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Abstract 
 
The use of an object oriented (OO) approach brings potentially large savings in terms of time and 
cost for developers of safety critical systems. OO systems have improved maintainability due to 
encapsulation, high cohesion and low coupling, and the facility for reuse through inheritance and 
design patterns. This raises specific challenges for developers of OO safety critical systems who 
wish to take full advantage of these features. To realise the benefits requires an ability to reason 
about the safety of individual classes or components in the system. This is quite difficult to 
achieve with most existing safety analysis techniques, as hazards tend to be decomposed down in 
a functional way. In this paper we initially explore how existing techniques may be adapted to 
provide the required results. We then go on to examine how these safety properties and 
requirements may be represented in a useful and meaningful way.  
 
We propose to use safety contracts for classes as a way of capturing safety requirements in an OO 
system. These contracts are constructed through analysis of functional, timing and value aspects 
of interactions within the system. We look at how these contracts can be incorporated into the 
system design and then used to verify that a system is safe. We go on to explore how the use of 
safety contracts facilitates maintainability and reuse. 
 

Introduction 
 
Although the use of OO techniques has become increasingly widespread throughout the IT 
community, its use in safety-related applications has, up to this point, been fairly limited. 
However, interest in the use of OO for safety-related systems is increasing as the benefits of 
adopting such an approach have become apparent. One of the biggest potential benefits arises 
from the improved maintainability of OO systems. It is desirable that the amount of analysis 
required when a change is made to a system is proportional to the size of the change, rather than 
to the size of the whole system as is, in general, currently the case. OO provides a way of moving 
towards this aim by taking advantage of encapsulation, high cohesion and low coupling which 
characterize OO systems. Another potential benefit arises from the ability to reuse part of an 
existing system which does what is required, in another similar system under development. 
Inheritance provides a way of adding to and extending existing components, whilst requiring only 
the elements that are different in the new system to be developed. Design patterns, which are 
commonly used in OO also provide a way of capturing design solutions for common problems. 
This reduces the development effort required when addressing such a problem.  
 
If any of these benefits are to be realized for safety-related systems it is necessary to be able to 
reason about the safety of individual classes or components in the system. Without being able to 
do this the benefits gained through the encapsulation and low coupling of OO designs would be 
lost, as the safety process would not be aligned with the design. Unfortunately with existing 
safety analysis techniques it is difficult to reason about individual classes or components. This is 



due to the fact that the majority of techniques e.g. FFA, decompose hazards functionally. System 
level hazards are identified, and for each, functional failures which may contribute to that hazard 
are elicited. For a functionally decomposed system it is much easier to allocate a functional 
failure to the failure of a system component. This is because there is often a direct mapping 
between a functional failure and a subsystem. An OO design is not decomposed functionally, but 
rather into objects. The functionality in the system is realized by many objects collaborating 
through message passing to achieve a system function. Therefore a functional failure will not 
easily map onto a single element of the design. It is important therefore that existing techniques 
can be adapted such that failures can be allocated between objects. From the system hazards, 
system safety requirements are defined which are used to specify contracts between classes. 
These contracts can then be used to derive class safety requirements. It is also necessary that the 
safety properties and requirements generated as a result of the analysis can be represented in a 
useful and meaningful way. This includes having the ability to understand how these 
requirements are affected by design changes and reuse. 
 

Safety Contracts 
 
We propose to use safety contracts as a way of capturing safety requirements on classes in an OO 
system. Safety contracts constrain the interactions which occur between objects and hence can 
assure that system behavior is safe. Contracts are used to specify the relationship between the 
client (the operation caller) and the supplier (the called routine) as precisely as possible. This is 
done using assertions. Pre- and post-conditions are assertions which apply to individual routines. 
Preconditions express requirements that any call must satisfy if it is to be correct. Preconditions 
must be true before the operation call is made. The Post-condition expresses properties that are 
assured in return by the execution of the call. A safety contract is not intended to specify 
requirements for correct behavior, it is used only to specify that behavior required in order to 
assure the system is safe (i.e. that system hazards can not occur). These safety contracts build up a 
set of safety requirements for each class which could affect the safety of the system. Each 
interaction in which an object partakes may have a safety contract associated with it. As 
illustrated in figure 1, an object may be part of many contracts both as client and/or supplier. 
Each contract for which the object is client or supplier may generate obligations on the object. 
The object must satisfy either the pre- (if client) or post- (if supplier) conditions of these 
interactions. These conditions together form the safety requirements for that object. Figure 1 
shows how the set of safety requirements for an object will be formed from pre- or post-
conditions of a number of interactions. 
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Figure 1 – Safety Contracts Define Safety Requirements for a Class 
 

Defining Safety Contracts 
 

In order to define safety contracts for interactions in the system, it is necessary to consider a 
number of different properties of those interactions to identify how they may contribute to a 
system hazard. Three properties of an interaction are considered, function, timing and value. For 



each of these properties, safety analysis is performed to identify how these interaction properties 
could lead to the system hazard. The results of this analysis then define the requirements that 
make up the safety contract. The starting point for the analysis is a list of system level hazards 
identified during the initial hazard identification process. For each of the hazards identified it is 
necessary to perform analysis to identify how the hazard may be brought about. 
 
Function: A specification of the system design is required for analyzing the behavior of the 
system. A UML class diagram can be used to specify the static structure of the system, the 
dynamic behaviour can be specified using an interaction diagram. Figure 2 shows UML class and 
sequence diagrams for a simplified aircraft stores management system (SMS). This example will 
be used throughout the paper 
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Figure 2  - UML Class and Sequence Diagram for SMS 
 

The method for analyzing the safety of functional behavior of the system is discussed in reference 
1 and is applied to the SMS example above in reference 2. This method uses fault trees to extract 
the following hazardous behavior for the store class in the SMS system: 

• State = release ^ ¬checkWOW 
• State = release ^ WOW = true 

The state chart for the store class (figure 3) is then analysed by mutating transitions between 
states (figure 4) to identify behaviour of a store class that could lead to the hazardous behaviour 
above. It is possible for more complex system designs to use an automation tool to generate the 
mutated transitions and to check which of these transitions may bring about the hazardous 
condition. Such a tool is under development at the University of York. Although most of the 
faulty transitions identified through this method are not hazardous (i.e. will not contribute to the 
system hazard) they still result in incorrect operation. As mentioned earlier, in defining a safety 
contract we are only interested in constraining the hazardous behaviour. There is now sufficient 
information about the intended and faulty behaviour of the class to begin to construct a contract 
for operations which may contribute to the system hazard. 



 

Figure 3 – State Chart for Store Class Figure 4 – Mutated State Chart Showing Faulty 
Transitions  

 
Timing and Value: Although a large part of the safety requirements generated for any given 
system will be functional in nature, it is important to also consider the impact of non-functional 
properties on the safety of the system. Firstly the timing of the interactions is investigated. This 
analysis process hinges on identifying deadlines, separations and priorities for tasks performed by 
the system. A task is an encapsulated sequence of operations that executes independently of other 
tasks (ref.3). Therefore a task will consist of a number of interactions between classes in the 
system. Again the analysis begins with the identified system level hazards and at this point we 
focus on the normal scenario for releasing a store as shown in the sequence diagram in figure 5. 
This scenario can be broken into the following tasks: 
• Select store – This task begins with the pilot choosing a store and ends with that store being 

selected 
• Release store – This task begins with the pilot requesting a release and ends with the store 

being removed from its station. This task also includes a subtask of checking WOW. 
 The analysis involves investigating the effect of deviations on the tasks that are performed to 
identify which of these deviations may contribute to a system hazard. The deviations considered 
are tasks occurring too quickly or too slowly and early or late. Early and late correspond to a task 
occurring too soon or too long after the previous task or event. The result of applying these 
deviations to the identified tasks is shown in table1. 
 
Those tasks whose timeliness may have an impact on the safety of the system have now been 
identified and constraints must now be specified for these tasks. For quick and slow interactions it 
is necessary to constrain the response time of the task. If necessary a minimum response time and 
a maximum response time, or deadline can be specified for a task. A minimum response time will 
be specified for those tasks where too quick is identified as being hazardous and a deadline is 
specified for those where too slow could be hazardous. For tasks where early or late may be 
hazardous, minimum and maximum separations respectively between the completion of one task 
and the triggering of the next or between an event and the triggering of a task must be specified. 
These constraints can be used to define a safe scenario of tasks (see figure 5). 



 
Task Deviation Effect 

Quick No safety consequence (positive effect) – It is desirable that the selection of the 
correct store occur as quickly as possible 

Slow Potential safety impact – Delays in selecting the appropriate store for jettison may 
delay release 

Early 

Select Store 

Late 
This task is triggered by the pilot who’s decision to select a store will impact safety 
only if incorrect store is chosen 

Quick No safety consequence (positive effect) – It is desirable that the store be released as 
quickly as possible when requested 

Slow Potential safety impact – A delay in releasing a store could be hazardous to the 
aircraft under certain circumstances 

Early  Hazardous – A weapon released too soon after a previous weapon could be 
catastrophic 

Release Store 

Late No safety consequence 
 

Table 1 – The Effects of Timeliness of Tasks on System Hazards 
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Figure 5 – Constraints applicable to a sequence of tasks 

 
Domain knowledge is used to place the following requirements on the tasks identified above as 
being hazardous or potentially hazardous. It should be noted that this analysis is not trying to 
produce accurate estimates of execution times for operations or transactions, but to specify the 
minimum requirements for a safe system. Requirements should therefore be as weak as possible 
to allow maximum flexibility to the implemented system. In (ref. 4) we presented an approach 
and framework for identifying, in control systems, an appropriate and valid set of timing 
requirements, and their corresponding control parameters. The approach was based on 
decomposing the systems objectives to a number of design choices and assessment criteria. Each 
design choice was evaluated using a combination of static analysis and simulation. Heuristic 
search techniques were then used to search the design space for the design solution considered 
most appropriate. The figures given below are for illustration purposes only. 

• Select store – From pilot choosing a store to that store being selected should be no longer 
than 200ms – Deadline = 200ms 

• Release store – The minimum permissible time between store releases will vary 
depending on the type of store being released. For this example we will specify – Min 
Separation = 100ms 

• Release store – The time from the pilot requesting a store release to that store’s removal 
from the station should not exceed 50ms – Deadline = 50ms 

 
Up to this point only the normal scenario has been identified. A scenario is a sequence of actions 
that illustrates the execution of a use case. Therefore a normal scenario simply represents the 
normal or expected sequence of actions which occurs for a particular use case, in this example 
releasing a store. When considering safety however it is important to consider alternative 



scenarios which may occur as these could potentially be hazardous, but may also lead to a 
requirement for extra timing constraints. In order to illustrate the scenarios clearly, the UML 
notation of activity diagrams can be used to show the different sequences of tasks which may 
realise the use case. Although activity states in an activity diagram are normally used to model a 
step in the execution of a procedure, here each activity state is used to represent a task or sub-
task. Activity diagrams are felt to be particularly suited to this application as they emphasize the 
sequential and concurrent nature of the tasks in a scenario. The alternative scenarios can be 
identified by omitting tasks from the normal scenario, adding in extra tasks (i.e. repetition of 
existing tasks), tasks occurring concurrently with other tasks or tasks occurring in an alternate 
order. It is necessary to identify if any of the alternative scenarios identified could be hazardous. 
That is to say that they could provide an additional contribution to the hazard, they could also 
necessitate additional timing requirements. 
 
The data represented in the system can also contribute to system hazards if important data 
attributes are incorrect. It is important for each system hazard to identify which data attributes are 
critical. These critical data items must be constrained to ensure that they won’t contribute to the 
hazard. It is possible to take advantage of the information hiding principle inherent in OO when 
trying to place constraints. Because the attributes of a class are private, it is only possible for 
them to be manipulated by operations provided by the class. It is therefore possible to protect the 
accuracy of data items by constraining the interactions that may manipulate that data. Again this 
can be done through the use of contracts. For the system hazard ‘incorrect store released’ it can be 
identified (through a fault tree) that the pilot selecting an incorrect store, or the wrong store 
information being displayed to the pilot could cause incorrect store selection. This would be 
caused by the incorrect store being associated with a particular station. The critical attributes here 
(as identified from the class diagram in figure 2) are the station ID and store ID, which are 
associated through the location class. The only operation specified in this system design which 
can manipulate this data is the addStore() operation of the station class. When this operation is 
called on a station, the store ID passed as a parameter is associated with the station through the 
creation of a location object. By constructing a precondition for the addStore() operation it can be 
constrained to assure the store ID being passed is correct. The nature of this constraint can only 
be properly specified with a great deal of understanding about the system under consideration. 
Even more so than with functional and timing aspects of the system, the data within a system is 
very dependant on domain knowledge for deriving effective safety requirements  
 

Specifying Safety Contracts 
 

Once the safety requirements for the classes in the system have been derived it is necessary to 
specify these in a useful and meaningful way. In UML contracts may be specified using the 
Object Constraint Language (OCL) (ref.5). OCL can be used to specify three types of constraints, 
invariants, preconditions and postconditions. Invariants state a condition that must always be met 
by all instances of a class, type or interface. Invariants are expressions which evaluate to true if 
the invariant is met, and must be true all the time. Preconditions and postconditions are defined 
on operations and need only be true at a specific point in time i.e. at the start or end of execution. 
Preconditions must be true at the moment the operation is to be executed. Postconditions must be 
true at the moment the operation has just ended its execution. Unlike with invariants, pre- and 
postconditions need only be true at a certain point in time and not all the time. An OCL 
expression for an operation can be expressed as follows: 
 
context Typename::operationName(param1 : Type1,…):ReturnType 
 pre: aram1 > …  p
 post: result = … 



These constraints will form the basis of the safety contracts. One limitation with OCL is that the 
constraints that can be expressed are all requirements on static aspects of the system. As was seen 
in the example above, it is often necessary from a safety perspective to express that events have 
happened or will happen, that signals have or will be sent, or that operations are or will be called. 
An extension to OCL has been proposed (ref.6) that addresses this problem with the introduction 
of a new type of constraint called the action clause. The action clause contains three parts: a set of 
target instances to which the event(s) is sent, a set of events that has been sent to this target set, 
and an optional condition. The action clause evaluates to true if, and only if, whenever the 
condition holds, the virtual output queue of the instance that executes the operation has contained 
at some point in time during execution of the operation, all target – event pairs that are specified 
in the combination of the target set and the event set. This action clause is particularly useful for 
describing the functional aspects of the safety requirements. From the results of the analysis 
carried out in the example, a safety contract can be defined for the store class which restricts the 
hazardous behavior. This safety contract is shown below: 
 
context Store ::release() 
pre: none 
post: WOW=false 
action: to Stores_Manager send checkWOW() 
 
A further limitation of OCL is that no way is provided for representing constraints over the 
dynamic behavior of a system. Again an extension to OCL has been proposed for modeling real-
time systems (ref.7). This provides a mechanism for representing deadlines and delays. Deadlines 
for operations can be represented in the following manner: 
 
context Typename::operationName(param1:Type1,…):ReturnType 

 pre: … 
 post: Time.now <= Time.now@pre + timeLimit 
 
Where Time is a primitive data type that represents the global system time and timeLimit is a 
variable representing a time interval. In our examples we take the unit of time to be ms. The 
above constraint represents a maximum permissible execution time equal to timeLimit for the 
operation operationName.  
Delays in reactions to signals or events can be represented in the following manner: 
 
context Typename::operationName(param1:Type1,…):ReturnType 

 pre: lastEvent.at + timeLimit >= Time.now 
 post: … 
 
Where lastEvent.at is the arrival time of the last event. This represents a maximum delay equal 
to timeLimit for reaction to the lastEvent. The requirements derived for the timing aspects of 
the store class can thus also be represented as part of the contract. The safety contract for the store 
classs of the SMS would therefore be of the form: 
 
context Store ::release() 
pre: previous_release.at + 2500 >= Time.now 
post: WOW=false  

Time.now <= Time.now@pre + 250 
action: to Stores_Manager send checkWOW() 
 
Although OCL is not the only possible mechanism for representing safety contracts, as it is part 
of the UML, it is more easily integrated with the system design. The safety requirements on each 
class in the system design are therefore explicit. For a system to be safe, the class must meet the 



set of safety requirements consisting of all pre conditions of interactions for which it is the client, 
and all post conditions of interactions for which it is the supplier. To know that a system will be 
safe it is necessary to show that the complete set of safety requirements are met. 
 

Managing Change and Reuse Through Safety Contracts 
 

The safety requirements for the system design have now been specified. It is possible however 
that changes may occur to a system design at a time after these requirements have been derived. 
As mentioned earlier, an advantage of adopting an OO approach to system design is that there is 
improved stability in the presence of changes. Changes in the requirements do not tend to affect 
the entire structure of the system but are localized to particular aspects. This means that the “cost” 
of making a change can be greatly reduced. However in order to truly realize this benefit for 
safety-related systems the re-analysis required must also be localized as much as possible to the 
particular aspects that have changed. It is proposed that safety contracts provide a mechanism for 
achieving this. Changes can affect the system in different ways. 
 
If a class in a system has safety requirements defined through contracts, as long as all system 
hazards have been correctly identified, safe behavior has been defined for the interactions in 
which that class partakes. If changes are then made to the class design then the class must still 
guarantee to do what it did before to meet its contractual requirements or do better. It should also 
not require anything more than it did before but it may require less.  It must also still fulfill the 
requirements of other classes with which it interacts as a client. Once the change is made, it is 
sufficient therefore to show that the new class design still meets these requirements.  
 
This is only true however if the changes that have been made to the class do not include the 
introduction of additional interactions with other elements of the system. If new interactions are 
added then this could introduce new ways in which a hazard could arise in the system. The new 
interaction could be a call to an existing operation with which there was previously no interaction. 
In this case, if a safety contract exists for this operation then the calling class must assure the 
newly acquired safety requirement defined by the precondition of the called operation can be met 
by the class design. If no safety contract has been specified for the operation called in the 
interaction then it is necessary to check that the interaction could not contribute to a system 
hazard. This will then necessitate further analysis on this new interaction to determine what new 
derived safety requirements are necessary. This would also apply in the case of additional classes 
being introduced into the system design. As well as additional interactions, the effect of 
interactions being removed must also be considered as this could also impact on the ability of a 
class to meets its contractual operations. 
 
In an OO system, a change may also result from the use of inheritance to extend an existing class. 
The subclasses produced using the inheritance mechanism inherit all the attributes and operations 
of the parent class. Additional attributes and operations may then be added by the subclasses if 
required. In the same way that attributes and operations are inherited, it is proposed that the safety 
contracts of the parent class be inherited in a similar fashion. The new version of the contract 
which is created must remain compatible with the original contract, however it may improve on it 
by weakening the original precondition or strengthening the postcondition. These inherited 
contracts can be extended as required to include further derived requirements for the subclass. As 
with all changes made to a system it is necessary to check that the classes meet any contractual 
requirements placed on them. Where inheritance occurs this process can be more complicated.  
 
Figure 6 shows an example from the SMS where the properties of store class are inherited to 
created two new classes, a weapon class and fuel tank. Weapon class has inherited the release 



operation from class store and redeclared it (changed the implementation of that operation). The 
principles of polymorphism allow store objects to become attached to instances of weapon. If the 
stores manager were now to make a call to the release operation then dynamic binding would 
ensure the redeclared version of release in weapon would be called rather than store’s original 
version. The difficulty arises because the author of the stores manager class can only look at the 
safety contract for the release operation in store and could thus potentially violate a safety 
contract for the operation that is actually being called in weapon. Fortunately the use of safety 
contracts means that if stores manger meets contractual obligations for release in store, then it is 
known that the obligations for release in weapon will also be met as the weapon class can only 
match or improve on the safety contract in store. 
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Figure 6 – Redefinition of an Operation Under Contract 

 
Inheritance is a useful mechanism for reuse as it makes it possible to reuse an existing repertoire 
of classes that have behavior similar to that which is required in a new system. However when 
using inheritance to reuse classes in a new system, there are additional considerations. It is not 
sufficient to inherit existing contracts and show that they are met as described above. As the 
system under consideration is different from that in which the original parent class was used there 
may be different system level hazards to consider. Hence it is necessary to show the existing class 
safety requirements are still valid in the context of the new system safety requirements. The 
classes being reused in the new system may potentially contribute to these additional system 
hazards and therefore necessitate extra constraints in the contract. For example, if the store class 
from the example in figure 6 were used to derive weapons classes in a different aircraft, there 
may be additional hazards specific to that aircraft which were not present in the original system. 
This will require additional analysis for each of these hazards. The system in which the elements 
are being reused should be as similar to the original system as possible. If this is not the case then 
the re-analysis required to ensure the safety of the system will be large and the benefits of reusing 
existing elements will be greatly reduced. 
 

Conclusions 
 

In this paper we have described how safety contracts can be constructed for OO systems through 
focused safety and hazard analysis. We have then gone on to look at how OCL can be used to 
represent these contracts. Finally we have discussed how contracts can be used to facilitate 
change and reuse. 
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