterns

Patterns are widely used in software engineering as a way of abstracting the
fundamental design strategies from the details of particular designs [4]. The use
of patterns as a way of documenting and reusing successful assurance argument

e
e——
| 1
{ ManageableAssur anceAssat A
LA |I1P(‘-’(|FFV?H'L_L“_ |

- 0.*

H Tool =
© version : EString
© qualification : EString
© objective : EString
© integrity : EString
= qualified : EString

H organization
= address : EString H AssuranceAssetEvaluation
= accreditation : EString . = cnterion : EStning 0

0. eva e
o evaluation | ¢ criterionDescription : EString
organzation 0.7 | & evaluationResult : EString
<= rationale : EString -

H person
= email : EString
= capability : EString
= experience : EString

subOrganization

Fig. 3. Sub-types of Participant available in the process meta-model (left) and Extract
from the evidence meta-model used in creating process models (right)

structures was pioneered by Kelly [11]. Assurance argument patterns provide
a way of capturing the required form of an assurance argument in a manner
that is abstract from the details of a particular argument. It is then possible
to use the patterns to create specific arguments by instantiating the patterns
in a manner appropriate to the application. Assurance argument patterns are a
very useful technique as they can help to ensure a consistent approach is applied
when similar assurance claims are required in different systems. It also provides
a way of sharing experience across projects.

Figure 5 shows an assurance argument pattern we have developed that can
be used to argue the trustworthiness of a process activity. This could be used
to support the argument we presented in Figure 1. This argument pattern could
be instantiated for an activity using information in a process model such as that
shown in Figure 4.

This argument structure can be seen to make claims over the trustworthi-
ness of the participants of the activity, the required and produced artefacts, the
techniques used and the sub-activities. For each of these elements of the process,
the argument shows they are sufficiently trustworthy through consideration of
their demonstrable attributes. The notion of what is sufficiently trustworthy for
a process element is driven firstly by the confidence required in the artefact be-
ing generated. As discussed in section 1, this is determined by the assurance
required for the system as a whole, and the role of the artefact in the overall
system argument. Errors in some evidence artefacts will have less impact on the
assurance of the system, and the level of confidence required in such cases is
correspondingly reduced.

The trustworthiness of the process must reflect the confidence required in the
artefact itself. For each element of the process, it is necessary to take account of
the role that the process element itself plays as part of the process to generate the
artefact. For example, errors in a tool that generates an input file for an activity
may be mitigated by other elements of the process, such as manual review of

Technique: OCRA

Activity: OCRA Contract
Checking

a OCRA technique is
justified as method for checking
properties in report ref ?

subActivity

AssuranceAssetEvaluation: OCRA

OCRA specification is
consistent

evaluationResult: Consistency
check ref 7

rationale:

4

qualification: null | participant—] ACHVY: Transiation
objective: Translate MILS- Participant™ MiLs-AADL to OCRA evaluation
AADL specification to OCRA

version: ?
integrity: null

qualified: false
qualification: null
objective: Verify
requirements formalized
into OCRA contracts
version: ?

integrity: null

Activity: OCRA . >
refinement check

produced artefact

quired artefact

evaluation

versionID:? evaluation

Date:?

AssuranceAssetEvaluation

i AssuranceAssetEvaluation:
Compass tool testing required artefact

OCRA tool testing

criterion: Tool output is
semantically equivalent to
input

evaluationResult: Test report
ref?
rationale:

criterion: Tool will nof
incorrectly report a positive
result

required artefact Artefact: MILS-AADL model evaluationResult: Test report
ref?

versionID: ? rationale:

date: ?

Fig. 4. Process model for OCRA contract checking

that input file or the provision of multiple inputs. In such cases the level of trust
required for that element may be reduced. What this means is that the claim
that the element is sufficiently trustworthy must be interpreted for each element
based upon a consideration of its role in the process. In some domains, and
some standards, the notion of sufficiently trustworthy evidence is codified, such
as requirements for testing and review to be performed by independent persons
in DO-178C [17] and accepted and established notions of competency and tool
qualification. Where such guidance exists this can also be used to help ensure
proportionality in the process argument.

We have created argument patterns for all the process elements considered
in the argument pattern in Figure 5, full details of these patterns are provided
in [3]. Figure 6 shows one of these patterns, the argument pattern for creating
arguments regarding the artefacts required by a process. This argument uses
the evaluations performed on the artefact, plus attributes of the artefact, such
as its version number and defined evaluation criterion, to form the confidence
argument. The argument patterns for all of the elements of a process can similarly
be instantiated from a process model such as the one in Figure 4.

4 Instantiating Argument Patterns

Instantiating an assurance argument pattern involves identifying the necessary
information relating to the target system, required to choose and instantiate

\J

Goal: activityTrust £

{Activity} is sufficiently
trustworthy

Strat: activityTrust
Argument over
performance of
{Activity)

{Activity}:={subActivity}

Goal: activityParts Goal: activityReqs Goal: activityProds Goal: activityTech Goal: subActivities
{Activity} particitpants {Activity} required Techniques used for
Produced artefacts from a -
are sufficiently artefacts are sufficiently Thckios) are uiciomay {Activity} are sufficiently Sub-activities of {Activity)
trustworthy trustworthy trustworthy are sufficiently trustworthy
no. of {participant} no. of {requiredArtefact} no. of {producedArtefact} 0. of {technique} no. of {subActivity}
Goal: partTrust Goal: reqArtTrust _Artefact Goal: prodArtTrust_Artefact Goal: Goal: subActivit

techniqueTrust_Technique

{participant} is
sufficiently trustworthy

1

{subActivity}is
sufficiently trustworthy

T]

{required artefact}is sufficiently

{produced artefact} i sufficiently
trustworthy

B Atefact

{technique} is sufficiently
trustworthy

F5 Technique

B e

participant type:

rganisation}

Goal: tool_Tool Goal: person_Person Goal: organisation_Organisation
Con: role
{participant} tool is sufficiently {participant} person is sufficiently {participant} organisation is
trustworthy trustworthy sufficiently trustworthy

B ol B person B orgonisation

Role and impact of
{process element}
within process

Fig. 5. Assurance argument pattern for confidence arguments

the assurance claims and to provide the required evidence. In this sense the
instantiable elements of the patterns define requirements for information. It is
possible to manually obtain this information and instantiate the argument pat-
terns; this is current practice. A manual approach however is often not ideal.
The instantiation is often repetitive and mechanistic in nature and prone to hu-
man error. Manual instantiation can also be time consuming and inconsistent.
In [7] we described a model-based approach to automated instantiation of assur-
ance argument patterns, based upon the specification of a weaving model that
describes the dependencies between abstract elements of the argument pattern
and elements of various system models for the target system. At instantiation,
information is extracted from the relevant model elements of the target system
to create the assurance argument. Our previous work on applying our approach
([7], [6]) has focussed predominantly on the automated instantiation of the tech-
nical argument. To move to a more complete automation of the assurance case,
automation of the confidence argument is also required. Below we describe how
the process model and confidence argument patterns presented can be used to
create an assurance argument for a claim regarding a formal property of our

Goal: reqArtTrust £

{required artefact} is
sufficiently trustworthy

Goal: evaluations Goal: artefactConf
Evaluations of {produced
artefact} demonstrate
correctness

Set of evaluations performed
provide sufficient confidence
in {produced artefact}

&

Strat: prodArtTrust

Argument over each
evaluation

no. of {evaluations}

Goal: evaluation

{evaluation} demonstrates
correctness of {produced
artefact}

Con: criterion

defined criterion:
{crterion}

Con:
artefactVersion

Artefact version:
{version ID}

Goal: evalRes Goal: evalAppropriate
{evaluation} result
demonstrates defined
criterion is met

Evaluation result is
appropriate for evaluating
{artefact}

Con: artefactDate

Artefact date:
{date}

Sol:
evalRes

{evaluation Just: rationale

result} {rationale}

Fig. 6. Assurance argument pattern for artefacts

example system as part of an assurance case for that system. Firstly we identify
a claim we wish to support as part of the assurance case for the example system.
In this case a claim is required for each formal property specified as part of the
AADL specification of the system. One such claim is shown in Figure 7, which
follows the form presented in Figure 1. In this case the formal property to be
satisfied is “always (outL > high_bound)”. This is one of a number of specified
properties of the AADL model required in order to guarantee the security of
the system. The result of an OCRA contract check is used to demonstrate this
property. Following the structure of Figure 1, the trustworthiness of the OCRA
contract checking must be demonstrated for this argument to be compelling
(Goal: activityTrust_Process). The OCRA checking process model in Figure 4
can be used in conjunction with the confidence argument patterns to create an

argument to support this claim. An extract showing just the top level of the
resulting argument is shown in Figure 8. This argument structure instantiation
is completed using the patterns for each aspect of the model such as Figure 6.

Goal. propSat.3 Eo

always ({outL > high_bound})
is satisfied in the MILS-AADL
system model

v

Goal: formalVerif.3

Formal verification proves that
the MILS-AADL model satisfies
always ({outL > high_bound})

Goal: verifResults.3

Con: components.3

Results of formal verification Goal: formalConf.3
demonstrate always ({outL >
high_bound}) There is sufficient confidence
in the formal verification
results

trusted software
components: Lsubject,
Dsubject

4

Goal: verification.3

Sol:verifRes
ults.3

[OCRA check
result]

ocra gives trustworthy
results

A J

Goal: activityTrust _Process

OCRA Contract Checking is
sufficiently trustworthy

B Process

Fig. 7. Part of the assurance argument for an example system

To make the process of instantiating the confidence argument patterns from
the process models for a system easier and less error prone it is possible to
make use of the model-based assurance case tool that we have developed to
automatically generate the confidence argument from the process model. Below
we briefly describe how the tool works.

— Argument patterns are created in machine-readable format using a graphical
editor that creates a model in an XML form from a graphical representation
of the argument pattern in GSN. We refer to these files (that are compliant
with a GSN meta-model) as GSNML files.

Goal: activityTrust

OCRA Contract checking is
sufficiently trustworthy

Strat: activityTrust

Argument over
performance of OCRA
Contract Checking

—

Goal: activityReqs

—

Goal: subActivities

Goal: activityProds

OCRA Contract Checking
required artefacts are Produced artefacts from OCRA Sub-activities of OCRA
sufficiently trustworthy Contract Checking are Contract Checking are
iently trustworthy sufficiently trustworthy
Goal: activityTech Goal: subActiv.1 Goal: subActiv.1
. Goal: reqArtTrust.1 Translation MILS-AADL to
Techniques used for OCRA OCRA s sufficiently OCRA refinement check is
Contract Checki
ontract Lhecking are OCRA contract specification trustworthy sufficiently trustworthy
sufficiently trustworthy
is sufficiently trustworthy ‘ O
/ Goal: activityParts

Goal: techniqueTrust.1 OCRA Contract Checking

participants are sufficiently

OCRA is sufficiently trustworthy
trustworthy
Goal: partTrust.1 Goal: partTrust.2
Compass Tool is OCRA Tool is sufficiently
sufficiently trustworthy trustworthy

Fig. 8. Part of the confidence argument for OCRA contract checking

— A weaving model is created to define links between elements in other models.
In this case links are specified between GSN pattern models and the system
or process models. The weaving model is then used as the specification for
model transformations to generate the output model (instantiated assurance
argument). The current version of the tool uses an interim solution for cre-
ating weaving models that involves creating the weaving models graphically
and importing them to the tool as graphML files.

— The MBAC (Model Based Assurance Case) program is executed. This is
an Epsilon Object Language (eol) program [12] that runs on the Eclipse
platform. It takes the GSNML argument pattern files, the system and process
models and corresponding meta-models, and the weaving model as inputs.
The output is a GSN argument model for the target system that has been
instantiated using information extracted from the system models.

— The argument model is generated as a GSNML file. This GSNML file can
then be used to present information to the user in a number of ways. Firstly,
the argument model can be represented graphically as a GSN structure.

Secondly, the model can be queried in order to provide a particular view on
the assurance case. For example it is possible to just select those argument
elements that remain undeveloped, requiring additional support from the
system developer. Finally an instantiation table can also be generated that
summarises how the pattern has been instantiated in tabular form, rather
than having to consult the entire argument structure.

Using the model-based assurance case tool described above it becomes pos-
sible to:

— Automatically select the appropriate process model relevant to the evidence
artefact cited in the assurance argument.

— Automatically populate the confidence argument pattern using information
extracted from the process model.

It is important to note that when adopting this approach, thorough review
of the assurance argument is still, as always, essential. However, rather than
focussing review on the correctness of each argument created, the review effort
can instead be focussed on the sufficiency of the pattern structure and the validity
of the weaving model. Both of these, once reviewed can then be re-used for each
instantiation. Another important focus for review becomes whether the role of
each element of the process has been correctly interpreted, and whether what has
been generated corresponds to this interpretation. We believe that in contrast to
needing to review for correctness each time, this shift in focus helps to achieve
more value from the review effort.

5 Conclusions

When creating an assurance justification for a system, the focus is often on the
technical aspects of the assurance argument. The important confidence aspects
are often addressed only in very general terms. Assurance cases are improved
through provision of more focussed confidence arguments that address the in-
tegrity of specific artefacts through justification of the processes used. Creating
such confidence arguments can be an onerous task for systems using complex
processes and highly integrated tool chains. In this paper we have described how
compelling confidence arguments can be developed directly from existing process
models with the help of confidence argument patterns. We have described how
existing tools can be used to automatically generate these arguments.

6 Acknowledgements

This work was part funded by the European Union FP7 D-MILS project (www.d-
mils.org).

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

The COMPASS Project Web Site. http://compass.informatik.rwth-aachen.de/.
Opencoss Consortium. Common Certification Language: Conceptual Model D4.4
version 1.4. Available at: http://www.opencoss-project.eu/, 2015.

Integration of Formal Evidence and Expression in MILS Assurance Case. Technical
Report D4.3, D-MILS Project, March 2015. http://www.d-mils.org/page/results.
E. Gamma, R. Johnson, R. Helm, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

Goal Structuring Notation Working Group. GSN Community Standard Volume 1,
2011.

. R. Hawkins, I. Habli, and T. Kelly. The Need for a Weaving Model in Assurance

Case Automation. Ada User Journal, 36(3):187-191.

R. Hawkins, I. Habli, D. Kolovos, R. Paige, and T. Kelly. Weaving an Assurance
Case from Design: A Model-Based Approach. In Proceedings of the 16th IEEE
International Symposium on High Assurance Systems Engineering, 2015.

R.D. Hawkins, T.P. Kelly, J. Knight, and P. Graydon. A New Approach to Creating
Clear Safety Arguments. In Advances in Systems Safety, pages 3—23. Springer
London, 2011.

IEC. IEC 61508 - Functional Safety of Electrical/Electronic/Programmable Elec-
tronic Safety-Related Systems. Technical Report IEC 61508, The International
Electrotechnical Commission, 1998.

ISO. ISO 26262 - Road Vehicles Functional Safety. Technical Report ISO 26262,
ISO, Geneva, Switzerland, 2011.

T. Kelly. Arguing Safety A Systematic Approach to Safety Case Management.
PhD thesis, The University of York.

D. Kolovos, L. Rose, A. Garcia-Dominguez, and R. Paige. The Epsilon book, 2013.
http://www.eclipse.org/epsilon/doc/book/.

Object Management Group. Software and Systems Process Engineering Meta-
model Specification (SPEM) version 2.0, 2008.

The Othello Contract Refinement Analysis (OCRA) Tool.
https://es.fbk.eu/tools/ocra.

International Society of Automotive Engineers. Architecture Analysis and Design
Language Annex (AADL), Volume 1. SAE Standard AS 5506/1, SAE, June 2006.
Object Management Group (OMG). Structured Assurance Case Metamodel
(SACM), Version 1.0, 2013.

RTCA. DO-178C - Software Considerations in Airborne Systems and Equipment
Certification. Technical Report DO-178C, RTCA, 2011.

S.Nair, N. Walkinshaw, T. Kelly, and J.L. de la Vara. An Evidential Reasoning
Approach for Assessing Confidence in Safety Evidence. In Proceedings of the 26th
IEEE International Symposium on Software Reliability Engineering (ISSRE 2015),
2015.

D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF': Eclipse Modeling
Framework, 2nd Edition. Addison-Wesley, 2008.

Linling Sun. FEstablishing Confidence in Safety Assessment Evidence. Phd thesis,
University of York, 2012.

