
	 1	

A Software Safety Argument Pattern Catalogue

R. Hawkins and T. Kelly

{richard.hawkins\tim.kelly}@york.ac.uk

Department of Computer Science

The University of York

Abstract

This document presents a catalogue of software safety argument patterns. The catalogue builds upon
existing work and also takes account of current good practice for software safety, including from existing
standards. The software safety argument pattern catalogue contains a number of patterns that may be
used together in order to construct a software safety argument for the system under consideration.

The software safety argument patterns describe the nature of the argument and safety claims that would
be expected for any software safety case. The way the argument is supported may be different for each
system but the ‘core elements’ of the argument (as defined by the patterns) remain.

The effectiveness of the software safety argument patterns has been demonstrated through application
to a number of case studies.

	 2	

Contents 	

1.	 Introduction	 ..	 3	

2.	 Software Safety Argument Pattern Catalogue Structure	 ...	 4	

3.	 The Software Safety Argument Pattern Catalogue	 ...	 5	

3.1.	 High-Level Software Safety Argument Pattern	 ..	 5	

3.2.	 Software Contribution Safety Argument Pattern	 ...	 9	

3.3.	 SSR Identification Software Safety Argument Pattern	 ...	 16	

3.4.	 Hazardous Contribution Software Safety Argument Pattern	 ...	 20	

3.5.	 Software Contribution Safety Argument Pattern with Grouping	 ...	 23	

4.	 Conclusions	 ..	 27	

5.	 References	 ...	 28	

6.	 Appendix A	 ..	 29	

A.1 Goal Structuring Notation (GSN)	 ..	 29	

A.2 Modular GSN	 ...	 29	

A.3 GSN Pattern Notation	 ...	 30	

	 3	

1. Introduction

Software safety argument patterns provide a way of capturing good practice in software safety
arguments. Patterns are widely used within software engineering as a way of abstracting the
fundamental design strategies from the details of particular designs. The use of patterns as a way of
documenting and reusing successful safety argument structures was pioneered by Kelly in [1]. As with
software design, software safety argument patterns can be used to abstract the fundamental argument
strategies from the details of a particular argument. It is then possible to use the patterns to create
specific arguments by instantiating the patterns in a manner appropriate to the application.

There exist a number of examples of safety argument patterns. Kelly developed an example safety case
pattern catalogue in [1] which provided a number of generic solutions identified from existing safety
cases. Although providing a number of useful generic argument strategies, the author acknowledges that
this catalogue does not provide a complete set of patterns for developing a safety argument, it merely
represents a cross-section of useful solutions for unconnected parts of arguments. Kelly’s pattern
catalogue does not deal specifically with any software aspects of the system.

The safety argument pattern approach was further developed by Weaver [2], who specifically developed
a safety pattern catalogue for software. The crucial differences with this catalogue were firstly that the set
of patterns in the catalogue were specifically designed to connect together in order to form a coherent
argument. Secondly the argument patterns were developed specifically to deal with the software aspects
of the system.

There are a number of weaknesses that have been identified with Weaver’s pattern catalogue. First, the
patterns take a fairly narrow view of assuring software safety, in that they focus on the mitigation of
known failure modes in the design. Mitigation of failure modes is important, but there are other aspects
of software assurance which should be given similar prominence.

Second, issues such as safety requirement traceability and mitigation were considered at a single point in
Weaver’s patterns. This is not a good approach; it is clearer for the argument to reflect the building up of
assurance relating to traceability and mitigation over the decomposition of the software design.

Finally, Weaver’s patterns have a rigid structure that leaves little scope for any alternative strategies that
might be needed for novel technologies or design techniques.

A software safety pattern catalogue was also been developed by Ye [3], specifically to consider arguments
about the safety of systems including COTS software products. Ye’s patterns provide some interesting
developments to Weaver’s, including patterns for arguing that the evidence is adequate for the assurance
level of the claim it is supporting. Although we do not necessarily advocate the use of discrete levels of
assurance, the patterns are useful as they support the approach of arguing over both the trustworthiness
of the evidence and the extent to which that evidence supports the truth of the claim.

The catalogue of software safety argument patterns presented in this document builds upon the existing
work discussed above, and also takes account of current good practice for software safety, including from
existing standards. The software safety argument pattern catalogue contains a number of patterns which
may be used together in order to construct a software safety argument for the system under
consideration.

The software safety argument patterns describe the nature of the argument and safety claims that would
be expected for any software safety case. The way the argument is supported may be different for each
system but the ‘core elements’ of the argument (as defined by the patterns) remain.

A number of case studies have been used to implement the software safety argument patterns [4]. These
case studies have highlighted the benefits of utilising the patterns when developing software safety cases.

	 4	

2. Software Safety Argument Pattern Catalogue Structure

The following argument patterns are provided in the software safety argument pattern catalogue:

High-level software safety argument pattern (Section 3.1) – This pattern provides the high-
level structure for a software safety argument. The pattern can be used to create the high level structure
of a software safety argument either as a stand-alone argument or as part of a broader system safety
argument.

Software contribution safety argument pattern (Section 3.2) - This pattern provides the
structure for an argument that the contributions made by software to system hazards are acceptably
managed. This pattern is based upon a generic ‘tiered’ development model in order to make it generally
applicable to a broad range of development processes and technologies.

Software Safety Requirements identification pattern (Section 3.3) - This pattern provides the
structure for an argument that software safety requirements (SSRs) are correct and appropriate for each
tier of the software design.

Hazardous contribution software safety argument pattern (Section 3.4) – This pattern
provides the structure for an argument that hazardous errors are not introduced at each tier of software
design decomposition. This includes arguing that mistakes have not been made in decomposing the
design, and also that no new hazardous behaviour has been introduced.

Software contribution safety argument pattern with grouping (Section 3.5) - This pattern
is an extension of the Software Contribution Safety Argument Pattern. It provides the option of
grouping the argument to reflect natural requirements groupings in the software design.

When instantiated for the target system, these patterns link together to form a single software safety
argument for the software.

The argument patterns are documented using the pattern extensions to the Goal Structuring Notation
(GSN), described in Appendix A.

	 5	

3. The Software Safety Argument Pattern Catalogue

3.1. High-Level Software Safety Argument Pattern

High-Level Software Safety Argument Pattern

Author Richard Hawkins

Created 09/12/08 Last modified 08/06/09

INTENT

This pattern provides the high-level structure for a software safety argument. The pattern can either be
used to create the high level structure of a ‘stand alone’ software safety argument considering just the
software aspects of the system, or alternatively can be used to support claims relating to software aspects
within a broader system safety argument.

STRUCTURE

The structure of this argument pattern is shown in Figure 1. Note that there are a number of different
possible top goals for this pattern, as indicated by the public goals in the argument structure below.

	 6	

Goal: SwSystem Safe

{software Y} is acceptably
safe to operate within
{system Z}

Con: Sw

{Description of
{software Y}}

Con: system

{Description of
{system Z}}

Con: operating
context
{Description of
operating context of
{system Z}}

A

Ass: hazards

All system hazards
have been correctly
identified

Strat:
swContributionAcc

Argument over each
hazard to which {software
Y} may contribute

Goal: Hazard

Software contribution(s) to
{Hazard} is acceptably
managed

number of hazards to which
the software may contribute

Con: hazards

{Description of hazards
to which {software Y}
may contribute}

Goal: swContributionAcc

The contribution made by
{software Y} to {system Z}
hazards is acceptable

Strat: contMit

Argument over each
identified software
contribution to {Hazard}

Goal: sw contribution

{software contribution} to
{Hazard} is acceptably
managed

n
number of identified software

contributions to {Hazard}

Goal: contIdent_contIdent

The ways in which {software Y} may
contribute to {Hazard} are completely
and correctly identified

contIdent

Con: contributions

{Description of the ways
in which {software Y}
may contribute to
{Hazard}}

Con: safetyRqt

Software contribution may
in some cases be defined
as an explicit safety
requirement

Figure 1 – High Level Software Safety Argument Pattern Structure

	 7	

PARTICIPANTS

Goal: SwSystem Safe

If a stand-alone software safety argument is being produced then this goal should be used as the top goal
in the argument since it clearly sets out the overall objective of the software safety argument. It is
necessary to provide the three items of context to make the scope of the software safety argument clear
to the reader. This goal has been designated as a public goal to indicate that it may be used as the top
goal in the argument.

Goal: swContributionAcc

This goal makes it clear that a hazard directed approach is adopted, by considering the contributions
made by the software to the system’s hazards. If the pattern is being used as part of a system safety
argument, then this goal may provide the link in to that argument (hence a public goal). This would be
the case if the system safety argument considers the contribution of the software all in one place. It is
not necessary to include the context to provide descriptions of the system and the software if this is
already clear from the system safety argument.

Ass: hazards

The system hazards can only be identified at the system level. Identification of system hazards is
therefore outside of the scope of the software safety argument. It is acceptable therefore to make this
assumption as long as the assumption is demonstrated elsewhere at the system level. If an argument to
support this assumption exists with a system safety argument then it would be appropriate to link to
that argument at this point instead of making an assumption.

Strat: swContributionAcc

To ensure traceability from the software to system hazards, the strategy adopted is to argue explicitly
over each of the hazards identified at the system level.

Goal: Hazard

For each hazard there may be one or more potential contributions from the software identified at the
system level. An instance of this goal is created for each of the system hazards to which the software may
contribute. At the system level the software will only be considered from a ‘black-box’ point of view, so
the contribution may be identified in the form of high-level functionality, or safety requirements. These
contributions would be considered base events at the system level, and would not generally be
developed further in a system level argument.

Goal: contIdent

It is necessary to ensure that all the software contributions are correctly identified at the system level.
This is crucial to the assurance of the argument as it provides the warrant for the adopted strategy of
arguing over the software contributions. This goal provides context to the strategy contMit and must be
supported by an argument contained in a separate module (contIdent). Software contributions are often
identified as base events in a fault tree analysis performed at the system level. The argument in module
contIdent would, in such a case, reason about the rigour and suitability of that analysis.

Goal: sw contribution

An instance of this goal is created for each of the identified software contributions to each of the system
hazards. The Software contribution safety argument pattern (section 3.2) may be used to generate an
argument to support this goal.

	 8	

APPLICABILITY

This pattern should be applied whenever a software safety argument is required as part of a safety case.

CONSEQUENCES

Once this pattern has been instantiated, a number of elements will remain undeveloped and requiring
support. Firstly ‘Goal: sw contribution’ must be supported. The Software contribution safety argument
pattern presented in this catalogue can be used to support this goal. In addition, an argument to support
‘Goal: contIdent’ must also be developed in module contIdent. This argument will be based on analysis
performed at the system level, so in some cases a sufficient argument may exist at the system level which
can be used to support this claim.

IMPLEMENTATION

There are a number of different possible top goals for this pattern, as indicated by the public goals. The
appropriate top level goal for the argument must be determined through consideration of the structure
of any system safety argument which the software safety argument supports. If the pattern is being used
to support a system level safety argument, the top goal from this pattern may not actually appear at the
top of the overall argument structure. Instead it will appear as a child-goal within the system safety
argument. It is important that a stand-alone software safety argument begins with the top goal ‘Goal:
swSystem Safe’ to capture the overall objective of the argument and all the required contextual
information.

POSSIBLE PITFALLS

The software contributions may not have been adequately identified at the system level. This may then
necessitate further analysis at the system level. It is therefore clearly advantageous to ensure software is
considered as part of the system level safety activities.

RELATED PATTERNS

This pattern is supported by the Software contribution safety argument pattern.

	 9	

3.2. Software Contribution Safety Argument Pattern

Software Contribution Safety Argument Pattern

Author Richard Hawkins

Created 09/12/08 Last modified 08/06/09

INTENT

This pattern provides the structure for arguments that the contributions made by software to system
hazards are acceptably managed.

MOTIVATION

It is necessary to consider all of the ways in which errors may be introduced into the software which
could lead to the software contribution. The software development process used will vary between
different projects, however in all cases the software development is undertaken through varying levels of
design. At each level the design must satisfy requirements of the higher level. These requirements may
be explicitly captured as part of a requirements specification, or identified implicitly from the design
itself. In [5] Jaffe et al propose an extensible model of development which captures this relationship
between components at different tiers. Figure 1 illustrates the multi-tiered relationship between
successively more detailed requirements and design information. Figure 2 illustrates in more detail the
relationship among a tier n component’s requirements, its design representation, and the tier n+1
requirements of the tier n+1 (sub) components identified in the design representation.

	 10	

Figure 2 - Illustration of a multi-tiered relationship

Figure 3 - More detailed illustration for a tier n component

	 11	

From a safety perspective, it is necessary to ensure that at each tier, the software safety requirements
derived at the previous tier are adequately addressed. This involves making design decisions which
mitigate potential failures and adequately allocating and decomposing the software safety requirements
(SSRs) through consideration of the design at that tier. At each tier it is also possible to introduce errors
into the software which could manifest themselves as hazardous failures. It is therefore important in the
software safety argument to also consider additional hazardous contributions that may be introduced at
each tier.

This pattern therefore reflects the tier model discussed above in order to make it generally applicable to
a broad range of development processes.

	 12	

STRUCTURE

The structure of this argument pattern is shown in Figure 4 below.

Goal: sw contribution

{software contribution} to
{Hazard} is acceptably
managed at {tier n}

Strat: sw
contribution

Argument over SSRs
identified for {tier n}

Goal: SSRnAddn

{SSRn} addressed through
the realisation of the design
at {tier n}

Con: tierNdesign

{{tier n} design}

number of SSRs at {tier n}

Goal: SSRnSat

{SSRn} demonstrably
satisfied through evidence
provided at {tier n}

At least 1 of 2

Goal: SSRnAddn+1

{SSRn} addressed through
the realisation of the design
at {tier n+1}

n++

Con: SSRsN

{SSRs identified
for {tier n}}

Goal: SSRidentify _SSRidentify

SSRs from {tier n-1} have been
adequately allocated, decomposed,
apportioned and interpreted at {tier n}

SSRidentify

Goal: hazCont_hazCont

Potential hazardous failures at
{tier n} are acceptably managed

hazCont

Figure 4 – Software Contribution Safety Argument Pattern Structure

	 13	

PARTICIPANTS

Goal: sw contribution

An instance of this goal is required for each of the identified software contributions to each of the
system hazards. For this top claim in the pattern, {tier n} will in this case refer to the highest tier in the
development process. This highest tier is generally referred to as (high-level) software requirements.

Strat: sw contribution

The strategy adopted is to argue over all the SSRs which are identified at this tier. These SSRs are either
derived from the DSSRs of the previous tier, or through consideration of additional hazardous
contributions that may occur at this tier.

Goal: SSRidentify

The SSRs from the previous tier must be allocated to the tier n design appropriately, having been
suitably decomposed where necessary, and correctly apportioned across the design as part of that
decomposition. The SSRs may also require interpretation to reflect the tier n design. As part of
supporting this goal it is necessary to consider the design decisions that are taken in order to mitigate
failures, including mechanisms for failure detection and response. At the highest tier, there are no SSRs
from the previous tier, instead, the software contribution itself must be considered. This goal is crucial
to the assurance of the argument as it provides the warrant for the adopted strategy of arguing over
SSRS identified for tier n. This goal must be supported by an argument contained in a separate module
(SSRidentify). The SSR identification software safety argument pattern may be used to generate an
argument to support this goal. This goal is optional, since it may not necessarily be required to provide
direct traceability at every tier. The decision as to whether this is required at a particular tier must be
based on a consideration of assurance. It may be necessary to justify such a decision by providing an
argument. The Argument justification software safety argument pattern may be used to provide such an
argument. It would be possible, instead of supporting this goal, to simply provide an assumption node
stating that SSRs from the previous tier have been adequately allocated, decomposed, apportioned and
interpreted. This would however significantly reduce the assurance achieved, so the impact of such a
decision must be considered.

Goal: hazCont

At any tier in the development there is the possibility of introducing additional contributions to hazards
due to errors made at that tier. This goal claims that such potential hazardous contributions are
addressed through the specification of additional SSRs. Supporting this goal requires that the potential
hazardous contributions at tier n are adequately identified, and that SSRs sufficient to address those
hazardous contributions are specified. This goal is crucial to the assurance of the argument as it provides
the warrant for the adopted strategy of arguing over SSRs identified for tier n. This goal must be
supported by an argument contained in a separate module (hazCont). The Hazardous contribution
software safety argument pattern may be used to generate an argument to support this goal. This goal is
optional, since it may not necessarily be required to identify hazardous contributions at every tier. The
decision as to whether this is required at a particular tier must be based on a consideration of the impact
on assurance. It may be necessary to justify such a decision by providing an argument. The Argument
justification software safety argument pattern may be used to provide such an argument. It would be
possible, instead of supporting this goal, to simply provide an assumption node stating that DSSRs have
been correctly identified at tier n to address the identified potential additional hazardous contribution.
This would however significantly reduce the assurance achieved, so the impact of such a decision must
be considered.

Goal: SSRnAddn

	 14	

An instance of this goal is created for each SSR identified at tier n (represented as SSRn). There is an
option for how this goal is supported. It can be supported by either, or both of goals ‘SSRnSat’ and
‘SSRnAddn+1’. It may be necessary to justify such a decision by providing an argument. The Argument
justification software safety argument pattern may be used to provide such an argument.

Goal: SSRnAddn+1

It is possible to demonstrate that the SSRs at tier n are addressed by showing traceability down to the
subsequent tier of development. The argument then continues through a further instantiation of ‘Strat:
sw contribution’. {tier n+1} then becomes {tier n}.

Goal: SSRnSat

It is possible at any tier to provide verification evidence of the satisfaction of the SSRs for that tier. This
may be, for example, testing or analysis performed at that tier. Not all software is subject to the same
number of tiers of development. Also, not all aspects of any particular software are necessarily
developed over the same number of tiers. It is therefore also possible for implementation to occur at any
tier. At the tier of implementation it is possible to provide argument and evidence to demonstrate that
the SSR is satisfied by the implementation (such as different types of testing or analysis).

APPLICABILITY

This pattern should be applied as part of any hazard-directed software safety argument.

CONSEQUENCES

Once this pattern has been instantiated, a number of elements will remain undeveloped and requiring
support. ‘Goal: SSRIdentify’ must be supported. The DSSR identification software safety argument
pattern presented in this catalogue can be used to support this goal. ‘Goal: hazCont’ must be supported.
The Hazardous contribution software safety argument pattern presented in this catalogue can be used to
support this goal. Finally ‘Goal: SSRnSat’ must be supported. As discussed, detailed guidance on the
development of the argument to support this goal will be the subject of future work.

IMPLEMENTATION

This pattern should be instantiated as part of a software safety argument. An instantiation of ‘Goal:
SSRIdentify’ must be created for each identified software contribution to each system hazard. {tier n},
and {tier n+1} must be instantiated with the names of the relevant tier. Note that as the argument is
developed over multiple tiers, {tier n} will refer to different tiers. {SSRn} is used to refer to a SSR at tier
n, and should be instantiated with the SSR itself or a unique identifier for the SSR. Note that in this
pattern the looping link represents a repeating pattern of argument, and would not appear in such a
manner in an instantiated argument.

POSSIBLE PITFALLS

Whilst acknowledging that in many cases not all the optional goals may be provided at each tier, it is
also important to note the significance of this pattern on the achieved assurance. Assurance deficits
introduced in instantiating this pattern can have a potentially large impact. In such cases the additional
support may prove necessary. It is therefore important that the assurance impact of decisions taken at
each tier of development are fully considered, to avoid additional work at a later date.

RELATED PATTERNS

Consideration should be given to the application of the Argument justification software safety argument
pattern wherever significant decisions about how to instantiate the optional aspects of this pattern are

	 15	

made. The Argument justification software safety argument pattern should be instantiated in context to
this pattern to justify the acceptability of any residual assurance deficits as a result of the instantiation
decisions. This pattern supports the High-level software safety argument pattern. Support for ‘Goal:
SSRIdentify’ and ‘Goal: hazCont’ can be provided using the SSR identification software safety argument
pattern and the Hazardous contribution software safety argument pattern respectively.

	 16	

3.3. SSR Identification Software Safety Argument Pattern

SSR Identification Software Safety Argument Pattern

Author Richard Hawkins

Created 09/12/08 Last modified 08/06/09

INTENT

This pattern provides the structure for arguments that software safety requirements (SSRs) from a
previous tier of development have been adequately captured at the next tier of development through
the allocation, decomposition, apportionment or interpretation of the SSRs from the previous tier. This
is achieved either through making design decisions which mitigate the SSR, or through the definition of
additional SSRs.

	 17	

STRUCTURE

The structure of this argument pattern is shown in Figure 5 below.

Goal: SSRidentify

SSRs from {tier n-1} have been
adequately allocated,
decomposed, apportioned and
interpreted at {tier n}

Goal: designDecisions

Design decisions taken at {tier n} are
appropriate to ensure that the SSRs
from {tier n-1} are maintained in the
context of the potential hazardous
failures identified at {tier n}

Goal: SSRcapture

SSRs at {tier n} adequately
capture the SSRs from {tier
n-1} for the {tier n} design

Strat: SSRidentify

Argument over the {tier
n} design and the SSRs
specified at {tier n}

Goal: designDecision

{design decision} ensures SSRs
from {tier n-1} are maintained in
the context of the identified
potential hazardous failures

number of relevant design
decisions

con: tierNdesign

{tier n} design

Con: SSRsN-1

{SSRs from {tier
n-1}}

Con: SSRsN

{SSRs identified
for {tier n}}

Strat: SSRcapture

Argument over each
SSR from {tier n-1}

Goal: SSRn

{SSRn-1} adequately
captured by one or more
{SSRn}

no. of SSRs from tier {n-1}

Strat: designDecisions

Argument over design
decisions taken at {tier n}

Con:
designDecisions

Design decisions
taken at {tier n}

Con: relevantSSRs

SSRs relevant to
{design decision} are
{SSRs}

Con: hazFail

Potential hazardous
failures at {tier n}
identified in Goal:
hazCont

Figure 5 – SSR Identification Software Safety Argument Pattern Structure

	 18	

PARTICIPANTS

Goal: SSRidentify

This is a public goal in a separate argument module which can be referenced from other software safety
argument modules using an away goal reference. This claim is applicable wherever an argument is being
presented over the tiers of the software development lifecycle. {tier n} refers to the current tier being
considered in the argument. {tier n-1} refers to the previous tier of development. At each tier it is
necessary to demonstrate that the SSRs from {tier n-1} are adequately captured in the design of {tier n}.

Strat: SSRidentify

This is achieved either through making design decisions at {tier n} which facilitate the satisfaction of the
{tier n-1} SSR, or through the definition of SSRs for {tier n} which consider the {tier n} design. In some
cases a mixture of appropriate design decision and SSR definition might be required to capture all of the
{tier n} SSRs. In other cases just one approach may be sufficient, this will depend on a number of factors
including the nature of the SSRs, which tier is being considered and the nature of the design of {tier n}.
The Argument justification software safety argument pattern may be used to justify the adopted
strategy.

Goal: SSRcapture

This goal claims that the design of {tier n} has been considered in order to define SSRs for {tier n} which
adequately capture the SSRs from {tier n-1}.

Con: tierNdesign

The design of {tier n} will be determined by the design decisions made, some of which may have been
influenced by {tier n-1} SSRs. The {tier n} design will also determine the nature of the SSRs defined at
{tier n}. This context is therefore common to both ‘Goal: SSRcapture’ and ‘Goal: designDecisions’.

Goal: SSRn

An instance of this goal is created for each SSR from {tier n-1}. To adequately reflect each {tier n-1} SSR,
one or more SSRs may be required at {tier n}.

Goal: designDecisions

It may be possible to facilitate the satisfaction of some of the {tier n-1} SSRs through decisions taken in
the design of {tier n}. For example, a decision to have redundant components may be taken in order to
help satisfy a SSR relating to the availability of an item of data. Alternatively a decision may be taken to
introduce into the design a mechanism for detecting and handling failures which may lead to the breach
of an SSR. It may also be possible, for example, to prevent interference between components through
ensuring physical or logical partitioning in the design. This goal allows claims to be made that such
decisions reflect the SSRs from {tier n-1}. The appropriate of the design decisions will depend upon the
nature of the SSRs.

Goal: designDecision

An instance of this goal is created for each design decision taken which is relevant to the satisfaction of a
SSR from {tier n-1}. Each instance of this goal requires a supporting argument which demonstrates how
the design feature supports the SSR satisfaction.

Con: relevantSSRs

This context specifies the SSRs which this design decision helps to satisfy.

	 19	

APPLICABILITY

This pattern should be applied as part of any hazard-directed software safety argument to provide a
warrant for an argument that SSRs from one development tier are adequately addressed at the next tier.

CONSEQUENCES

Once this pattern has been instantiated, a number of elements will remain undeveloped and requiring
support. An instance of ‘Goal: SSRn’ must be supported for each SSR from {tier n-1}. An argument
should be provided which demonstrates that one or more SSRs specified at {tier n} adequately capture
the {tier n-1} SSR for the design at {tier n}. An instance of ‘Goal: designDecision’ must be supported for
each design decision which was made to facilitate the satisfaction of SSRs at {tier n}. ‘Goal: HSFMdetect’
and ‘Goal: SSRprevent’, if created, must also be supported.

IMPLEMENTATION

{tier n}, and {tier n-1} must be instantiated with the names of the relevant tier. This could for example
be class design and high-level software design respectively.

POSSIBLE PITFALLS

The SSRs defined at {tier n} must adequately reflect the {tier n} design. If that design changes, it is
necessary to check that the SSRs defined at {tier n} are still valid, and if necessary update the SSRs to
reflect the design changes. For this reason it would be advantageous to have a reasonably stable design
for {tier n} before defining SSRs for that tier. Since the SSRs from {tier n-1} may influence the design, it
is important that this is considered early in the design of {tier n}, such that any resulting design changes
are not required late in the development.

RELATED PATTERNS

This pattern is used to provide context to the Software contribution safety argument pattern.
Consideration should be given to the application of the Argument justification software safety argument
pattern wherever significant decisions about how to instantiate the optional aspects of this pattern are
made.

	 20	

3.4. Hazardous Contribution Software Safety Argument Pattern

Hazardous Contribution Software Safety Argument Pattern

Author Richard Hawkins

Created 09/12/08 Last modified 08/06/09

INTENT

This pattern provides the structure for arguments that potential hazardous failures that may arise at
{tier n} are acceptably managed.

MOTIVATION

At each tier of software development it is possible that hazardous failures may manifest themselves. This
argument demonstrates how the hazardous failures are prevented. This is achieved in two ways. Firstly
potential hazardous failure modes are identified, and appropriate SSRs defined in response. Secondly,
the absence of design errors which could cause hazardous failures must also be demonstrated. It should
be noted that this aspect of the argument will often consider more generally how errors are removed
from the design.

	 21	

STRUCTURE

The structure of this argument pattern is shown in Figure 6 below.

Goal: hazFail

SSRs at {tier n} address the
potential hazardous behaviours
identified at {tier n}

Goal: HSFMident

HSFMs correctly
identified at {tier n}

Goal: SSRderived

SSRs sufficient to address
identified HSFMs are
defined

Con: HSFMs

{{tier n} HSFMs}

Goal: hazCont

Potential hazardous failures
at {tier n} are acceptably
managed

Goal: Errors

Potentially hazardous design
errors are not introduced at
{tier n} design

Goal: procError

{tier n} design process does
not introduce hazardous
errors

Goal: desError

{tier n} design does not
contain hazardous errors

at least 1 of 2

Con: designErrors

Potentially hazardous
design erros for {tier n}
design are {design
errors}

Figure 6 - Hazardous Contribution Software Safety Argument Pattern Structure

	 22	

PARTICIPANTS

Goal: hazCont

This is a public goal in a separate argument module which can be referenced from other software safety
argument modules using an away goal reference. This claim is applicable wherever an argument is being
presented over the tiers of the software development lifecycle. {tier n} refers to the current tier being
considered in the argument. This goal claims that the potential hazardous failures at the current tier are
acceptably managed.

Goal: Errors

The design process at any tier may be flawed. This goal claims that potentially hazardous design (or
code) errors have not been introduced at the current tier. This supported by arguing about the design
process adopted at the current tier, and about the design artefact itself.

Goal: desError

This goal claims that the design (or code) produced at the current tier does not contain potentially
hazardous errors.

Goal: procError

This goal must be supported by argument and evidence about the integrity of the design process that is
used at the current tier. Note that at the lowest level tiers this may include the coding process.

Goal: hazFail

This goal claims that SSRs are identified, sufficient to address the potential hazardous behaviours
identified at {tier n}. The goal is supported by demonstrating that hazardous software failure modes
(HSFMs) (that is failure of the software which could contribute to a hazard at the system level) at {tier n}
are sufficiently identified, and that each of these HSFMs is addressed through the definition of one or
more SSRs.

APPLICABILITY

This pattern should be applied as part of any hazard-directed software safety argument to provide a
warrant for an argument that SSRs from one development tier are adequately addressed at the next tier.

CONSEQUENCES

Once this pattern has been instantiated, a number of elements will remain undeveloped and requiring
support. ‘Goal: deviations’ must be supported by an argument provided in a ‘deviations’ safety
argument module. An instance of ‘Goal: HSFMaddress’ must be supported for each HSFM identified at
{tier n}. ‘Goal: HSFMs’ must also be supported.

IMPLEMENTATION

The techniques most appropriate to use to identify potential deviations from intended behaviour at
each tier will vary. Appendix B provides some examples of the types of hazard and failure analysis
techniques that may be used at some of the possible tiers.

RELATED PATTERNS

This pattern is used to provide context to the Software contribution safety argument pattern.

	 23	

3.5. Software Contribution Safety Argument Pattern with Grouping

Software Contribution Safety Argument Pattern with Grouping

Author Richard Hawkins

Created 07/12/10 Last modified 07/12/10

INTENT

This pattern is an extension of the Software Contribution Safety Argument Pattern. It provides the
option of grouping the argument to reflect natural requirements groupings in the software design. For
example, for an instantiation of the Software Contribution Safety Argument Pattern at the software
architecture level, it may be desirable to create groupings in the argument which reflect each of the
individual architectural design elements.

MOTIVATION

Grouping aspects of the Software Contribution Safety Argument Pattern can help to manage the safety
argument where there exist a large number of claims at a particular tier of decomposition by splitting
the argument into manageable chunks.

	 24	

STRUCTURE

The structure of this argument pattern is shown in Figure 7 below.

Goal: sw contribution

{software contribution} to
{Hazard} is acceptably
managed at {tier n}

Strat: sw
contribution

Argument over SSRs
identified for {tier n}

Goal: SSRnAddn

{SSRn} addressed through
the realisation of the design
at {tier n}

Con: tierNdesign

{{tier n} design}

number of SSRs at {tier n}

Goal: SSRnSat

{SSRn} demonstrably
satisfied through evidence
provided at {tier n}

At least 1 of 2

Goal: SSRnAddn+1

{SSRn} addressed through
the realisation of the design
at {tier n+1}

n++

Con: SSRsN

{SSRs identified
for {tier n}}

Goal: SSRidentify _SSRidentify

SSRs from {tier n-1} have been
adequately allocated, decomposed,
apportioned and interpreted at {tier n}

SSRidentify

Goal: hazCont_hazCont

Potential hazardous failures at
{tier n} are acceptably managed

hazCont
SSR Identification Pattern

Hazardous Contribution Pattern

Goal: SSRsAddn

All identified SSRs
addressed through the
realisation of the design at
{tier n}

Strat: SSRsAddn

Argument over
{Groups} at {tier n}

Con: Groupn

{Definition of
Groups at {tier n}}

Goal: SSRsAddGroupn

All identified SSRs
addressed through the
realisation of the design of
{Group n}

number of Groups at {tier n}

number of SSRs for {Group n}

Con: SSRsGroupn
SSRs for {tier n}
allocated to {Group
n}

More Grouping desirable
at this tier?

Grouping desirable at this
tier?

Figure 7 – Software Contribution Safety Argument Pattern with Grouping Structure

	 25	

PARTICIPANTS

In this section the participants of the Software Contribution Safety Argument Pattern are not restated.
These participants are documented fully in the Software Contribution Safety Argument Pattern. Just the
participants of the grouping addition are described here.

Goal: SSRsAddn

An instance of this goal is created if grouping is desirable at the tier of instantiation. This goal claims
that all the SSRs that have been identified for the current tier of design have been realised through the
design.

Strat: SSRsAddn

The strategy adopted is to provide an argument over a number of groups of design elements at {tier n}

Con: Groupn

This context defines what the groups are over which the argument will be structured.

Goal: SSRsAddGroupn

An instance of this goal is created for each group over which the argument will be made at {tier n}.
{Group n} should be instantiated with the name of the design grouping which is being considered.

Con: SSRsGroupn

This context defines which of the SSRs that were identified for {tier n} have been allocated to {Group n}.
All SSRs must be allocated to a group.

Goal: SSRnAddn

An instance of this goal is created for each SSR allocated to {Group n} (represented as SSRn). There is an
option for how this goal is supported. It can be supported by either, or both of goals ‘SSRnSat’ and
‘SSRnAddn+1’. It may be necessary to justify such a decision by providing an argument. The Argument
justification software safety argument pattern may be used to provide such an argument.

APPLICABILITY

This pattern should be applied whenever it is desirable to group the structure of the argument at a
particular tier to reflect natural requirements groupings in the software design.

IMPLEMENTATION

The key implementation decision is when to create groupings in the argument. The option to argue
over a group of SSRs could be implemented for any large components in the software design (e.g logical
partitions) in order to split the argument into manageable chunks. There is however no obligation to
create any groupings. It should be noted that arguing over a group of SSRs is simply an organising
principle to make the argument more easily managed and the decision to group (or not) will not affect
the argument that is ultimately provided as to how those SSRs have been satisfied.

POSSIBLE PITFALLS

The option of grouping the argument as defined in this pattern should only be used to group together
SSRs at an existing level of decomposition. It should not be used when decomposing a design, or

	 26	

deriving additional SSRs. In this case the ‘normal’ decomposition option in the pattern (as defined in
the Software contribution safety argument pattern) should always be used.

RELATED PATTERNS

This pattern extends the Software contribution safety argument pattern.

	 27	

4. Conclusions

This document has presented a catalogue of software safety argument patterns. The catalogue contains a
number of patterns which may be used together in order to construct a compelling software safety
argument for the system under consideration.

The software safety argument patterns describe the nature of the argument and safety claims that would
be expected for any software safety case. The way the argument is supported may be different for each
system but the ‘core elements’ of the argument (as defined by the patterns) remain.

The effectiveness of the software safety argument patterns has been demonstrated through application
to a number of case studies. These case studies (see [4]) have highlighted the benefits of utilising the
patterns when developing software safety cases.

The authors actively seek feedback from users of the patterns presented in this document, and will
update the contents of the catalogue, where required, based on user experiences. If you have comments,
please contact the authors directly via email.

	 28	

5. References

[1] T. Kelly, Arguing Safety – A Systematic Approach to Managing Safety Cases, PhD Thesis,
Department of Computer Science, The University of York, 1998.

[2] R. Weaver, The Safety of Software – Constructing and Assuring Arguments, PhD Thesis, Department
of Computer Science, The University of York, 2003.

[3] F. Ye, Justifying the Use of COTS Components within Safety Critical Aplications, PhD Thesis,
Department of Computer Science, The University of York, 2005.

[4] R. Hawkins, K. Clegg, R. Alexander, T. Kelly, Using a Software Safety Argument Pattern Catalogue:
Two Case Studies, in F. Flammini, S. Bologna, and V. Vittorini (Eds.): SAFECOMP 2011, LNCS 6894,
pp. 185 - 198. Springer, Heidelberg, 2011.

[5] M. Jaffe, R. Busser, D. Daniels, H. Delseny, G. Romanski, Progress Report on
Some Proposed Upgrades to the Conceptual Underpinnings of DO178B/ED-12B, In
Proceedings of the 3rd IET International Conference on System Safety, 2008.

[6] T. Kelly, Concepts and principles of compositional safety case construction,
Technical Report COMSA/2001/1/1, The University of York, 2001.

	 29	

6. Appendix A

A.1 Goal Structuring Notation (GSN)

Goal Structuring Notation (GSN) is a structured graphical argument notation that is widely used to
clearly represent safety arguments. The basic GSN symbols are shown in Figure 8.

Figure 8 - Core GSN Elements

These symbols can be used to construct an argument by showing how safety claims (goals) are broken
down into sub-claims, until eventually they can be supported by evidence (solutions). The strategies
adopted, and the rationale (assumptions and justifications) can be captured, along with the context in
which the goals are stated. More details on the use of GSN can be found in [1].

A.2 Modular GSN

Modular safety cases provide a means of organising large or complex safety cases into separate but
interrelated component modules of argument and evidence. When splitting an argument into modules
it becomes necessary to be able to refer to goals that exist within other modules. To refer to goals in
other modules, the GSN element “Away Goal" is used. As seen in Figure 9. Each away goal contains a
module identifier, which is a reference to the module where the goal can be found. Away goals can only
be used to reference goals that have explicitly been declared as public in another module. Away goals
can be used as a way of providing support for a goal in one module, with a goal in another module.
Away goals can also be used to provide contextual backing for goals, strategies and solutions. More
details on the use of modular GSN can be found in [6].

	 30	

Figure 9 - Modular Extensions to GSN

A.3 GSN Pattern Notation

To create safety argument patterns, GSN is extended to support multiplicity, optionality and
abstraction. The multiplicity extensions shown in Figure 10 are used to describe how many instances of
one entity relate to another entity. They are annotations on existing GSN relational arrows.

Figure 10 - GSN Multiplicity Extensions

The optionality extension shown in Figure 11 is used to denote possible alternative support. It can
represent a 1-of-n or an m-of-n choice.

	 31	

Figure 11 - GSN Optionality Extensions

The abstraction extensions shown in Figure 12 allow GSN elements to be generalised for future
instantiation.

Figure 12 - GSN Abstraction Extensions

Kelly [1] has suggested a method of documenting patterns, such that the information necessary for their
successful instantiation is captured. He suggests that for each pattern, information is documented under
the following headings:

Pattern name The name of the pattern should communicate the central argument being presented in
the pattern.

Intent Should state what the pattern is trying to achieve.

Motivation Communicates why the pattern was constructed.

	 32	

Structure Here GSN is used to present the structure of the argument pattern.

Participants Provides additional information on each of the elements of the GSN argument.

Applicability Records under what circumstances the pattern can and should be applied.

Consequences What remains to be done after having applied the argument pattern.

Implementation This should describe how to implement the pattern, in particular providing hints
and techniques for the successful application of the pattern, describing ways in which it is possible to get
it wrong, and recording any common misinterpretations of the terms or concepts used.

Related patterns Identify any related safety argument patterns.

