
Using Safety Contracts in the
Development of Safety Critical

Object-Oriented Systems

Richard D. Hawkins

This thesis is submitted in partial fulfilment of the
requirements for the degree of

Doctor of Philosophy.

University of York
York

YO10 5DD
UK

Department of Computer Science

March 2006

For my Mum and Dad

and

Heather

2

Abstract

Developers of safety critical software are becoming increasingly interested in using the object-

oriented paradigm. If a developer is to use an object-oriented approach successfully in safety

critical applications they must be able to demonstrate that the resulting software system is

sufficiently safe to operate. There are a number of existing approaches to developing safe

software however these cannot be used effectively for an object-oriented approach.

This thesis identifies the inadequacies of the existing approaches to reasoning about the safety

of safety critical object-oriented systems. It identifies a need for a systematic, thorough and

scalable process to identify the properties required of software objects to adequately address

their contribution to system-level hazards. This thesis describes and evaluates such an approach

which addresses this need. The proposed approach uses the concept of safety contracts to define

safety requirements between objects in the system design. An analysis process is described which

can be used to generate these contracts. It is shown how the safety contracts can be used in

constructing a safety argument which demonstrates that the system is acceptably safe.

Throughout the thesis, how the approach is applied is illustrated with realistic examples. A

case study, taken from an industrial application, is also provided and used in the evaluation.

3

Contents

Abstract 3

Acknowledgement 13

Declaration 14

1 Introduction 15

1.1 The use of computers in safety critical systems 15

1.1.1 Ariane 5 . 15

1.1.2 Increasing complexity . 16

1.2 The object-oriented paradigm . 18

1.3 Using safety contracts to ensure the safety of systems developed using an OO

approach . 19

1.4 Thesis proposition . 19

1.5 Thesis structure . 20

2 Survey of Related Literature 22

2.1 Introduction . 22

2.2 The development of safety-critical software systems 22

2.2.1 Safety standards . 23

2.2.2 Safety critical system development . 29

2.2.3 The software safety case . 45

2.3 The object oriented paradigm . 49

4

CONTENTS

2.3.1 Object oriented concepts . 49

2.3.2 Object oriented analysis and design . 50

2.3.3 Software contracts . 58

2.3.4 Analysing OO designs . 63

2.3.5 Representing requirements . 68

2.3.6 Verification of OO . 70

2.4 Thesis Contribution . 76

2.5 Conclusions . 77

3 Performing Safety Analysis of OO Systems 79

3.1 Introduction . 79

3.2 A Framework for Analysis . 80

3.3 Developing an analysis process . 83

3.4 An Aircraft Stores Management System . 84

3.5 Analysing Functional Aspects . 87

3.5.1 Step One: Identify Hazards . 87

3.5.2 Step Two: Define hazardous software failure modes 88

3.5.3 Step Three: Identify basic failure events 89

3.5.4 Step Four: Investigate causes of failures 91

3.5.5 Step Five: Define hazardous object behaviour 97

3.6 Analysing Temporal Aspects . 99

3.6.1 Step One: Split scenario into tasks . 99

3.6.2 Step Two: Investigate effects of timing deviations 100

3.6.3 Step Three: Analyse alternative scenarios 102

3.6.4 Step Four: Define timing requirements . 104

3.7 Analysing Value Aspects . 107

3.7.1 Step One: Identify critical data . 107

3.7.2 Step Two: Identify manipulators . 108

3.7.3 Step Three: Define constraints for critical data 109

5

CONTENTS

3.8 Conclusions . 110

4 Safety Contracts 111

4.1 Introduction . 111

4.2 The Need for Contracts . 112

4.3 Defining Safety Contracts . 115

4.3.1 Notation for Safety Contracts . 117

4.3.2 Safety Contracts for the SMS . 119

4.4 Utilisation of Safety Contracts . 121

4.4.1 Supporting Design Change through Safety Contracts 124

4.4.2 Supporting the Reuse of Design Elements through Safety Contracts . . . 132

4.5 Conclusions . 133

5 Creating a Safety Argument for OO Systems 134

5.1 Introduction . 134

5.2 Modular Safety Argument Structures . 135

5.3 Developing the Safety Arguments . 138

5.3.1 Software System Level Argument . 139

5.3.2 Interactions Argument . 140

5.3.3 Class Argument . 140

5.4 Handling Change and Reuse . 141

5.4.1 Changes to the Design of a Class . 141

5.4.2 Introducing a New Class . 142

5.4.3 Reusing a Class . 143

5.5 Conclusions . 144

6 Aircraft Avionics Control System; A Case Study 146

6.1 Introduction . 146

6.2 System Overview . 146

6.3 Safety Analysis of ACS . 147

6

CONTENTS

6.3.1 Functional Analysis . 147

6.3.2 Temporal Analysis . 153

6.3.3 Value Analysis . 155

6.4 Defining Safety Contracts for the System . 156

6.4.1 Identify Safety Obligations . 157

6.5 Creating a Safety Argument for the ACS . 158

6.6 Conclusions . 158

7 Evaluation 160

7.1 Introduction . 160

7.2 Systematic Approach . 161

7.3 Thorough Approach . 163

7.4 Scalability . 164

7.5 Evaluation Against Problem Statements . 166

7.6 Conclusions . 167

8 Conclusions 169

8.1 Concluding Remarks . 169

8.1.1 Conclusions on the analysis process contribution 169

8.1.2 Conclusions on the use of safety contracts 170

8.1.3 Conclusions on the safety argument patterns 170

8.2 Further work areas . 171

8.2.1 Verification Evidence . 171

8.2.2 Safety Contract Enforcement . 171

8.2.3 System Implementation . 171

8.3 Overall conclusions . 172

A Software System Argument Module Pattern 173

B Interactions Argument Module Pattern 177

7

CONTENTS

C Class Argument Module Pattern 181

D ACS Case Study Reference Material 185

8

List of Figures

1.1 Growth of airborne software: Military . 17

2.1 Verification of outputs of software coding and integration processes from standard

DO178-B . 25

2.2 V lifecycle model showing safety activities . 30

2.3 The decomposition of a platform design . 31

2.4 Risk assessment matrix . 32

2.5 Main elements of the fault tree notation . 34

2.6 A simple fault tree . 35

2.7 HAZOP guidewords . 36

2.8 Example attribute guide word interpretations for data flow diagrams 37

2.9 Example attribute guide word interpretations for state transition diagrams . . . 38

2.10 Failure classifications used to structure SHARD guidewords 38

2.11 Example SHARD guidewords for MASCOT 3 . 39

2.12 An FMEA table . 42

2.13 Representation of the safety critical systems development process 45

2.14 Main elements of the GSN notation . 46

2.15 An example GSN goal structure . 46

2.16 GSN Argument Pattern for Component Contributions to System Hazards 47

2.17 GSN Argument Pattern for Hazardous Software Failure Mode Decomposition . . 48

2.18 GSN Argument Pattern for Hazardous Software Failure Mode Classification . . . 48

9

LIST OF FIGURES

2.19 UML class diagram . 52

2.20 UML sequence diagram . 53

2.21 UML collaboration diagram . 53

2.22 UML state chart diagram . 54

2.23 UML use case diagram . 55

2.24 An example OCL constraint . 58

2.25 Redefinition of a routine under contract . 61

2.26 Splitting a Class into Slices . 73

2.27 Matrix structure for testing derived classes . 74

3.1 Deriving safety requirements for a software system 80

3.2 Identifying software contributions for functional (left) and OO (right) systems . . 82

3.3 Sequence of interactions occurring in an OO system 82

3.4 UML class diagram for aircraft SMS . 85

3.5 UML sequence diagram for release of store . 86

3.6 Overview of safety analysis for functional behaviours of objects 87

3.7 Fault tree for SMS HSFM . 90

3.8 SHARD guide word interpretation used for operation calls 92

3.9 SHARD analysis of checkWOW() interaction . 93

3.10 UML statechart for the SMS store object . 95

3.11 Mutated statechart for SMS store object . 96

3.12 Overview of safety analysis for temporal behaviour of objects 99

3.13 Timing deviations applied to tasks for the SMS 102

3.14 Possible alternative scenarios for release of a store 104

3.15 Timing constraints on tasks in a scenario . 105

3.16 Sequence diagram representing a task . 106

3.17 Safety analysis process for value aspects . 107

3.18 Manipulators identified for critical data in the SMS 109

10

LIST OF FIGURES

4.1 Identifying safety obligations for an object . 113

4.2 Safety obligations identified for the store class . 123

4.3 Changed UML sequence diagram for release of store 127

4.4 SHARD analysis of deleteStore() . 128

4.5 Using inheritance to create new classes . 129

4.6 Operation redefinition using inheritance . 130

5.1 Monolithic safety argument structure . 135

5.2 Modular argument structure including class modules 137

5.3 Modular argument structure with separate interactions argument 138

D.1 System architecture diagram for the ACS . 185

D.2 Use case diagram: Maintain minimum height . 186

D.3 Sequence diagram: Maintain minimum height - TF enabled 187

D.4 Fault tree for ACS fails to warn pilot when aircraft altitude falls below minimum

safe altitude . 188

D.5 SHARD analysis of interaction 1 . 188

D.6 SHARD analysis of interaction 2 . 189

D.7 SHARD analysis of interaction 3 . 189

D.8 SHARD analysis of interaction 4 . 189

D.9 SHARD analysis of interaction 5 . 190

D.10 SHARD analysis of interaction 6 . 190

D.11 Statechart model for the Navigator class . 191

D.12 Mutated statechart for the Navigator class . 192

D.13 Applying timing deviations to tasks . 193

D.14 Alternative scenarios . 193

D.15 Manipulators of critical data . 194

D.16 Safety obligations for the Flight Director class . 194

D.17 Safety obligations for the Flight Director class . 194

11

LIST OF FIGURES

D.18 Safety obligations for the Navigator class . 195

D.19 Safety obligations for the INS class . 195

D.20 Safety obligations for the Control Panel class . 196

D.21 Safety obligations for the Aircraft class . 196

D.22 Software system level argument for the ACS . 197

D.23 Interactions argument for the ACS . 198

D.24 Navigator class argument for the ACS . 199

12

Acknowledgement

I would like to thank my supervisor John McDermid whose wisdom and guidance have been

invaluable to me. I am indebted to John for his patience and encouragement over the last four

years.

I would also like to thank everyone from BAE Systems and MBDA who I have worked with

through the DCSC, for their support. In particular I would like to thank Brian Jepson and

Jane Fenn for all their assistance.

I would like to thank my colleagues and friends at York who I have been honoured to work

with. In particular I would like to thank Rob Weaver, Frantz Iwu, Rob Collyer, Paul Emberson,

Rob Alexander, Martin Hall-May, Simon Bates, Kester Clegg, Philippa Conmy, Tim Kelly, Iain

Bate, David Pumfrey and Mark Nicholson.

I would like to thank my family, particularly my Mum and Dad, whose love and encouragement

are a huge inspiration to me.

Final thanks go to my wife, Heather, who keeps me happy and sane, and whom I adore.

13

Declaration

Some of the material presented in this thesis has previously been published in the following

papers:

• Richard Hawkins, Simon Bates and John McDermid, “Developing Successful Modular

Arguments for Object Oriented Systems”, 22nd ISSC, Providence, RI 2004

• Richard Hawkins, Ian Toyn and Iain Bate, “An Approach to Designing Safety Critical

Systems using the Unified Modelling Language ”, Critical Systems Development with

UML, UML ’03 workshop, San Fransisco 2003

• Iain Bate, Richard Hawkins and John McDermid, “A Contract-based Approach to De-

signing Safe Systems”, 8th Australian Workshop on Safety Critical Systems and Software

(SCS’03), Canberra 2003

• R. D. Hawkins, J. A. McDermid and I. J. Bate, “Developing Safety Contracts for OO

Systems”, 21st ISSC, Ottawa 2003

• R. D. Hawkins and J. A. McDermid, “Performing Hazard and Safety Analysis of OO

Systems”, 20th ISSC, Denver 2002

Except where stated, all of the work contained within this thesis represents the original contri-

bution of the author.

14

Chapter 1

Introduction

1.1 The use of computers in safety critical systems

Safety is freedom from accidents. System safety is concerned with preventing foreseeable acci-

dents, and minimising the results of unforeseen ones [40]. There are many examples of systems

whose failure could lead to accidents. Such systems are most often found within the aerospace,

rail, automotive and medical sectors as well as in industries such as manufacturing and nuclear.

Such systems have been in existence in one form or another since the industrial revolution. As

such, a body of knowledge and expertise has grown up around their development to reduce the

risk of accidents. A more recent development has been the use of computers as part of these sys-

tems. Computers are integrated into the operation of control systems to enhance performance

or increase efficiency. Such computer systems are often referred to as safety-critical systems,

as their failure may lead to an accident. The software that executes on these computers plays

a crucial role in ensuring the safe operation of the system. Errors in the software, which may

appear at first sight to be minor, or even trivial, can result in catastrophic consequences. This

is illustrated quite clearly using the example of the Ariane 5 accident.

1.1.1 Ariane 5

On 4th June 1996, the maiden flight of the European Ariane 5 rocket broke up and exploded

about 40 seconds after take off. Although there were fortunately no crew on board, the financial

loss was reported to be half a billion dollars. The international inquiry board concluded that the

explosion was the result of a software error. The error arose in ten year old software which had

15

CHAPTER 1. INTRODUCTION

been reused from the Ariane 4 rocket. The software related to the Inertial Reference System,

which performs computations before lift-off. These computations are not required after lift-off,

but continue anyway due to the time taken to reset. The computation involves the conversion of

the horizontal bias from 64-bit to 16-bit. After lift-off Ariane 5 produced a horizontal bias that

was too large for 16-bits. This raised an exception which wasn’t caught and handled, and thus

led to catastrophe. On Ariane 4, it had been determined that such an error could not occur, so

no error handling mechanism had been necessary. As Ariane 5 had a different launch trajectory

to Ariane 4, the error was, as proved to be the case, now possible. The designers of Ariane 5

had not sufficiently checked the reused software to ensure it remained safe in the new system.

This illustrates two key points. Firstly that small errors in software can lead to very large (and

costly) outcomes. Secondly the importance of capturing all requirements which could impinge

upon the safety of the system, and how this is particularly important where software may be

reused in a different system at some future time. Further details on this accident can be found

in the accident report [41].

1.1.2 Increasing complexity

Not only is software becoming more prevalent in safety critical systems, the software that is

being used is also becoming increasingly more complex. Figure 1.1 [80] illustrates how the

number of lines of code (LOC) used in software on military aircraft has increased over the last

couple of decades.

This can cause many problems for safety critical systems developers. In order to certify a

software system it is necessary to demonstrate that the software will not contribute to an

accident. This can be very difficult even for very trivial amounts of computer code. An example

taken from [80] illustrates the impossibility of attempting to completely test even tiny amounts

of software code. If we consider trying to exhaustively test 4 data items, each of which is of 16

bits in size. Each of the bits has two states (0 or 1), so the total number of permutations for

the four data items is 264 (or approximately 1019 permutations). If one test were performed

every millisecond, it would take around 500,000 years to test every combination. Clearly it is

not going to be possible to use this as a method of gaining confidence in the safety of large

computer systems.

Due to the difficulty in demonstrating the acceptability of software, the tendency within the

safety critical industry has been, perhaps reassuringly, one of caution, or at least of “sticking

with what you know”. This means that many of the new technologies and paradigms which

16

1.1. THE USE OF COMPUTERS IN SAFETY CRITICAL SYSTEMS

C
od

e
Si

ze
 k

LO
C

(a
pp

ro
x.

)

In Service Date

10

100

1000

10000

1980

1987
1993

1998
1999

2003

2004

Figure 1.1: Growth of airborne software: Military

have emerged and been used in other software engineering domains have not been used in

safety critical systems, or have been adopted slowly. There are two main reasons for this. The

first reason is that for most safety critical applications, the increase in computing power that

the developments bring is unnecessary. Therefore the corresponding technologies, and inherent

complexities, are also not required. The second reason is that a large amount of confidence in

the software, and therefore support for its safety, can be gained from experience of using trusted

technologies and techniques, and providing evidence of historical safe operation. Without this

previous service history and experience, this crucial evidence is unavailable.

As the demands made on the software in safety critical systems has continued to increase, for

example with the move towards fly-by-wire aircraft, the complexity of the software has also

continued to increase. The result of this is that many of the advances in software engineering,

such as technologies and paradigms previously not required in safety critical applications, are

now having to be considered. This presents challenges to developers of safety critical systems,

who must find ways of certifying software developed employing these advancements.

17

CHAPTER 1. INTRODUCTION

1.2 The object-oriented paradigm

One such advancement has been the development of the object-oriented (OO) paradigm. It

should be noted that OO could in no way be considered a particularly new paradigm. The

basic concepts of OO first emerged with the development of the Simula programming languages

[63] in the 1960’s. The concepts of OO will be discussed in chapter 2, however OO was developed

as a way of implementing large-scale complex programs through the use of a large number of

interacting components.

OO has become increasingly popular in non-safety critical fields. There are many potential

reasons for this popularity, not least of which is the prevalence of OO programming languages

such as C++ and Java. Anecdotally it is easy to find claims and counter claims about the

benefits and drawbacks of OO. This thesis does not aim to contribute to this debate, or indeed

to promote the use of an OO approach. However, the increasing popularity (indeed, near

ubiquity) in other domains suggests that there must be benefits to developing in such a manner

that are worth embracing, if feasible, in the safety critical domain.

The benefits that have been claimed for an OO approach include increased changeability of

the software due to abstraction and encapsulation, and increased facilities for reuse of software

elements through generalisation and inheritance. This shall be discussed in more detail in

chapter 2. As well as these benefits, in a drive to minimise the effects of hardware obsolescence,

particularly within the defence systems arena, there is a move towards the use of middleware

such as the Common Object Request Broker Architecture (CORBA), and portable languages

such as java. These technologies are object oriented.

The challenge facing developers wishing to make use of OO technologies in safety critical soft-

ware is gaining confidence that the software is acceptably safe1. A number of questions are raised

when considering this, such as whether a traditional safety approach can be used successfully

to demonstrate the safety of a system developed using an OO approach. If this is not the case,

then what new approach is needed such that safety can be assured? This thesis will investi-

gate the shortcomings of existing approaches when applied to OO systems, before proposing an

alternative approach which enables the safety of an OO system to be demonstrated.

1Strictly, software itself cannot be safe or unsafe. It is only within the context of the entire system that the
safety of software can be judged.

18

1.3. USING SAFETY CONTRACTS TO ENSURE THE SAFETY OF SYSTEMS
DEVELOPED USING AN OO APPROACH

1.3 Using safety contracts to ensure the safety of systems

developed using an OO approach

It is crucial to the safe use of any system which uses software that safety requirements can be

derived which constrain the design of the software such that it will not contribute to accidents.

This is equally true for systems using an OO approach. In this thesis it is proposed that safety

contracts be used to capture the safety requirements placed on the OO software design. It is

shown how this approach enables the safety of an OO system to be demonstrated. A safety

contract approach ensures that there is traceability between the evidence provided in the safety

argument (see section 2.2.3), the software system design and the system hazards which must

be controlled. As shall be seen, establishing such traceability is one of the key challenges for

demonstrating the safety of OO systems.

It is crucial to the success of any safety process that it is integrated with the existing system and

software development processes. A safe system can only be achieved if safety is considered from

the earliest stages of the system’s development, right through to its operation and maintenance.

The safety activities must therefore be seen as part of the development process for the software,

rather than a separate activity. It shall be shown that the process proposed in this thesis can

be integrated with existing system and software development processes used for developing OO

software.

In order to be effective, the approach developed to ensure the safety of an OO system must not

unduly impinge upon the utility of that system. As stated earlier, there are certain advantages

which developers perceive to get through the adoption of an OO approach such as a robustness

to change, and a greater potential for reuse. This thesis will show how a safety contract approach

helps to preserve these beneficial properties whilst ensuring the system remains safe.

1.4 Thesis proposition

The proposition adopted in this thesis can be stated as follows:

Through the development of safety contracts, it is possible to establish a systematic,

thorough and scalable process to identify the properties required of software objects

to adequately address their contribution to system-level hazards.

19

CHAPTER 1. INTRODUCTION

1.5 Thesis structure

The thesis is divided into the following chapters:

Chapter 2 presents a survey of the published literature in the areas of software safety and the

OO paradigm. The survey first looks at the current safety processes used for software

systems and discusses the analysis techniques that are used. This includes a review of

the use of safety arguments as part of the safety process. The OO paradigm is discussed,

along with the use of software contracts in designing OO systems. The survey then goes

on to focus more specifically on literature that deals with the safety of OO systems. The

survey will assess the applicability of conventional software safety approaches to software

developed using an OO approach. The limitations of current approaches specifically used

in analysing OO systems are also assessed.

Chapter 3 proposes a process for analysing OO systems in order to identify potentially haz-

ardous behaviour. The analysis focusses on the interactions which occur between objects

in the system and applies existing techniques to identify failures in the interactions that

could contribute to hazards in the system.

Chapter 4 shows how the output generated by the analysis in Chapter 3 can be used to

generate a set of derived safety requirements (DSRs) on the interactions. The DSRs are

specified in the form of safety contracts between objects. It is shown how these safety

contracts can be used to identify safety obligations upon the objects in the system.

Chapter 5 develops safety argument patterns which can be used to create an argument con-

cerning the safety of an OO system developed using the process described in the thesis.

A modular structure is used for the safety argument. It is shown how this structure

increases the ability to safely deal with changes to the system design, and the reuse of

design artifacts.

Chapter 6 describes a case study which demonstrates how the process developed in the thesis,

can be applied to a realistic system. A safety argument is produced based upon the

analysis performed, and the patterns presented in Chapter 5. The case study helps to

illustrate the effectiveness of the approach.

Chapter 7 describes how the process developed in chapters 3, 4 and 5 has been evaluated.

It describes the extent to which the work presented in the previous chapters satisfies the

thesis proposition. The evaluation is based upon the case study in chapter 6, as well as

20

1.5. THESIS STRUCTURE

assessment against a set of defined criteria and problem statements identified as part of

the literature survey.

Chapter 8 presents the conclusions that are drawn from the thesis. Potential areas of future

research are also identified.

21

Chapter 2

Survey of Related Literature

2.1 Introduction

This chapter contains a survey of the published literature related to the proposition of this

thesis. The survey is split into two main sections. The first section reviews current literature

relating to the development and analysis of software for safety critical systems. This identifies

current approaches for developing safety critical software, and reviews the methods and anal-

ysis techniques available to system developers. The concept of a safety case is explored, and

literature regarding the development of safety arguments is reviewed.

The second section firstly discusses the basic concepts of the OO paradigm. Approaches to

object oriented development are explored as well as notations used in designing OO systems.

This will include methodologies used for developing real-time systems. The use of software

design contracts, as part of an OO development process is also considered. Finally, literature

relating to the use of OO for safety-critical systems is reviewed and evaluated. At the time of

commencing work on this thesis, the amount of literature directly dealing with OO software in

safety critical systems was limited.

2.2 The development of safety-critical software systems

Safety critical software is any software that can directly or indirectly contribute to the occurrence

of a hazardous system state [40]. A hazard can be defined as a physical situation, often following

from some initiating event, that can lead to an accident [49]. When considering safety critical

software, the aim is to prevent accidents by ensuring the software does not contribute to any

22

2.2. THE DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE SYSTEMS

hazards. This section reviews current practice for ensuring the safety of software systems.

2.2.1 Safety standards

It is perhaps best to start by considering the various standards that exist for industries which

develop safety critical systems. The standards are intended to represent collective wisdom,

or best practice within the industry to which they apply. This survey will focus on three

important standards used in different industry sectors. Although the detailed requirements

in the standards vary between industry sectors, and individual standards, this survey aims to

identify the similarities between the approaches, whilst noting any important variations. This

identifies the framework within which most safety critical systems are developed.

2.2.1.1 RTCA/DO-178B

The main standard used to certify software used in aircraft in the US and Europe is RTCA/DO-

178B [66]. The most important concepts in this standard are ‘failure condition categorisation’

and ‘software level definitions’. Failure conditions are categorised in one the five categories

defined below:

catastrophic failure conditions which prevent continued safe flight and landing.

hazardous / severe-major failure conditions which would reduce the capability of the air-

craft or the ability of the crew to cope with adverse operating conditions to the extent

that there would be:

1. a large reduction in safety margins or functional capabilities

2. physical distress or higher workload such that the flight crew could not be relied on

to perform their tasks accurately or completely

3. adverse effects on occupants including serious or potentially fatal injuries to a small

number of those occupants

major failure conditions which reduce the capability of the aircraft or the ability of the crew

to cope with adverse operating conditions to the extent that there would be, for example,

a significant reduction in safety margins or functional capabilities, a significant increase

in crew workload or in conditions impairing crew efficiency, or discomfort to occupants,

possibly including injuries.

23

CHAPTER 2. SURVEY OF RELATED LITERATURE

minor failure conditions which would not significantly reduce aircraft safety, and which would

involve crew actions which are well within their capabilities. Minor failure conditions may

include, for example, a slight reduction in safety margins or functional capabilities, a slight

increase in crew workload, such as, routine flight plan changes, or some inconvenience to

occupants.

no effect failure conditions which do not effect the operational capability of the aircraft or

increase crew workload.

An error in software may cause a fault that contributes to a failure condition. Thus, the level

of software integrity necessary for safe operation is related to the system failure conditions. For

each software component or function in the system, a software level is defined. The level is

defined based upon the highest categorisation of the failures of a system function which that

software component or function may cause or contribute to as a result of anomalous behaviour.

The software levels correspond to the failure condition categories as follows:

Level A catastrophic

Level B hazardous / severe-major

Level C major

Level D minor

Level E no effect

The standard states that the system safety assessment process determines the software level.

This is the safety assessment performed on the system of which the software is a part, which

identifies the failure conditions of the system components which may contribute to system

hazards. A crucial point to note here is that the software level is qualitative, that is that

the level relates to failure conditions, not to failure rates. Indeed the standard cautions that,

“development of software to a software level does not imply the assignment of a failure rate for

that software. Thus, software levels or software reliability rates based on software levels cannot

be used by the system safety assessment process as can hardware failure rates.” The reason for

this is the systematic nature of software failures, which are not random and predictable like

hardware failures. Software levels are therefore used in DO-178B as a way of ensuring the level

of rigour used in developing the software is commensurate with the failure classification.

It is possible to use architectural means to reduce the software level of a particular component.

For example by having multiple versions of dissimilar software providing the same function it

24

2.2. THE DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE SYSTEMS

is possible for each of the components to be individually developed to a lower level. There are

many issues to consider in doing this, such as ensuring independence between versions. This

is not considered in detail here, as architectural issues do not impact on the analysis process

developed in this thesis.

The standard provides guidelines on the objectives and outputs required for each software level

at each stage of the software life cycle process. The software lifecycle is split into the software

planning process, the software development process (which includes requirements, design, coding

and integration), and the integrating processes (including verification, software configuration

management, quality assurance, and certification liaison). At each stage the objectives are

usually more onerous for the software of higher software levels. Some of the objectives may

not need to be satisfied for lower level software, and some objectives may need to be satisfied

with independence for higher levels. As an example, an extract from the table of the objectives

for verification of outputs of software coding and integration processes is reproduced from the

standard in figure 2.1.

11.14Software Verification Results
OOO

6.3.4eSource code is
traceable to low-level
requirements

5

11.14Software Verification Results
OO•6.3.4fSource code is

accurate and
consistent

6

11.14Software Verification Results
OOO

6.3.5Output of software
integration process is
complete and correct

7

11.14Software Verification Results
OOO

6.3.4dSource code
conforms to standards

4

11.14Software Verification Results
OO

6.3.4cSource code is
verifiable

3

11.14Software Verification Results
OO•6.3.4bSource code complies

with software
architecture

2

11.14Software Verification Results
O••6.3.4aSource code complies

with low-level
requirements

1

Ref.DescriptionDCBARef.Description

OutputApplicability
by SW Level

Objective

LEGEND: • The objective should be satisfied with independence
o The objective should be satisfied

Blank Satisfaction of objective is at applicant’s discretion

Figure 2.1: Verification of outputs of software coding and integration processes from standard
DO178-B

The basic philosophy of this standard, as described here, is that the more severe the failure

categorisation relating to the software, the higher the software level will be, and thus the more

onerous will be the objectives for the process, and the better (i.e. safer) the resulting software

will be. This type of approach, whereby low-level prescriptive objectives are placed on the

developers is common to many software safety standards, and is often referred to as a process

25

CHAPTER 2. SURVEY OF RELATED LITERATURE

driven approach. This is because the safety of the software is assured predominantly through

appealing to the quality of the process used in developing the software.

The Federal Aviation Authority (FAA) have produced a guidance document [2] on how to

comply with objectives of DO-178B when using OO technologies. This is achieved by looking

at a number of issues associated with OO which could cause problems when trying to show

compliance with DO-178B requirements. The features of OO which are addressed are such

things as single and multiple inheritance, dynamic dispatch and reuse. These features are

discussed in more detail later. The guidance given in [2] takes the form of a set of rules which

should be adopted in the design and implementation in order to avoid common errors and

pitfalls. Two examples of the rules provided under inheritance are: “To ensure that overriding

is always intentional rather than accidental, design and code inspections should consider whether

locally defined features are intended to override inherited features with a matching signature”,

and “No overridden method should be called during the initialisation (construction) of an

object”. This document provides a thorough and easy to use set of guidelines on good practice

in OO development. The document is, however, very much focussed on the accuracy and

reliability of the software. There is little guidance provided on a coherent safety process.

2.2.1.2 IEC 61508

IEC 61508 [23] is not specific to any particular industry and is intended to provide a unified

and consistent approach to all the phases of the safety lifecycle for all types of component. Part

3 of the standard deals specifically with safety-related software. The standard uses the concept

of safety integrity levels (SILs) to signify the safety integrity requirements for the functions

performed by the system. SILs are similar to the software levels used in DO 178-B. There are

four SILs, from 1 which is low, to 4 which is high. For software, the safety integrity is used

as a way of avoiding “systematic failures in a dangerous mode of failure”. SILs are assigned

using the severity of failure of the software functions. The standard requires that software

functional safety requirements are considered, along with safety integrity requirements. The

functional requirements define the required behaviour of the software for the safe operation

of the system. The safety integrity requirements capture the degree of confidence required in

these functions performing correctly. As such, it could be said that IEC 61508 is primarily

concerned with ensuring the software is developed correctly in the first place, rather than

finding errors later through verification. The SIL again determines the techniques that are

required to be undertaken during development, with techniques (such as partitioning) being

26

2.2. THE DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE SYSTEMS

either recommended, or highly recommended.

2.2.1.3 Def. Stan. 00-55 and 00-56

There has recently been a major shift in the standards used for safety related software in the

U.K. defence industry. Previously, the standard used for the development of safety-related

software was Def. Stan. 00-55 issue 2 [51]. This standard fell within the framework defined by

Def. Stan. 00-56 issue 2 [49], which covered safety management of the entire system. Def. Stan.

00-55 was very similar to DO 178-B and IEC 61508 in its approach, in that a SIL is assigned

to software components or functions dependent upon the criticality of a failure in the software.

The safety integrity level then drives the design, development and assessment activities.

Def. Stan. 00-55 did have a number of strengths, for example the overarching system safety

framework from 00-56 issue 2 helped to ensure that the software safety process was linked to

the system safety process. One way in which Def. Stan. 00-55 differed from DO 178-B and

IEC 61508 was in the requirement to produce a software safety case, which the standard defines

as “a well-organised and reasoned justification, based on objective evidence, that the software

does or will satisfy the safety aspects of the Software Requirement.”[51] Software safety cases

shall be discussed in more detail in section 2.2.3.

Def. Stan. 00-55 and other defence safety standards have now been superseded by issue 3 of

Def. Stan. 00-56 [52], which takes a fundamentally different approach to the other standards

discussed here. There has been much debate over many years within the software safety commu-

nity as to the effectiveness of the so called process-based approaches taken by the standards. In

[45], McDermid examines the evidence to support the assumption that the processes prescribed

for software at higher integrity levels necessarily produces “better” software. Although acknowl-

edging that the assessment cannot be taken as conclusive, he determines that at a minimum

the assumption seems questionable. He suggests that what evidence there is points to the most

significant factor in achieving low hazardous failure rates is the level of domain knowledge of

the developer, rather than the development process or language. A suggested reason for this is

that while the standards contain much useful advice, their focus is actually on the reliability of

the software, rather than safety. McDermid therefore suggests that an alternative approach be

taken, which is “to seek explicit evidence of safety, with respect to potentially hazardous failure

modes of the software, rather than make a “general appeal” to the quality of the process” [45].

Def. Stan. 00-56 issue 3[52] has adopted this philosophy, and thus the production of a safety

case is key to compliance with the standard. The safety case must be produced for all systems

27

CHAPTER 2. SURVEY OF RELATED LITERATURE

including software systems developed under this standard. The safety case is a structured

argument, supported by a body of evidence, that provides a compelling, comprehensible and

valid case that a system is safe for a given application in a given environment. The concept of

a safety case is explored in more detail in section 2.2.3 of this literature survey. The standard

identifies that a major part of the safety case will be the output from a risk management

process. This process controls the risk associated with the hazards identified for the system

under consideration. Risk is defined as a “combination of the likelihood of harm and the severity

of that harm”[52] and for each system hazard should be reduced to a broadly acceptable level

where possible, and where this is not possible, risks should be reduced to levels that are tolerable

and as low as reasonably practicable. The techniques used in order to manage the risks, and

develop a safe system, are not mandated by the standard (although guidance is provided for

developers of safety critical systems). The onus is therefore on the software system developer

to identify and use the appropriate techniques as part of a software safety development process,

and to demonstrate how they contribute to the safety of the resulting system. The software

safety lifecycle is discussed in detail in section 2.2.2.1. The focus of the approach taken in Def.

Stan. 00-56 issue 3 is not to look at the process used to develop the software, but to focus on

generating evidence that directly supports the safety of the software product being developed.

Thus the approach is often referred to as a product-driven approach (or evidence-based approach)

to software safety.

2.2.1.4 Advantages of a product-based approach

With the more prescriptive standards (such as Def. Stan. 00-55 discussed above), the developer

has less freedom to select the evidence necessary to support the claims made about the safety

of the system than with a product-based approach. The product-based approach potentially

requires additional work on the part of the developer to identify suitable evidence to support

the safety case (as this is no longer explicitly defined in the standard). However this also means

that techniques inappropriate to the system being developed do not need to be undertaken,

providing that the evidence can be gained from a different source and that this can be justified

in the safety case. This can be particularly useful for the developer of a system that uses

new technologies, where existing approaches to assuring the safety of the system may not be

appropriate. The freedom offered by the product-based approach allows the developer to exploit

different analysis or verification techniques in order to demonstrate the new technology may be

exploited safely. This is thus a useful context in which to consider the development of safety

28

2.2. THE DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE SYSTEMS

critical OO software.

It is also worth noting here that a product-based approach does not exclude appeals to process

quality as part of the safety argument, nor are the approaches prescribed in other standards

discouraged. Indeed if a process based standard can be shown to provide the direct evidence of

the safety of the system required, then this could be used in developing and justifying the safety

of the system. Crucially, it is not enough simply to show that that process has been followed.

The way in which that supports the safety claims made about the system must also be made

clear.

2.2.2 Safety critical system development

“Safety is a property of a system.”[74] A system can be considered safe if all the hazards have

been eliminated, or the risks associated with those hazards have been reduced to an acceptable

level. Software forms part of a system, and can only be considered safe (or indeed unsafe) within

the context of that system. Software may operate safely within one particular system, that is

to say that the operation of that software does not contribute to any hazardous behaviour.

However, if that software were to be used in a different system, it may function in exactly the

same manner as it had done in the original system (where its behaviour had been safe) and

yet contribute to hazardous behaviour. This was made clear by the Ariane 5 accident, where

software which had been used safely in a previous system caused a hazardous failure when

used within Ariane 5. Since each system is different, with different requirements, hazards and

characteristics, it is impossible to know if software is safe without considering the behaviour

of the software as part of the system which it is controlling. Therefore when considering the

process for developing safe software, it is crucial that the whole of the system of which the

software is a part is considered, as well as the software itself. This survey shall review the

techniques available for developing safety critical systems.

2.2.2.1 The software safety lifecycle

There are various activities which need to be performed in order to ensure the safety of a system.

These activities are carried out at different stages throughout the development lifecycle of the

system from initial requirements analysis, through to delivery of a completed system (and indeed

beyond into maintenance activities). Figure 2.2, adapted from [64] and the safety assessment

process of ARP 4754 [55] shows a traditional simplified V lifecycle model for the development of

a system. Outside of this V lifecycle, different stages of the safety process have been identified

29

CHAPTER 2. SURVEY OF RELATED LITERATURE

which are associated with the various development steps of the lifecycle. This review identifies

the purpose of each of the stages, as well as the safety analysis techniques that are available

at each analysis stage. Although focussing on software safety techniques, the review will also

consider analysis techniques which are not specific to software but are crucial to the development

of any safe system.

Requirements
analysis and
specification

Architectural
design

Detailed
design

Implementation

Integration

Testing, V&V

Delivery and
commissioningHazard

Identification

Risk
assesment

PSSA

Common cause /
common mode

analysis

SSA

Safety case
delivery

System
development

activity

Safety activity

Key

System
requirement
identification

Sub-System
requirement
identification

Component
requirement
identification

Component
design

implementation

Component
verification

System
verification

Platform
verification

Outputs of design
process steps

Figure 2.2: V lifecycle model showing safety activities

Figure 2.2 also identifies the output from each step of the design process. It can be noticed

from this that the process is decompositional in nature. Figure 2.3, taken from [80] illustrates

this decomposition. Initially the highest system level is considered, which could for example

be an aircraft, a train, or a nuclear reactor. As a more detailed architecture is produced, the

sub-systems which make up that platform are considered. As the design becomes more detailed

the components which make up those sub-systems can also be considered. It is most likely to be

at the component level that the software aspects of the design will emerge. The decomposition

may continue, as relevant to the system under development, as more detail becomes available.

The safety of the design must be considered at each stage in the decomposition, and the results

of the analysis must also be decomposed as the design becomes more detailed.

2.2.2.2 Hazard identification

The objective in developing a safe system is to ensure that all the hazards are managed and

controlled. Therefore the first step in the safety process is to identify what those hazards are.

30

2.2. THE DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE SYSTEMS

System

Sub-System 1 Sub-System 2 Sub-System 3 Sub-System 4 ...

Mechanics ControlActuatorsSensors Components

Software

Figure 2.3: The decomposition of a platform design

Hazard identification, often referred to as Preliminary Hazard Identification or PHI, occurs

at the very start of the development process when the requirements for the system are being

developed. It is the hazards identified at this stage which ‘drive’ the rest of the safety process. In

practice the hazards associated with most types of system are fairly well known as most safety-

critical systems are developed in domains where the developers have a lot of previous experience

of developing similar systems. As a result there are few techniques other than brainstorming,

or the use of checklists available for conducting PHI. Identifying novel hazards for a system will

normally involve people with domain expertise considering “what if” scenarios.

Despite the lack of techniques available for this stage of the safety process, its importance should

not be undervalued. If some system hazards are missed, or incorrectly identified this will have

a huge effect on the effectiveness of the rest of the process.

2.2.2.3 Risk assessment

Risk assessment looks at each of the hazards identified for the system and determines the risk

associated with that hazard. Risk is a measure of the threat posed by a hazard, and is defined

in Def. Stan. 00-56 issue 3 [52] as the “combination of the likelihood of harm and the severity

of that harm”. By assessing the risks it is possible to make decisions on the steps that will be

necessary in order to manage the hazard by reducing the risk to an acceptable level.

Risk assessment is normally carried out in a qualitative, rather than a quantitative manner,

as data for a qualitative assessment is often unavailable. As risk is a product of two factors

a matrix is often used to identify the risk. Figure 2.4 shows a risk assessment matrix taken

from [57] which categorises the likelihood of occurrence from frequent to improbable, and the

severity from catastrophic to negligible. The risk for each combination of likelihood and severity

31

CHAPTER 2. SURVEY OF RELATED LITERATURE

is denoted as either high, medium or low.

LOWLOWLOWMEDIUMIMPROBABLEE

LOWLOWMEDIUMHIGHREMOTED

LOWMEDIUMHIGHHIGHOCCASIONALC

LOWMEDIUMHIGHHIGHPROBABLEB

MEDIUMHIGHHIGHHIGHFREQUENTA

IV
NEGLIGIBLE

III
MARGINAL

II
CRITICAL

I
CATASTROPHIC

Frequency of
Occurrence

Hazard Severity Categories

Figure 2.4: Risk assessment matrix

The risk associated with each of the hazards should be reduced to an acceptable level. This

can be done by:

1. Eliminating the hazard

2. Reducing the probability of, or mitigating the effects of the hazard

3. Providing alerts and warnings

4. Establishing procedures

This list of measures is given in order of priority, with eliminating the hazard being the most

preferable, and establishing procedures being the least. The level of risk which is deemed to be

acceptable for a hazard must be determined, taking into account that it is not always feasible

to reduce the risk of all hazards to a low level. In such cases the acceptance of higher risk must

be justified.

When reducing the risk of a hazard, an approach which is often used in the UK is to show

that the hazard has been reduced As Low As Reasonably Practicable (ALARP). The ALARP

principle, which has emerged from principles enshrined in the Health and Safety at Work Act

[22], considers there to be three risk regions. The first region is described as broadly acceptable,

and contains hazards of low-level risk for which no additional reduction is required. Another

region is described as intolerable, and any hazards in this region must be eliminated. Between

these two regions is the ALARP region. Hazards whose risk falls in this region can only be

considered acceptable if it can be shown that the cost of reducing the risk further is grossly

disproportionate to the improvement that is gained. Defining the limits between the regions is

a key aspect of ALARP.

32

2.2. THE DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE SYSTEMS

The risk assessment is used in defining the system level safety requirements. These requirements

form a key part of the risk reduction strategy for those hazards whose risks were assessed as

unacceptable. The risk assessment process can also be used to identify the hazards with the

higher risk which may require more attention or resource assigned to them.

2.2.2.4 Preliminary System Safety Assessment

Once the design activities commence, the aim of the safety analysis becomes ensuring that a

proposed design can meet its safety requirements, and also to refine the safety requirements

where necessary. This part of the analysis process is referred to as Preliminary System Safety

Assessment (PSSA). The techniques used for PSSA aim to start from the system level require-

ments identified in the hazard analysis and risk assessment, and investigate the possible causes

of failure modes in the proposed design. As the design becomes more detailed at the compo-

nent level, the derivation of more detailed safety requirements to prevent or control the failure

modes are derived. It is at this stage in the process that the software components within the

system start to be considered. Although the aim of the PSSA activities is the same for software

components as for other more traditional components, many of the analysis techniques cannot

be directly applied to software, so need to be adapted, or alternative techniques used. This

review will particularly focus on the analysis techniques for software.

Fault tree analysis

Fault tree analysis is by far the most common PSSA analysis technique. A fault tree is used

to represent in a graphical form how combinations of events can contribute to some top event,

which would be the undesirable failure event of interest. The main elements of the notation,

taken from [58], are shown in figure 2.5.

In addition to those shown, other symbols are available such as the exclusive OR gate, and

rather more exotic variants such as the summation and delay gates suggested by Villemeur [81]

however in many cases, the basic symbol set is sufficient. A very simple example taken from

[74] is shown in figure 2.6.

It will be noted that in the example a clear distinction is made between primary and secondary

failures of components. Failures can also be classified as command failures. Identifying the type

of failure can be very useful in fault tree analysis. Villemeur [81] classifies the failures as:

Primary failure Failure of an entity not caused by the failure of another entity. For a compo-

33

CHAPTER 2. SURVEY OF RELATED LITERATURE

Intermediate event - A fault event that occurs because of
one or more antecedent causes acting through logic gates

Basic event - A basic initiating fault requiring no further
development

Undeveloped event - An event which is not further
developed, either because it is of insufficient consequence
or because information is unavailable

AND gate - Output fault occurs if all of the input faults occur

OR gate - Output fault occurs if at least one of the input
faults occurs

Figure 2.5: Main elements of the fault tree notation

nent under operation, the failure may, for instance, originate in wear problems or defects

in its design.

Secondary failure Failure of an entity caused by the failure of another entity this entity was

neither qualified for nor designed against. Particular conditions in the environment or

human errors may result in the secondary failure of a component.

Command failure Failure of an entity caused by the failure of another entity this entity was

qualified for or designed against. Such a failure occurs when the entity changes state

following inadvertent control signals.

The technique for constructing fault trees generally takes the form of sets of guidelines rather

than any formal rules. Both [58] and [81] contain rules for fault tree construction.

Fault trees can be used to derive safety requirements for the design, by identifying potential

failures that can lead to the hazardous failure mode at the top event. Fault trees can also be used

to calculate probability requirements for particular failure events. If the required probability

for the top event is known, then this probability can be propagated down the tree. At each

level a decision is made on how to allocate the probability between the events at that level.

This continues down the tree until probabilities can be allocated to the basic events. These

probabilities then become targets as part of the requirements relating to that failure i.e. these

probabilities are derived safety requirements upon the system.

34

2.2. THE DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE SYSTEMS

Warning lamp
does not operate

Primary lamp
failure

No voltage applied
to lamp

Fuse open-circuit Switch contacts
fail to closeBattery supply failure

Primary cable
or connector

failure

Primary switch
failure

Primary fuse
failure Secondary fuse

failure
Secondary switch

failure

Figure 2.6: A simple fault tree

These standard fault trees could be used to identify failures of software components in the sys-

tem design. A command failure in a fault tree for example could be that a software component

generates an undesirable output condition. In this way requirements may be defined upon the

software component. As will be seen in the discussion of system safety analysis, fault trees can

also be used as a confirmatory technique once a design has been implemented. To use fault

trees for confirmatory analysis of software it is necessary to consider the logic contained within

the program. It shall be seen later how fault trees can be extended such that the design of the

software itself may be considered.

HAZOP

Hazard and operability studies, or HAZOP as they are more commonly known, were originally

developed by ICI in the 1960’s as a way of analysing process plants [9], and is still very widely

used today, especially in the chemical and nuclear industries. The reason for its popularity in

such industries is that HAZOP, rather than concentrating on the failure of components, instead

focusses on the behaviour of flows between components. HAZOP is a technique that aims to

predict possible failures, and identify their impact. HAZOP is referred to as an imaginative

anticipation of failures, and therefore takes the form of a group brain-storm style activity. A

set of guidewords are used to prompt the identification of deviations from normal behaviour

for a particular flow in the design. The possible causes and consequences of each deviation are

35

CHAPTER 2. SURVEY OF RELATED LITERATURE

considered, and if the deviation has a plausible cause and could lead to a hazardous failure

mode then actions are suggested and derived safety requirements generated. Figure 2.7 taken

from [64] shows the standard HAZOP guidewords with some example interpretations.

Reverse flow.The exact opposite of the intention is
achieved

REVERSE

Any state other than normal operation,
e.g. startup, shutdown, maintenance…

A result other than the intention is
achieved

OTHER THAN

One or more components of mixture
missing, or ratio of components is
incorrect.

Only some of the intention is
achieved (qualitative decrease)

PART OF

Impurities in flow (air, water, oil…)
Chemicals present in more than one
phase (vapour, solid)

All intentions achieved, but with
additional effects (qualitative
increase)

MORE THAN or
AS WELL AS

Low pressure, flow rate, temperature…
Quantity of material is too small.

Quantitative decrease in a physical
property (rate or total quantity)

LESS

Higher pressure, flow rate, temperature…
Quantity of material is too large.

Quantitative increase in a physical
property (rate or total quantity)

MORE

No forward flow when there should be.No part of the intention is achievedNO or NONE

Example InterpretationDeviationGuide Word

Figure 2.7: HAZOP guidewords

Although still predominantly used in process industries, it is possible for HAZOP to be adapted

for other applications. A number of attempts have been made to adapt HAZOP for use in

analysing software. This is probably best summed up in the now obsolete MOD Defence Stan-

dard 00-58 [50]. The main challenge in applying HAZOP to software is in interpreting the

standard HAZOP guidewords in the context of the software design being analysed. Def. Stan.

00-58 includes guidance on guide word interpretations for different attributes of various software

design representations including data flow diagrams, state transition diagrams and object ori-

ented designs. The application of HAZOP to OO designs shall be looked at in detail in section

2.3. As an example of the way Def Stan 00-58 suggests interpreting HAZOP guidewords, figures

2.8 and 2.9 show the interpretations for data flow diagrams and state transition diagrams.

The SHARD (Software Hazard Analysis and Resolution in Design) analysis technique developed

by Pumfrey [64] both influenced, and developed upon the approach described in Def Stan 00-

58. In structuring the guidewords used in SHARD, the failure classes proposed by Bondavalli

and Simoncini in [6] were used. These failure classes are applied to each information flow in a

software design. Each information flow is considered as a separate service. Figure 2.10 taken

from [64] shows failures defined for each service group.

Classifying failures in this manner helps to ensure that the possible failures for each flow are

considered. The failure classes are each interpreted for the information flow being considered.

Figure 2.11 shows how the guidewords could be interpreted for various flows in the MASCOT

3 design notation [26].

36

2.2. THE DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE SYSTEMS

The data value is too low (within or out of
bounds)

Less

The data value is too high (within or out
of bounds)

MoreData value

The data rate is too lowLess

The data rate is too highMore Data rate

Flow of information occurs after it was
required

Late

Flow of information occurs before it was
intended

Early

Information complete, but incorrectOther than

Flow of information in wrong direction
(normally not credible)

Reverse

The information passed is incomplete (for
group flows)

Part of

More data is passed than expectedMore

No information flowNoFlow (of data or control)

InterpretationGuidewordAttribute

Figure 2.8: Example attribute guide word interpretations for data flow diagrams

Similar interpretations of the guidewords for other software design notations can be produced.

Functional Failure Analysis

Functional failure analysis (FFA) is a predictive analysis technique which focusses on the func-

tions of a system. In a similar manner to HAZOP, FFA uses hypothetical failure types as

prompts for identifying failure modes. FFA is very popular in the aerospace industry. The best

description of the technique is found in ARP 4761 [56] where it is referred to as Functional

Hazard Assessment. For FFA the failure types are:

• Function not provided

• Function provided when not required

• Function provided incorrectly

When performing FFA, Pumfrey [64] identifies the following steps:

• Identify functions

• For each function identified, suggest failure modes, using the three failure types as prompts

• For each failure mode consider the effects

• Identify and record any actions necessary to improve the design

37

CHAPTER 2. SURVEY OF RELATED LITERATURE

Event/action takes place after it is
expected

Late

Event/action takes place before it is
expected

Early

Event/action never takes placeNo

An incorrect action takes placeOther than

An incomplete action is performedPart of

Happens after another event or action
that is expected to come after it

After

Happens before another event or action
that is expected to precede it

Before

Timing of Event or
Action

Additional (unwanted) actions take placeAs well as

No action takes placeNoAction

An unexpected event occurs instead of
the anticipated event

Other than

Another event takes place as wellAs well as

Event does not happenNoEvent

InterpretationGuidewordAttribute

Figure 2.9: Example attribute guide word interpretations for state transition diagrams

Coarse (detectably) incorrect
Subtle (undetectably) incorrect

Service value

Early, LateService timing

Omission, CommissionService provision

Failure classesGroup

Figure 2.10: Failure classifications used to structure SHARD guidewords

One of the key features of FFA is that it can be applied at any level of design detail. This

makes it ideal for establishing safety requirements and propagating those requirements down

from high level design to more detailed component design.

FFA is widely applied to software designs. The most likely reason for its popularity is the ease

with which the standard FFA technique can be applied directly to software functions. The

only real problem that arises seems to be that interpreting ‘function provided incorrectly’ for

software can be difficult. It is usually interpreted as meaning that a wrong value is provided

by the function, however this potentially misses other important failure modes which may be

covered by this prompt. Another weakness of this approach is that only the effects of a failure

are considered, not the causes. The result of this is that every potential failure is considered to

be a valid one, which is obviously overly pessimistic.

38

2.2. THE DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE SYSTEMS

132

reader protocol. The write operation is destructive, overwriting any data already in the pool.

Readers may access the pool at any time, and will read the most recent data written. Thus, if the

writing process is late or stops running, the reader processes will not be held up; they will simply

keep reading old data. A channel protocol is a single writer, single reader protocol with

synchronisation; the reader cannot proceed until the writer has delivered the data. Physical device

input and output have similar properties to the pool protocol; a process may read from or write to

a device at any time without being held up. MASCOT supports a standard range of data types,

including Boolean, enumerated types, various integer and real number representations, and

complex data types such as records and arrays.

Table 7 shows an early attempt to interpret the failure classes from Table 6 for some

combinations of communications protocol and data type for MASCOT 3. The intention was that

for each flow analysed, the protocol and data type would be used to select the appropriate row of

the table; the entries in that row (e.g. “No write, Unwanted write” etc.) would then be used as the

guide words for that flow.

Failure Categorisation

Flow Service Provision Timing Value

Protocol Data Type Omission Commission Early Late Subtle Coarse

Boolean No read
Unwanted

read
Early Late

Stuck at 0

Stuck at 1
N/A

Device

input
Value No read

Unwanted

read
Early Late

Incorrect in

range
Out of range

Device

output
Value No write

Unwanted

write
Early Late Incorrect N/A

Enumerated No update
Unwanted

update
N/A Old data Incorrect N/A

Value No update
Unwanted

update
N/A Old data

Incorrect in

range
Out of rangePool

Complex No update
Unwanted

update
N/A Old data Incorrect Inconsistent

Boolean No data Extra data Early Late
Stuck at 0

Stuck at 1
N/A

Channel

Complex No data Extra data Early Late Incorrect Inconsistent

Figure 2.11: Example SHARD guidewords for MASCOT 3

Summary of PSSA techniques

The review has looked at some of the most commonly used techniques for PSSA: Fault trees,

HAZOP and FFA. The aim of all the techniques is essentially the same, that is to identify

failures which could lead to a system hazard so that safety requirements may be derived which,

when implemented, will prevent the occurrence of the hazard. Fault trees focus on compo-

nent failures and is a deductive technique, that is to say that it works back from a hazardous

failure event to identify possible causes. HAZOP considers failures relating to flows between

components, and is an inductive technique. That is to say that failures in the behaviour of

the flows are postulated, and the consequences of the failure are considered. FFA is also an

inductive technique, however it considers failures of functions. There are also a number of other

techniques which are used in PSSA for analysing failures, an overview can be found in [40].

It is impossible to say that any particular technique is ‘better’ than any other, as different

techniques work best with different types of system or component. It is important the the most

appropriate technique, or combination of techniques is selected.

All of the techniques reviewed here have the ability to be applied to software, with varying

levels of success and ease. Which of the techniques it is preferable to use will depend upon the

software system itself, and its design. For some software, a functional view may be the most

appropriate, in which case FFA may prove the most effective. For other software designs, it

may be the information flows which are most important in defining the software, and therefore

HAZOP or SHARD would be more appropriate.

39

CHAPTER 2. SURVEY OF RELATED LITERATURE

There have been a number of attempts to develop techniques specifically for the analysis of OO

software. These shall be reviewed later when discussing the object oriented paradigm in more

detail.

2.2.2.5 System Safety Analysis

Once the design is implemented, it is necessary to confirm that the safety requirements derived

during the PSSA stage of the analysis process have been met. The aim is to generate evidence

that can be used in the safety case for the system. There are two main techniques which are

used for system safety analysis (SSA) of conventional systems: Fault trees, and failure modes

and effects analysis (FMEA). Here these techniques are briefly discussed, before looking in more

detail at how SSA is carried out for software.

Confirmatory fault tree analysis

When the use of fault trees was discussed previously, their purpose was as an aid in iden-

tifying potential causes of failures as part of PSSA activities. In this role fault trees are a

predictive analysis technique. Fault trees can also be used in a confirmatory role where they

are particularly useful in showing that a probability requirement for a hazardous failure mode

has been met by the system. The known (or estimated) failure probabilities for the basic failure

events can be included in the fault tree, and then the probabilities of the intermediate events

can be calculated. This will eventually lead to an ‘achieved’ probability for the top event. It

can then be seen whether the required probability has been met. To assist in this analysis it is

possible to reduce a fault tree to its minimal cut set form. The fault tree handbook [58] defines

a minimal cut set as “A smallest combination of component failures which, if they all occur,

will cause the top event to occur.”

It is also possible to use fault trees for system safety analysis of software. Leveson [38], [39]

has developed an approach know as Software Fault Tree Analysis (SFTA) which is used as a

confirmatory analysis to show that the software program produced does not lead to hazardous

failure modes. Essentially SFTA is a form of static code analysis (see section 2.3.6), albeit a

very hazard focussed form. SFTA is carried out by inspecting the logic of the program code

relating to the hazardous failure mode of interest. A fault tree is constructed to show what steps

in the program code would need to fail to lead to the top event. Failure events that could not

be produced by the code are eliminated until either the entire tree is eliminated (indicating the

40

2.2. THE DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE SYSTEMS

code could not lead to the top event) or the faults in the code are identified. The main problem

with the SFTA approach is that it can only really be used effectively on quite small amounts

of code. For larger programs it is probably more cost effective to use static code analysis.

Failure Modes and Effects Analysis

It was seen above how fault trees can be used in both a predictive, and a confirmatory role.

Failure Modes and Effects Analysis (FMEA) can similarly be applied as a technique for both

PSSA and SSA. FFA, discussed as part of the PSSA section, is essentially a predictive FMEA.

FMEA itself is a confirmatory analysis, which uses the known failure modes of system compo-

nents for a specific system implementation to determine which failures may occur at the system

level. The best descriptions of the FMEA technique can be found in [81] and [56]. Villemeur

identifies four main steps in performing an FMEA:

1. Definition of the system, its functions and components;

2. Identification of the component failure modes and their causes;

3. Study of the failure mode effects;

4. Conclusions and recommendations

In identifying the failure modes for each of the components, it is possible to make use of guide

lists of generic failure modes, however specific failures for each component should be identified

through, for example, operating experience, or the use of component testing. Figure 2.12 taken

from [81] shows the typical output for a simple example FMEA represented in tabular form.

FMEA is often a technique which is concerned with system reliability, rather than system safety.

FMEA can be used quite effectively for safety however, in which case it is important to identify

which of the effects are hazardous, and what mitigations are in place for each hazardous effect.

In this way the FMEA is used to provide evidence that the safety requirements identified at

PSSA stage are met by the implemented system. An adaptation of FMEA which takes more

account of these safety issues is failure modes, effects and criticality analysis (FMECA). This

technique incorporates the risk associated with each failure mode into the FMEA output. In

this way it is possible to check that the risks associated with the failure modes are at an

acceptable level. If there are failure modes whose risks are unacceptable, then further measures

are required to mitigate those risks.

41

CHAPTER 2. SURVEY OF RELATED LITERATURE

• Loss of the system function: the motor does not
operate

•The motor short circuit causes a high electric
current to pass and then the melting of the fuse; the
relay contact remains stuck

•Primary failure
•The P.B. is stuck
• The relay contact remains
opened
• Primary failure
•The motor operates too long

• The motor does not
operate

• Short circuit

Motor

• In case of a short circuit, the fuse does not open the
circuit

• Primary failure
• The operator overrated the fuse
(human error)

• The fuse does not meltFuse

• Loss of the system function: the motor does not
operate

• The motor operates too long: hence a motor short
circuit, which leads to a high electrical current and
the melting of the fuse

• Primary (mechanical) failure

• Primary (mechanical) failure
• A high current passes through
the contact

• The relay contact remains
opened
• The relay contact remains
stuck

Relay

• Loss of the system function: the motor does not
operate
•The motor operates too long: hence a motor short
circuit, which leads to a high electric current and the
melting of the fuse

• Primary (mechanical) failure
• Primary (mechanical) failure
• The operator fails to release the
P.B. (human error)

• The P.B. is stuck
• The P.B. contact remains
stuck

Push –button (P.B.)

Effects on the systemPossible causesFailure modesComponents

Figure 2.12: An FMEA table

FMEA is not really a technique that can be used for SSA of software. Although software

components could be considered in the FMEA, meaningful failure modes would be difficult to

determine. The FMEA technique is simply not fine-grained enough for confirmatory analysis

of software code. Software FMEA (SMEA) [65], [36] has however been used with some suc-

cess during requirements and design analysis [43]. There are a number of limitations to the

technique however. Lutz [43] describes the technique as time-consuming and tedious, and also

identifies that its success depends upon both the domain knowledge of the analyst and the

accuracy of the documentation. Lutz also confirms that a complete list of failure modes for

software cannot be compiled. She identifies however that by integrating SFMEA with a back-

ward search for contributory causes, such as FTA, the effectiveness of SFMEA can be enhanced.

Software verification

There are many software verification techniques which can be used to generate evidence that

the software meets its requirements. The generation of evidence is an important aspect of

the safety process, however one of the objectives of the thesis is that, as far as possible, the

approach proposed will fit in with existing development processes. It is therefore not the in-

tention of this thesis to attempt to propose any new verification techniques, nor indeed does it

particularly aim to comment on the merits of any specific existing techniques. However, if the

existing verification techniques are to be used effectively as part of the approach developed in

this thesis, then it is important to provide an overview of those verification techniques, and in

42

2.2. THE DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE SYSTEMS

particular, techniques for verifying OO software. Verification techniques for OO are discussed

in more detail in section 2.3.6. Here a few general observations about software verification are

made.

In verifying the safety of software, it is not good enough just to show that the implementation

satisfies the functional requirements, nor is it even in some senses necessary to show this. As

Leveson points out, “Not all software errors cause hazards, and not all software that functions

according to specification is safe”. The crucial thing for safety is that the software is verified

specifically against the safety requirements. Verification is generally split into two types of

analysis: dynamic analysis, and static analysis. Dynamic analysis involves executing the code

and evaluating its behaviour. Static analysis involves evaluating the code without executing it.

There are limitations to both types of analysis which will not be discussed here, however when

verifying the safety of software a combination of both static and dynamic techniques is usually

appropriate (this is mandated by most standards).

2.2.2.6 Common Cause Analysis

Common cause analysis, or common mode analysis as it is also referred to, is used throughout the

whole development lifecycle in support of both PSSA and SSA. Many of the analysis techniques

which have been discussed here, such as fault trees, assume that failures are independent of

each other. If this assumption is not true, and there in fact exists a common cause, then the

fault tree is invalid. If two basic failures below an AND gate are considered, the probability of

the intermediate failure should be the product of the two basic failure events. If the two failures

are not independent, then the probability of the intermediate failure will be much higher than

had previously been predicted. Identifying common causes can be done using a number of

techniques.

ARP4761 [56] identifies three common cause analysis techniques: common mode analysis (CMA),

particular risk analysis (PRA), and zonal safety analysis (ZSA). CMA uses checklists to identify

potential sources of common mode failures in a design. These common failures may be design

flaws common to a number of components, or external threats such as fires. The output of the

PSSA analyses is used to determine where independence is required in the design and based

on these two steps CMA requirements are derived. The design is then analysed to ensure the

derived CMA requirements are met. If the CMA requirements cannot be met with the current

design then modifications are required to resolve this. Software is identified in ARP4761 as an

example of a potential cause of common mode failures. Systematic errors may well be common

43

CHAPTER 2. SURVEY OF RELATED LITERATURE

to many items of software, particularly if the software items were developed by the same de-

velopment team. This is particularly important where redundancy is claimed in software, as

programming errors may be common to both items. It must be remembered that software can

also be susceptible to external threats, as if the hardware on which the software runs fails, then

so does the software.

PRA is used to analyse in detail the potential effects of events which are outside the system, but

which could impact independence claims made about the system. ARP4761 suggests particular

risks relevant to aircraft systems such as fire, tyre burst and bird strike. The effect of each

particular risk on all parts of the system is evaluated in detail. ZSA is a technique which

considers the effect of the physical proximity of components in causing common failures. This

is done by splitting the system into zones, where each zone is separated by some form of

containment. The sources of failure in each zone are identified along with the potential impact

on the whole of the zone.

2.2.2.7 Safety case delivery

The final part of the safety lifecycle, as can be seen in figure 2.2 is to deliver a safety case for the

system. Kelly defines a safety case in the following terms, “A safety case should communicate

a clear, comprehensible and defensible argument that a system is acceptably safe to operate

in a particular context” [29]. The safety case presents the evidence generated to support the

safety of the system, and also an argument to show how that evidence provides support for

the system’s safety requirements and objectives. As Kelly notes “evidence without argument

is unexplained - it can be unclear that (or how) safety objectives have been satisfied”. Section

2.2.3 looks in detail at the production of safety arguments for software as part of a software

safety case.

It should be noted that although the delivery of the safety case occurs at the end of the lifecycle,

the actual process of generating the evidence to support the safety argument occurs from the

very earliest stages of the development of the system. The output of the hazard identification

and risk assessment activities for example would be expected to form part of the safety case

evidence. It will often also be the case that interim safety case reports are produced at different

stages in the development of the system.

44

2.2. THE DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE SYSTEMS

2.2.2.8 Summary of safety critical systems development

This section has given an overview of the software safety lifecycle and some of the techniques

which are used as part of the process. The way in which the different parts of the process

fit together is neatly summed up in figure 2.13 taken from [64]. This shows how initially the

causes and effects of failures in the system are unknown. Performing PHI identified hazards in

the system. At this stage, the causes and effects are still unknown, however the effects have

been projected (the outcome predicted) in the form of the hazards. Once PHI is completed the

PSSA analysis begins. This aims to predict the causes of the hazards. PSSA leads to the central

square of the matrix where projected causes and projected effects are both known. It is at this

point that safety requirements will be put in place. These requirements are implemented within

the design of the system. Once the detailed design is complete, it is possible to identify which

of the projected causes are actually possible. Therefore the causes are now known. Similarly

the effects are also known. Therefore it is possible at this stage to perform the confirmatory

analysis of SSA, which checks the design’s known behaviour meets its safety requirements. It

is by linking the design back to a set of requirements generated from the system hazards that

the safety of the system can be assured.

Effect

Cause

Known

Projected

Unknown

KnownProjectedUnknown

PHI

PSSA

Design

Confirmatory
Analysis

Figure 2.13: Representation of the safety critical systems development process

2.2.3 The software safety case

It was discussed in section 2.2.1 how there was a move towards a more product focussed approach

to certifying safety critical systems, rather than appealing to process standards. This requires

that a safety argument be produced which identifies the contribution of the software to the

safety of the system. In [83] Weaver et. al. propose an approach for articulating software safety

arguments which is largely independent of the development process. Their approach uses the

45

CHAPTER 2. SURVEY OF RELATED LITERATURE

Goal Structuring Notation (GSN) to represent the arguments.

GSN is a graphical notation which can be used to record and present safety arguments [29].

GSN provides a notation for representing the elements of the argument and the relationship

between those elements. The principal elements of the GSN notation are shown in figure 2.14.

As described by Kelly in [31], “The principal purpose of a goal structure is to show how goals

(claims about the system) are successively broken down into sub-goals until a point is reached

where claims can be supported by direct reference to available evidence (solutions). As part

of this decomposition, using the GSN it is also possible to make clear the argument strategies

adopted (e.g. adopting a quantitative or qualitative approach), the rationale for the approach

(assumptions, justifications) and the context in which goals are stated (e.g. the system scope

or the assumed operational role).” Figure 2.15 shows an example goal structure in GSN taken

from [83].

Figure 2.14: Main elements of the GSN notation

G1

All identified hazards
eliminated or sufficiently
mitigated

G2

Hazard H1 has been
eliminated

S1

Argument over all
identified hazards

G3

Probability of H2
occuring < 1x10-3

G4

Probability of H3
occuring < 1x10-6

C2

Tolerability
targets

C1

Hazards identified
from FHA

J

J1

1x10-6 p.a. limit for
catastrophic hazards

Sn1

Formal
verification

Sn2

Fault Tree
Analysis

Figure 2.15: An example GSN goal structure

Kelly also introduces the concept of a safety case pattern as a way of explicitly capturing and

46

2.2. THE DEVELOPMENT OF SAFETY-CRITICAL SOFTWARE SYSTEMS

documenting reusable safety case elements. These reusable elements can then be instantiated

for a particular implementation of a system to create a safety argument. In figures 2.16, 2.17

and 2.18 some of the safety argument patterns created by Weaver in [84] for arguing the safety

of software are shown. These are generic patterns that can be used to create arguments about

any safety critical software. The first pattern (figure 2.16) shows the top level decomposition

for the safety argument of a system. This identifies the software as a contributor to system level

hazards. Figure 2.17 then shows the pattern for decomposing the software contribution into a

number of hazardous software failure modes (HSFM). The pattern in figure 2.18 then shows

an approach to demonstrating that the causes of the HSFMs are acceptable by classifying the

software failures into different types. These three patterns represent just one possible approach

to a software safety argument, however they are useful in that they show that it is possible to

construct a safety argument for software. It shall be seen later in the thesis that an alternative

safety argument structure proves to be more effective for OO software. This is discussed in

detail in chapter 5.

 203

Structure
SystemSafe

{System} is acceptably safe
to operate from a hazard
control perspective

SysDefn

System
Definition

DefnAccSafe

Definition of
acceptably safe

ReqValid

System Safety
Requirements are valid

HazAccept

All identified system level
hazards occur at acceptably
low rates

SysHaz

Identified System
Level Hazards

Traceability

Traceability of safety
requirements and safety
evidence has been shown

ArgSWHWOther
Argument across software,
hardware and other parts of
{System} that may cause
hazards

J

DependExplicit

System can be decomposed
as all dependencies between
different parts of the system
are explicit

HWContribAccept

Hardware contributions to
System Level Hazards are
acceptable

SWContribAccept

Software contributions to
System Level Hazards are
acceptable

OtherContribAccept

Other contributions to
System Level Hazards are
acceptable

SWContrib

Identified Software
Contributions to System
Level Hazards = Software
Hazardous Failure Modes

SWDefn

Software
Definition

HWDefn

Hardware
Definition

HWContrib
Identified Hardware
Contributions to
System Level
Hazards

OtherDefn

Other Components
Definition

OtherContrib

Identified Contributions
of Other Components to
System Level Hazards

SystemSafe The overall objective of the argument – to

provide sufficient support for the claim that the

System is acceptably safe to operate.

SysDefn This model should give a clear definition of the

system. From the model it should be possible to

identify the system level hazards.

Participants

DefnAccSafe To be able to argue that the claim is upheld, it is

necessary to give a definition for the term

‘acceptably safe’. This may come from a

standard or regulatory body. The definition will

be the initial basis from which hazard

assessment is made and an argument is

generated with respect to the acceptability of the

hazards.

Figure 2.16: GSN Argument Pattern for Component Contributions to System Hazards

47

CHAPTER 2. SURVEY OF RELATED LITERATURE

 208

Hazardous Software Failure Mode

Decomposition
Author(s) Rob Weaver, John McDermid, Tim Kelly

Created 18/09/00 Last Modified 15/04/04

Intent The intent of this pattern is to provide a decomposition for the

acceptability of software with respect to system level hazards. The

pattern identifies the primary claims for developing a software

safety argument from a hazard control perspective.

Also Known As

Motivation The motivation of this pattern was to identify the three primary

claims which must be satisfied to show the acceptability of

software; All software contributions have been identified,

Acceptability of Hazardous Software Failure Modes, and

Traceability of Safety Requirements and Safety Evidence.

Structure

SWContribAccept

Software contributions to
System Level Hazards are
acceptable

ArgOverSWContrib
Argument over all
identified software
contributions to system
level hazards

SWContribIdent

All software contributions to
system level hazards have
been identified

SWContrib

Identified Software
Contributions to System
Level Hazards = Hazardous
Software Failure Modes

SWSRTraceability

Traceability of software
safety requirements and
safety evidence has been
shown

HSFMAccept

All causes of Hazardous
Software Failure Mode
{HSFM} are acceptable

n
n = # software hazardous

failure modes from SWContrib

SWDefn

Software
Definition

Figure 2.17: GSN Argument Pattern for Hazardous Software Failure Mode Decomposition

 212

Hazardous Software Failure Mode Classification
Author(s) Rob Weaver, John McDermid, Tim Kelly

Created 18/09/00 Last Modified 15/04/04

Intent The intent of this pattern is to provide a type classification for the

hazardous failure mode that is the subject of the argument. The

failure mode can be classified as one of Omission, Commission,

Early, Late or Value.

Also Known As

Motivation By defining the hazard as a particular type, it is possible to focus the

argument on the particular causes and associated evidence for that

hazard type.

Structure

HSFMOmissionAccept

All causes of Hazardous
Software Failure Mode {HSFM}
of type Omission are acceptable

HSFMEarlyAccept

All causes of Hazardous
Software Failure Mode
{HSFM} of type Early are
acceptable

HSFMValueAccept

All causes of Hazardous
Software Failure Mode {HSFM}
of type Value are acceptable

DefOmFM

Definition of
Omission Failure
Mode

DefEarlyFM

Definition of Early
Failure Mode

DefValueFM
Definition of
Value Failure
Mode

HSFMAccept

All causes of Hazardous
Software Failure Mode
{HSFM} are acceptable

1-of-5

HSFMCommissionAccept

All causes of Hazardous
Software Failure Mode {HSFM}
of type Commission are
acceptable

DefComFM

Definition of
Commission Failure
Mode

HSFMLateAccept

All causes of Hazardous
Software Failure Mode
{HSFM} of type Late are
acceptable

DefLateFM

Definition of Late
Failure Mode

HSFM
Hazardous
Software Failure
Mode

SysHaz

System Level
Hazard

SWDefn

Software
Definition

Participants HSFMAccept The overall objective of the argument – to

provide sufficient support to the claim that the

Hazardous Software Failure Mode under

consideration is acceptably safe.

Figure 2.18: GSN Argument Pattern for Hazardous Software Failure Mode Classification

48

2.3. THE OBJECT ORIENTED PARADIGM

2.3 The object oriented paradigm

As with many of the developments within the computer science arena, when the object oriented

paradigm first emerged it was purely in relation to programming languages. The work in this

thesis is mainly focussed not upon OO programming (which is concerned with implementation),

but with OO analysis and design. Section 2.3.2 will look at design and analysis methods for

OO. Firstly section 2.3.1 introduces the basic concepts of OO.

2.3.1 Object oriented concepts

Simula 1 and Simula 67 were the first OO languages developed in the 1960s and contained most

of the key OO concepts. These concepts are described below using definitions taken from [44]

and [33].

The fundamental building block of all OO systems is the object itself. “An object is any thing,

real or abstract, about which we store data and those methods that manipulate that data”[44].

Methods are also often referred to simply as operations and specify the way in which an object’s

data is manipulated. The methods therefore represent the behaviour of the object. A key aspect

of methods is that an object’s methods can only access the data of that object. Methods should

not be able to directly access the data of another object. In order to access the data of another

object, the object must send a message to that object. A message is a request from one object

to another which causes an operation to be invoked on the called object. The object performs

the operation and, optionally, returns a response.

Having data and methods together, as they are in objects, is referred to as encapsulation.

Encapsulation means that the user of an object can know what operations are provided by an

object, without knowing the details of how those operations are implemented. Encapsulation

provides a level of protection against corruption of the object’s data, as the data can only be

manipulated by the methods provided by the object. This property is known as information

hiding.

It is possible to place different objects into categories of objects or object types. Objects

representing individual people, for example, could all be thought of as from the same category

of objects. The object type of these objects would be Person. Object types are referred to as

classes. “A class is an implementation of an object type. It specifies a data structure and the

permissible operational methods that apply to each of its objects” [44]. Objects are instances

of a particular class. Each instance of a class will share the same methods and data attributes

49

CHAPTER 2. SURVEY OF RELATED LITERATURE

(although the value of those attributes may differ).

A class can be specialised into lower level sub-classes. For example the class Person may have

subtypes of Civilian Person and Military Person. Military Person may have further types of

Officer and Rating, and so on through a hierarchy of classes and sub-classes. A sub-class inherits

the properties of its parent class through a process of inheritance. “Inheritance means properties

defined for an object class are automatically defined for all of its subclasses”[33].1 Inheritance

is a very powerful feature of OO as it allows ‘programming by difference’, where only those

parts of a class that are new need to be designed. This is essentially a form of software reuse.

Polymorphism is the ability to take on more than one form. In the context of OO, this means

that an operation may be defined differently for different sub-classes. The appropriate imple-

mentation of the operation is chosen at run-time. The process of choosing the correct operation

implementation is known as dynamic binding.

2.3.2 Object oriented analysis and design

Despite the availability of OO programming languages, it was not until the late 1980s, and early

1990s that OO design was given much, if any consideration.2 The earliest work was started

by Grady Booch, and by Shlaer and Mellor who published a book in 1988 [70]. Like Booch’s

early work, this represented OO systems as essentially entity-relationship models, ignoring

the behavioural aspects of objects. Shlaer and Mellor later incorporated behaviour into their

approach using standard state transition models. Coad and Yourdan [10] also developed a

simple OO method which incorporated behavioural aspects. The simplicity of this method

made it popular. Booch’s work was also popular due to its direct support for structures in the

C++ programming language, which was very popular at that time. This popularity lead to

a huge explosion of interest in OO design methods, building upon this early work. So much

so that by 1994 it was estimated that there were around 72 different methods available for

developers of OO systems to use. Here just a few of the most influential methods are discussed.

The OMT method [67] introduced class models by incorporating operations into the entity-

relationship type models. OMT was also influential by using data flow diagrams as a way

of separating the processes of the system from the class diagrams. This concept of taking

1It is, however, possible for sub-classes to override inherited operations.
2It should be noted that the distinction between OO analysis and OO design is often unclear. Analysis

is normally considered to be identifying and specifying the requirements. With many OO methods, these
requirements are specified using specific design approaches, giving a seamless transition from analysis to design.
For this reason the distinction between what is an OO analysis method, and what is a OO design method is
often unhelpful. Here ‘OO design’ is also be used to refer to approaches involving OO analysis

50

2.3. THE OBJECT ORIENTED PARADIGM

different views of a system was a very important one for OO design. OMT took this further

by emphasising the use of state transition diagrams to represent the lifecycle of objects, thus

presenting another different view of the system.

Objectory [24] was a method developed in its OO form from an existing method used in the

Swedish telecommunications industry by Jacobson et. al. The most interesting thing about this

method is that the development of the design does not start with the class model, but from use

cases, which describe the required functionality of the system. The classes are then derived from

this use case model. Essentially what Objectory is proposing is yet another different view of the

system. Objectory was also one of the first methods that attempted to suggest a development

process for OO systems.

The Booch method [7] builds on Booch’s early work to describe an approach which is very

similar to OMT. Indeed Rumbaugh himself acknowledged that the similarities to OMT are

more striking than the differences. One important concept in the Booch method is the use of

Interaction diagrams as a way of tracing the execution of a scenario.

As was suggested earlier, the number of OO design methods available was unsustainable. In

addition there was also a large amount of overlap between many of the methods. It was obvious

that some kind of unification was required if OO was going to become successful on a commer-

cial scale. One of the first attempts to combine the good parts of different methods together

into one approach was with Fusion method [11], however this was felt by many to be poorly

integrated. The breakthrough came when Rumbaugh and Booch, who had been working on

combining OMT and the Booch method, were joined at Rational Software by Ivar Jacobson.

What resulted from their collaboration was the Unified Modeling Language.

The Unified Modeling Language

The Unified Modeling Language (UML) [59] was accepted by the Object Management Group

(OMG) in 1997 as the standard approach to OO modelling and has since become the de facto

standard for most OO developers. In this section the way in which UML can be used to model

OO systems is described in more detail. It should be clear that many parts of UML notation

originate from the methods discussed previously.

UML represents designs using several views. A view is simply a subset of UML modeling con-

structs that represents one aspect of a system, such as the static view, or an interaction view.

Here the design notations used for the different views are briefly explained.

51

CHAPTER 2. SURVEY OF RELATED LITERATURE

The static view

The main constituents of this view are classes and their relationships such as associations

and generalisations. “An association is a relationship among two or more specified classifiers

that describes connections among their instances. Each instance of an association (link) is a

tuple (an ordered list) of references to objects. The multiplicity attached to an association end

declares how many objects may fill the position defined by the association end” [68]. It is the

associations that turn a set of unconnected classes into a system. Generalisations are used to

represent the hierarchical parent-class to sub-class inheritance relationships. The static view is

represented in UML using a class diagram as shown in figure 2.19.

+add()

-name : String
-phone : String

Customer

-date : Date
Reservation

Subscription Series Individual Reservation

owner purchased

-name : String
Show1..* 1

multiplicities

generalisation

rolenames

association

attributes
operations

class

Figure 2.19: UML class diagram

During the execution of the system, instances of the classes represented in the class diagram (up

to the number specified in the association ends) may be created and destroyed as required. It is

possible to represent the objects and their relationships at a particular point in the lifetime of

the system using an object diagram. This is essentially a special case of a class diagram showing

instances instead of classes.

The interaction view

Objects must interact in order to implement behaviour. Understanding these interactions is

therefore very important. The interaction view provides a view of the behaviour of a set of

objects. This is done by modeling collaborations. A collaboration is a description of a set

of cooperating objects assembled to carry out some purpose. “A collaboration describes the

properties that an instance of a class has because it plays a particular role in a collaboration.

52

2.3. THE OBJECT ORIENTED PARADIGM

An object in a system may participate in more than one collaboration” [68]. UML provides

two different diagrams for representing collaborations. Firstly the sequence diagram (figure

2.20) shows a sequence of messages for a particular collaboration arranged in a time sequence.

The collaboration can also be represented as a collaboration diagram which represents the ob-

jects and links that are meaningful within an interaction. Figure 2.21 represents the same

collaboration as in figure 2.20 in the form of a collaboration diagram.

kiosk box office credit card service

request(count, performance)

show availability(seat-list)

select(seats)

demand payment(cost)

insert card(card number)

charge(card number, cost)

authorized

print tickets(performance, seats)

eject card

object

message

lifeline

activation

Figure 2.20: UML sequence diagram

kiosk

box office credit card service

1:request(count, perf)

2:show availability(seat-list)

3:select(seats)

4:demand payment(cost)

5:insert card(card number)

6:charge(card number, cost)

7:authorised

object

link

message

Figure 2.21: UML collaboration diagram

The two types of interaction diagram represent the same information, so which to use amounts

53

CHAPTER 2. SURVEY OF RELATED LITERATURE

to a matter of personal preference. It is often easier to get a feeling for the timing of interac-

tions using sequence diagrams. There is also the potential to annotate the sequence diagram

with timing information, such as in [14]. The sequence diagram also makes it possible to repre-

sent the activation of a particular object, that is the time when that object is executing. The

collaboration diagram is good if it is important to maintain some understanding of the static

structure in the interaction view.

The state chart view

The state chart view is essentially another form of interaction view which focusses on a deep

view of the behaviour of an individual object. Each object is treated as an isolated entity which

communicates with the world by detecting and responding to events. The events could be, for

example, the receipt of message calls, or the passing of time. As can be seen in figure 2.22, state

charts in UML are essentially standard state machines which use states and transitions between

those states to represent the lifecycle of objects of a class. Transitions between states may have

a trigger event, which causes the transition, a guard condition, which is a boolean expression

which must evaluate to true for the transition to occur, and an action, which is executed when

the transition fires.

Waiting

Confirm credit

Cancel order

Process order

Receive order
[amount < £25]

rejected

Approved / debit account()

Receive order
[amount > £25]

initial state

transition

trigger event

trigger event

guard condition

action

state

Figure 2.22: UML state chart diagram

State charts provide a relatively precise definition of object behaviour, and can even in some

cases be used to directly generate code for the objects. The weakness is that the state chart pro-

vides a very narrow view which is separate from other objects, and it is therefore very difficult

to get an understanding of the behaviour of the overall system. To understand the behaviour

of the system it would be necessary to consider the combined effects of many state charts to-

54

2.3. THE OBJECT ORIENTED PARADIGM

gether. For this reason state charts are best used in conjunction with one of the interaction

views discussed earlier.

The use case view

The use case view is used to model the functionality of the system as perceived by outside

users, referred to as actors. A use case is a coherent unit of functionality expressed as a trans-

action between actors and the system. A use case is realised through a set of collaborations,

therefore it is possible to represent different scenarios of a use case through interaction views.

A use case diagram, as in figure 2.23 represents the use cases of the system, and links them to

the actors that utilise that use case functionality.

kiosk

buy tickets

make changes

buy subscription

survey sales

clerk

credit card service

supervisor

Box Office

«uses»

system

actor

relationship

Use case

Figure 2.23: UML use case diagram

The use case diagram is essentially an informal high-level requirements capture for the system.

UML review

The views discussed above are the main ones necessary for describing any system however UML

also provides other notations which may be used for providing different views of the system

design. The activity diagram uses activity graphs to show a procedure or a work flow. This is

the diagrammatical notation which has changed the most with the issuing of the new version of

UML, UML 2.0 [61]. The notation includes connectors to allow the action flow to span multiple

activity diagrams, there is also now a way of representing sub-activities and exception handling.

There are many more changes, many cosmetic, which are not relevant to this thesis. It is worth

55

CHAPTER 2. SURVEY OF RELATED LITERATURE

noting however that collaboration diagrams are now officially referred to as communication

diagrams, however the old name persists. Within UML there is also the physical view which

models implementation information. This provides the component diagram, which represents

the implemented components and their interfaces, and the deployment diagram which can be

used to represent computational resources and communication links.

It was identified as being of importance in the work presented in this thesis that the process

developed fitted in as far as possible with existing software development approaches. UML is the

most widely used and supported modeling approach for OO systems, and therefore it is UML

models which will primarily be considered when looking at OO design models (although the

process is applicable to any design methodology which provides the information). It is therefore

necessary to acknowledge some of the weaknesses and limitations of UML. It should be noted

however that there is no perfect modeling approach, and it is therefore crucial to understand

the weaknesses of any approach such that they are considered appropriately in the development

of the safety process.

As UML aims to support all concepts that arise in modern computer systems, it needs a large

expressive power, which can tend towards a bloated and complicated language. This increases

the potential for ambiguity and misuse. In [71] Simons and Graham identify 30 problems

experienced by developers who used UML on real projects either in academia or in industry.

By analysing these problems, the authors were able to identify four underlying causes of the

failures identified in their survey. Firstly, they felt that being a universal notation, UML

can have multiple interpretations. UML uses the same notation for modeling the analysis, the

design and for documenting implementation. This means that a developer can interpret another

developers diagram under a different set of assumptions. Secondly, the universal notation may

also foster naive seamless development. For example a class diagram used at the analysis phase

of development to represent concepts in the problem domain may become a concrete design.

This 1:1 mapping was felt to rarely produce well structured systems. It was also noted that the

use of classes and associations in the problem domain, as is the case with UML, can actively

blind the developer to alternative practical structures.

The third underlying cause was identified as being that eclectic models fail to resolve competing

design forces. As was discussed earlier, UML effectively has kept the best parts from a number

of precursor methods and notations. This can mean that different model elements in a single

UML diagram can often be in conflict because they originate from mutually exclusive design

approaches. An example of this is in a UML sequence diagram which switches between dataflow

56

2.3. THE OBJECT ORIENTED PARADIGM

and method invocation perspectives. Models that were highly constrained in their original

context may also lose their useful constraint when extra enhancements are added in UML.

Finally, universal definitions of notational elements were felt to transfer poorly. Developers

were seen to often take the interpretation of notational elements that they were most familiar

with and retrofit those interpretations higher up the analysis process. The result of this is

that it can lead to the imposition of implementation concerns too early on in the development

process.

It should be noted that many of the things claimed above to lead to disadvantages in UML (such

as its universal and eclectic nature) are the very same things that are also claimed elsewhere

as advantages [68]. It is probably possible to conclude from this that UML used well can bring

considerable advantages, whilst UML used badly can cause serious problems. So if UML (or

indeed any modeling language) is to be used in developing safety critical systems, it is important

that it can be constrained in such a way as to minimise potential ambiguity in the model.

There have been a number of attempts at constraining UML. The approach taken by Evans et

al in [15] is to attempt to define a precise semantic model for UML diagrams. The motivation

for their work is that they identify that a lack of precise semantics for UML is the main inhibitor

to the reuse of specifications and designs. They identify two main problems. The first is that

the generalisation relationship in UML only allows for a more specific element to be substituted

for a more generic element. Although they acknowledge that this is useful, they note that there

are other forms of incremental modification which are possible. They note that the semantics

of the generalisation relationship are also unclear, particularly for packages.

Secondly, they identify that UML does not formally specify the relationship between UML

diagrams. This means that, for example, the impact of modifications of a class in a class

diagram on the state chart for that class or the collaboration diagrams describing the class’s

interaction with other classes is unclear. Reuse contracts ([73]) are identified as a way to deal

with the evolution of OO class hierarchies and collaborating classes. Evans et al propose to

solve the problems they identified by extending UML with a reuse contracts formalism, which

gives precise semantics for the reuse and evolution of specification and designs in UML. This

can be used to ensure consistency is maintained between different diagrams.

Another way of constraining UML is by representing constraints in UML through the use of

the Object Constraint Language (OCL). The next section looks at OCL in some detail.

57

CHAPTER 2. SURVEY OF RELATED LITERATURE

OCL

OCL is an expression language that enables one to describe constraints on OO models and

other object modeling artifacts [82]. OCL has been accepted by the Object Management Group

as part of UML and is described in the specification [60]. Constraints are simply restrictions

upon values within the UML model. There are three standard stereotypes of OCL constraints:

invariants, preconditions and postconditions. Invariants state a condition that must always be

met by all instances of a class, type or interface. Invariants are expressions which evaluate to

true if the invariant is met, and must be true all the time. Preconditions and postconditions

are defined on operations. The preconditions must be true at the moment the operation is

to be executed. Postconditions must be true at the moment the operation has just ended its

execution. Unlike with invariants, pre and postconditions need only be true at a certain point in

time and not at all times. Pre and postconditions express contracts upon the operations and are

therefore discussed as part of chapter 4. The advantage of using constraints with UML is that

it can improve the precision of the model, as constraints should not be able to be interpreted

differently by different people. Constraints are also a way of enhancing the documentation of

a model and capturing additional information. OCL allows an unambiguous communication

of the modeler’s intent, which is difficult to achieve with natural language. An example OCL

expression is shown in figure 2.24.

context ClassName :: operationName(parameter1 : Type1) : ReturnType
pre: parameterOK : parameter1 > x
post: resultOK : result = y

Figure 2.24: An example OCL constraint

This section is not intended to be a tutorial on OCL, and therefore much of the detail has

deliberately been omitted. This will be introduced as and when its use is required. This equally

applies to the various extensions of OCL which are available.

2.3.3 Software contracts

Helm et al [21] introduced contracts as a way of explicitly specifying interactions amongst groups

of objects. The idea of “design by contract” was introduced by Bertrand Meyer as a way of

making OO software more reliable. In [46] he argues that reliability is even more important for

OO systems. This is because reuse (for example through inheritance) is the cornerstone of OO

and the potential consequences of incorrect behaviour are therefore even more serious as reusable

58

2.3. THE OBJECT ORIENTED PARADIGM

components may be in many different applications. It is argued that software elements should

be considered as implementations meant to satisfy well-understood specifications, this can be

achieved through contracts. Whenever a task in one software unit relies on a call to another unit

to carry out a sub-task a contract exists between the two units. As in the real world, there are

two major properties that characterise any contract. Firstly each party expects some benefits

from the contract and is prepared to incur some obligations to obtain them. Secondly, these

benefits and obligations are documented in some form of contract document. So if the execution

of a certain task relies on a routine call to handle one of its subtasks, it is necessary to specify

the relationship between the client (the caller) and the supplier (the called routine) as precisely

as possible. This is done using assertions. Some assertions, called pre- and postconditions apply

to individual routines, others, called invariants, constrain all routines of a given class. Meyer

uses the Eiffel language [47] to represent pre- and post conditions as shown below.

Routine name (argument declaration) is

Header comment

require

Precondition

do

Routine body, i.e. instructions

ensure

Postcondition

end

Preconditions express requirements that any call must satisfy if the operation is to execute

correctly. The postcondition expresses properties that are ensured in return by the execution

of the call. A precondition violation indicates a ‘bug’ in the client, the caller did not observe

the conditions imposed on correct calls. A postcondition violation is a ‘bug’ in the supplier, the

routine failed to deliver on its promises. Meyer explains that the presence of a precondition in

a routine simply means that the client must guarantee that condition. It does not necessarily

mean that the condition must be tested for before each call to that routine from a client.

Another type of assertion that can be used is a class invariant. This is a property that applies

to all instances of the class, transcending particular routines. In effect the invariant is added to

the pre- and postcondition of every existing exported routine of the class and any subsequently

added routines of the class.

59

CHAPTER 2. SURVEY OF RELATED LITERATURE

In [25] Jezequel and Meyer look at the what they consider to be the reasons for the Ariane disas-

ter discussed in chapter 2.1. As the report of the inquiry found, this was a reuse error, however

the authors of this paper feel the real cause was the lack of any kind of precise specification

associated with the reusable module. They propose that the convert function of the Internal

Reference System horizontal bias module should have contained a require clause stating that

the horizontal bias must be less than the maximum bias. They conclude that had the mission

used a language and method supporting built-in assertions and design by contract then the

crash would probably have been avoided. They do acknowledge however that it is always risky

to draw such after-the-fact conclusions. They go on to state that the lesson to be learned from

the event is that reuse without a contract is sheer folly.

Mitchell and McKim in [48] present benefits of using a design by contract approach gathered

by talking to people who have used contracts. The first benefit they suggest is better designs.

By this they mean that designs are more systematic, due to developers having to clearly and

simply express obligations of client and supplier. There is also better control over the use of

inheritance, which shall be looked at in more detail later. Contracts also provide a consistent

meaning for exceptions and ensure they are used systematically. The second benefit is improved

reliability. This comes from the developer having a better understanding of the code, and hence

spotting faults more easily. Contracts can also help testing, which again increases reliability.

Another benefit of contracts is better documentation, as contracts are part of the public view

of a class’s features and allow programmers to produce more precise specifications. Contracts

provide easier debugging because bugs are easily pinpointed. Finally, contracts also provide

support for reuse, again this will be examined later.

Mitchell and McKim also identify some potential costs and limitations of the use of contracts.

Firstly they acknowledge that it takes time to write contracts, and although there is a down-

stream cost saving in terms of testing, documenting, reusing etc. it is often difficult to commit

the extra time to upstream activities. Writing good contracts is also a skill that takes time and

practice to acquire. There is also a danger that contracts may lead to a false sense of secu-

rity, as contracts cannot express all the desirable properties of programs (“Does the presence

of contracts ensure the safety of the system?” for example). Another potential limitation of a

contracts approach suggested by the authors is that for some projects, an early release, even

one with bugs, rather than the quality of the product is the most important goal. This should

not, however, ever be the case for safety critical software!

60

2.3. THE OBJECT ORIENTED PARADIGM

Using contracts with OO systems

Contracts are ideally suited to use with OO systems. In [46] Meyer discusses how contracts can

be used to provide a better understanding and control of inheritance. The system in figure 2.25

is taken as an example.

X

+r()

A

+r()

B

Figure 2.25: Redefinition of a routine under contract

In this example class A has defined a method r, which has a contract associated with it. Class

B inherits r from class A but has redeclared it. Polymorphism allows A to become attached to

instances of B. If X now makes a call to r then dynamic binding ensures that the redeclared

version of r in B is called rather than A’s original version. In effect A has subcontracted the

task r to B. The problem here is that the author of X can only look at the contract for r in A. B

could now violate its prime contractor’s (A’s) promises. B could do this in one of two ways. B

could make the precondition stronger, risking some calls which are correct from X’s view point

not being handled properly. Or B could make the postcondition weaker, returning a result

which is less favourable than what has been promised to X. This can therefore not be allowed.

The reverse of these changes is permitted however. B can weaken the original precondition

or strengthen the postcondition as both of these result in B exceeding the performance of

the original contractor. The conclusion drawn by Meyer is that when using redeclaration in

inheritance, the new version must remain compatible with the original specification, although it

may improve on it. This can also be applied to class invariants, which must always be stronger

than or equal to the invariants of each of its parents.

Several problems that could occur from making changes to reusable artifacts in a system are

identified by Steyaert et al in [73]. The first problem arises when a parent class is changed

to introduce a new method while one of the inheritors of that class had previously introduced

61

CHAPTER 2. SURVEY OF RELATED LITERATURE

a method with the same name. Although this will not cause problems for the execution of

the software as the parent class would be overridden by the inheritor’s, the intention of the

adaptation to the parent class is lost. Secondly, if a new abstract method is introduced to the

parent class which is invoked by other methods of the parent class, then already existing inheritor

classes which don’t provide an implementation for this abstract class will be incomplete. If the

new method were concrete, this could include extra method invocations of methods implemented

by the inheritor that weren’t invoked before. This is referred to as method capture and can

result in erroneous behaviour as the inheritor did not take into account that its methods would

be invoked by the parent. The inverse of this situation can arise when method invocations are

omitted by a change to a parent class. The method is said to have become inconsistent with

the method it used to invoke.

Reuse contracts are introduced by Steyaert et al as a way of managing such changes. These

contracts are a set of either abstract or concrete method descriptions. These description also

include a specialisation clause which list self sends (calls to other methods within the same class).

There are also three operators introduced for reuse contracts, concretisation, refinement and

extension along with their inverse operations abstraction, coarsening and cancelation. These

operators allow the derivation of new reuse contracts on inheritors from the reuse contracts of

the parent class. The derived reuse contract is labeled with how it has been derived based on

the basic operators. When the base class changes it is then sufficient to check that the same

operator can still apply to the new parent class, if it does then it is safe to conclude that no

assumptions made by the reuser have been violated. This technique provides a useful way of

documenting and managing change and reuse in a system and could potentially be applied to

ensure safety properties are still assured in the presence of change.

Beugnard et al [5] describe how recent reports have found mixed results when components have

been used and reused in mission-critical systems. They conclude that the solution is to be able

to determine beforehand whether a given component can be used within a certain context. This

should take the form of expressing what the component does without entering into the details

of how. Contracts are proposed as a way of achieving this and they discuss how components

can be made contract aware. It is proposed that contracts for components can be divided into

four levels of increasingly negotiable properties. The first and most basic level is used to specify

the component’s interface and ensures that the client and server components can communicate.

An example of this level of contract would be the IDL (Interface Definition Language) speci-

fication used in an object bus such as CORBA. This level of contract doesn’t however define

62

2.3. THE OBJECT ORIENTED PARADIGM

the behaviour of the component, there is no indication of what the result of the execution of an

operation might be. The design by contract that has been examined earlier in this chapter fits

into the next level of contract as it defines an object’s behaviour using assertions. These con-

tracts assume that the services are atomic (either performed in their entirety or not performed

at all) or executed as transactions (a defined sequence of atomic services). The higher layer of

contracts deals with the global behaviour of components in terms of synchronisation between

method calls. This is particularly important were one server component has many clients. The

contract will guarantee to a client that the service will be executed correctly, whatever other

clients request. Beugnard et al propose achieving this through the addition of synchronisation

policies to a contract. The fourth level of contract is the quality-of-service contract which can

quantify the expected behaviour or offer the means to negotiate these values. The difficulty

with using contracts such as these is that they rely on third parties.

Review of contracts

It has been seen how contracts can provide a very powerful and effective way of constrain-

ing the behaviour of software. This is particularly true for OO software. As Meyer noted,

whenever a task in one software unit relies on a call to another unit to carry out a sub-task, a

contract exists between the two units. This is exactly the situation that exists with OO systems

where it is object collaborations which realise the functionality. It is important to note that

the presence of contracts alone is not enough. The constraints defined in the contract must

be correct, and must be correctly implemented by the software. It has also been seen how

contracts can provide support for reuse and inheritance. It is important that any constraints

on the system design support such features, as they are beneficial features of OO.

2.3.4 Analysing OO designs

The review of OO has so far looked at the generation of OO designs, and the use of contracts

as a way of constraining those designs. For a safety critical system, as was seen earlier in this

review, it is important that analysis of the design is used to define the constraints such that

they ensure that hazards do not occur. In this section analysis approaches for OO systems are

reviewed. This will help in the definition of a safety analysis method in this thesis.

The first techniques that shall be looked at are those suggested by Nowicki and Gorski. They

introduce three methods for OO safety analysis in [54]. The first method, which is described in

63

CHAPTER 2. SURVEY OF RELATED LITERATURE

detail in [18], is based around a safety analysis of the system mission. As such, this does not

take into account random failures of any of the objects that make up the system. The technique

involves enriching the high-level system model with a hazard model. This model consists of

explicit safe and unsafe states and the transitions between these states. Critical objects in

the system (objects to which the hazard refers) are identified and merged with the hazard

model. Reachability analysis can then be used to check if the hazardous state is reachable

within the mission constraints. Any hazard scenarios identified can be used to reconstruct the

system to ensure safety. Although the idea of identifying if objects in the system can reach

hazardous states is a sound one, the method as proposed in this paper has shortcomings. The

identification of critical objects is not dealt with adequately. The procedure outlined states that

critical objects are those objects the hazard definition refers to. There is an assumption here

that the hazard definition has correctly identified all critical objects, but no guidance on forming

the hazard definition is given. It is also necessary to produce the hazard model, again little

guidance on how this is to be produced is supplied and it relies on the hazard definition. The

final stage is to change the system design to prevent the hazard. Although in the example given

in the paper it is clear why the particular changes were made, the analysis does not explicitly

guide the analyst towards the necessary changes and it appears to be very much down to the

skill and judgement of the designer.

The second method they propose is detailed in [17]. This is a method to analyse the impact

of errors on the safety of the system. The first method assumes that the system and the

environment are reliable in the sense that they behave as specified. This method accepts

that this assumption isn’t always valid, as objects are exposed to random failures and the

environment can violate assumptions made about it. This method provides a set of templates of

faulty behaviour which are deviations from the normal behaviour of the object. Fault initiator

objects are identified, these are objects which can influence other objects by sending events

and/or by being in some state or assigning a value to the variable that is sensed by another

object. Dynamic models of the fault initiator objects are developed and the templates of faulty

behaviour used to produce a model of the ’unreliable object’. The templates of faulty behaviour

are developed by considering possible faults in transitions. As has already been seen, transitions

can be made up of three elements, an event, a condition and an action. The authors propose that

by considering possible faults for each of these transition elements a list of rules for constructing

improper transitions is derived. These rules are applied to the dynamic model of the initiator

object. Reachability analysis is then performed to see if the hazard can occur for this unreliable

object. The next stage is to identify how the faults of the object can propagate through the

64

2.3. THE OBJECT ORIENTED PARADIGM

object model. Blocking objects are then introduced to stop the fault propagating. The hazard

reachability analysis is then re-performed to check the effectiveness of the blocking object. Again

there are shortcomings with this method. It is not clear how to identify which object may be

a fault initiator. The paper identifies this by experience of which object is likely to behave in

a faulty manner. This does not seem an adequate approach for general application to complex

systems. The introduction of blocking objects as a way of stopping a fault propagating around

the system, although sound in theory and in the simple example used in the paper, could be

highly problematic for larger systems with many faults where appropriate blocking objects may

not be so evident and a huge number of extra objects may need to be introduced.

Whereas the first two methods were concerned with verifying the system design meets its safety

constraints, the final method which is introduced by Nowicki and Gorski aims to strengthen

the safety guarantees of the system. This is done by enriching the system with a device they

call a safety monitor. The only concern of this is safety. If a potentially hazardous sequence of

events is developing in the system then the safety monitor will execute corrective action before

the hazardous behaviour can manifest itself as an accident. The safety monitor is formed using

a model of the critical objects in the system. If the safety monitor is stimulated with the same

events as the system then it will detect if a hazardous state will result in the actual system.

Lano, Clark and Androutsopoulos in [37] examine how safety analysis techniques, predominantly

HAZOP, can be adapted to OO systems, particularly UML. Firstly they consider state transition

diagrams, with the attributes event and action of transitions as the basic elements of analysis.

The guidelines for hazard analysis of state charts given in Def-Stan 00-58 [50] give the following

interpretation of guidewords for event:

No Event does not happen

As well as Another event takes place as well

Other than An unexpected event occurs instead of the expected event

The authors consider this interpretation to be inadequate and instead suggest the following

revised guideword interpretation:

No Event not received by control system: either it occurs but is not transmitted to the con-

troller because of sensor or other failure, or it does not occur even though expected

As well as Another event is detected by the control system as well as the intended event

65

CHAPTER 2. SURVEY OF RELATED LITERATURE

Other than An unexpected event is detected instead of the expected event

Similarly for the action element, a revised from:

No No action takes place

As well as Additional (unwanted) action takes place

Part of An incomplete action is performed

Other than An incorrect action takes place

To the following interpretation:

No No action is produced by the controller, or this action is not transmitted to / carried out

by actuators

As well as Additional (unwanted) actions are generated / performed

Part of An incomplete action is generated / performed

Other than An incorrect action is generated / performed

Class diagrams are also considered in 00-58, however it is noted that the guideword interpre-

tations suggested tend towards consideration of design flaws of the diagram e.g. ”there is a

required relationship that is not shown on the diagram” rather than deviations from the design

intent of the system being described. Therefore the following guideword interpretations for

relationships in a class diagram are suggested:

No No information about this relationship between two objects is recorded by the control

system, even though the relation is true in the real world; or the relation does not hold

between two real-world objects when it is expected to

More / less The number of objects in the relationship with another does not obey the cardi-

nality restrictions expected. This may either be a feature of the real world or erroneous

data held by the control system

Part of Some semantic constraints of the relation given in the diagram hold, but others do not

(either in the real world or in the control system data)

Other than The specified relation does not occur between some objects, another unintended

relation is present instead between these objects

66

2.3. THE OBJECT ORIENTED PARADIGM

Similarly, guideword interpretations for the classes themselves and attributes of those classes

are suggested. The same approach is applied to sequence diagrams where interpretations for

guidewords for objects and messages within these diagrams are given.

This paper is very useful for suggesting how HAZOP may be adapted to OO systems. If this

technique were to be applied to every class, attribute, state transition, and interaction in the

system design of even a fairly small system it would demand considerable time and effort. No

guidance is given on how the technique can be applied in a more focused way. This paper also

doesn’t suggest how the results of this analysis are used to ensure safety.

In [78] Tsuchiya et al use fault trees to derive safety requirements from requirements specifica-

tions for OO designs. Their approach focuses exclusively on statecharts. A high level fault tree

is constructed and a safety requirement is derived for each basic event in the fault tree relating

to the software. The example given in the paper is that the fault tree identifies ‘door is open’

and ‘box is moving’ as basic events leading to the ‘passenger is injured’ top event. The safety

requirement is therefore derived that the door should not be in ‘open’ state at the same time

as box is in either ‘up’ or ‘down’ state. The authors verify the requirement is met in the design

using tables of possible states for the objects in the system. Although the idea of breaking

down higher level requirements into lower-level safety requirements on the software using fault

trees seems a good one, it is felt that the approach in this paper is slightly odd. The object

state charts are a very low-level design technique. The analysis has gone from a system hazard

(actually more correctly an accident in this example) to states in individual objects in just two

layers of fault tree decomposition. It seems that generalising this approach to complex designs

would be impossible. It seems that the high level fault tree is being applied at the wrong level

of design abstraction. The author feels that fault trees would be more appropriately applied

to higher level views of the design, before failures are broken down to a more detailed level

through further analysis.

In [87], Wong explores a way of deriving “safety verification conditions” for OO designs from

system hazards. This is done by using interaction diagrams to identify critical software compo-

nents (objects) in the design. Once these have been identified, detailed design criteria necessary

for safety are generated using the Verified Tree Method, which is essentially an extension of fault

trees. These design criteria are then used in modifying the design of the critical components.

An important aspect of this paper is the desire to express the design criteria in UML such that

they are easier to communicate to the software developers.

Allenby and Kelly in [1] propose a method for using use case scenarios in order to perform hazard

67

CHAPTER 2. SURVEY OF RELATED LITERATURE

analysis. Their approach involves applying HAZOP to use case scenarios in order to identify

hazards. Where necessary additional use cases are added in order to deal with these hazards. A

similar approach is also proposed in [27]. These are useful and interesting approaches to hazard

analysis which fit in well with an OO development process. Use cases however take an external

view of the system, and the internal design is not considered. For this reason there is nothing

that is especially object oriented about the approach, and indeed it could just as successfully

be applied to any standard system.

A paper produced by Artisan software [75] explores the safety features within standard UML.

This looks at the high-level safety features of different UML views. For use case diagrams,

the important safety issue is identified as being able to understand which actors have access

to which service. It is noted that it is information which is not on the diagram that can often

be the safety feature of the system. For example it might be important that a particular actor

cannot access a particular service. The safety features of interaction diagrams are said to be

“by exploring the detailed interactions of ‘how’ the system service (use case) is delivered over

multiple scenarios, the safety engineer has a far more detailed view of the internal workings of the

evolving system” [75]. With respect to class diagrams it is noted that for some safety systems

where dynamic allocation of software objects is not permitted due to the non-determinism

of memory usage that can result, extra details are required to ensure a suitable ‘collection

mechanism’ has been defined to support the ‘many’ relationship between object classes. For

state diagrams it is noted that safety engineers should concentrate on the transitions between

states and that guard conditions can be used to inhibit transitions between states even when

the event associated with the transition has ‘fired’. This paper explains how safety requirements

for the system may be represented using UML notation. This seems to involve simply using

the notation in the standard way it would be used for representing any system requirements.

The paper seems to miss the fact that to ensure the safety of the system it is not sufficient

to just consider the representation of requirements, but actually deriving the correct safety

requirements in the first place, and then being able to check that a system design will meet all

those requirements is just as important and challenging, if not more so.

2.3.5 Representing requirements

Previously in this section, the use of OCL as a way of specifying constraints within UML design

was discussed. The purpose of OCL in UML models is to provide a way of writing unambiguous

constraints, without having to use traditional formal languages. Avoiding formal languages

68

2.3. THE OBJECT ORIENTED PARADIGM

ensures that the constraints being represented are easily understood by the system developers

and the constraints can form part of the design, rather than being viewed separately. There are

alternative ways of representing constraints in OO designs, some of which are discussed here.

Since most safety critical systems are real-time in nature, many of the constraints necessary

to ensure the safety of the system will be constraints upon timing. In [14], Douglass provides

a detailed analysis of modeling real time properties effectively using UML. Douglass proposes

many patterns that can be used to capture important real-time features such as component

synchronisation, transactions and watchdogs. He also makes use of non-standard UML notations

such as timing diagrams and task diagrams. The design of systems is looked at on three levels:

the architectural design, which deals with processors, components and tasks, the mechanical

design, which deals with groups of collaborating classes, and the detailed design, which focuses

on the class level. The way in which key properties at each level may be specified is discussed.

In [28], the author describes how the UML extension mechanisms can be used to include safety

requirements in a UML model. The author suggest a “safety checklist” of stereotypes which

he suggests should be used when developing safety-critical systems with UML. The stereotypes

are defined on different UML elements. The following stereotypes are defined for links:

• risk

• crash failure semantics

• value failure semantics

• guarantees

The following stereotypes are defined for subsystems:

• error handling

• containment

• safe behaviour

• safe communication links

• safe dependency

In addition there is a critical stereotype for objects and a redundancy stereotype for components.

The author states the goal of the approach to be “to enable developers without a background

in safety to make use of safety engineering knowledge encapsulated in a widely used design

69

CHAPTER 2. SURVEY OF RELATED LITERATURE

notation.” Indeed safety engineering knowledge expressed in this form would be accessible to

developers. However, there is an assumption that that safety engineering knowledge (i.e. safety

requirements) is known, and is available in a form that can be expressed using the stereotypes.

The elicitation of such knowledge is outside the scope of the paper.

2.3.6 Verification of OO

As was mentioned previously, this thesis does not set out to define or recommend verification

techniques. However it was seen in this review that part of the safety process for any system

is verification that the system meets its safety requirements. It is therefore important to have

an understanding of the verification techniques available, so that safety requirements may be

specified in a manner which facilitates their verification. Both dynamic analysis (testing) and

static analysis techniques shall be considered.

There are certain of the characteristics of OO systems that were discussed earlier, such as en-

capsulation, information hiding and inheritance, which make traditional verification techniques

insufficient for OO programs. There are also aspects of OO systems which facilitate testing.

Firstly encapsulation is considered. As observed by Barbey [3], the notion of encapsulation can

be very helpful for testing as a class can be tested in isolation from the rest of the system,

i.e. the context in which the test is made does not affect the testing of the class. Another

advantage that encapsulation brings for testing is that the dependencies between objects tend

to be explicit and obvious.

Encapsulation can also bring problems however. The attributes represent the state of the object,

which is changed by operations altering the value of the attributes. What this means is that

the behaviour of the object is dependent on the object’s state at the time the operation is

called. This has an effect on what is defined as a unit in unit testing. Traditionally the unit

would be a subprogram or subroutine. Because of encapsulation, the state of the object must be

considered when testing a method. A method would not then be a suitable unit for testing, as its

behaviour depends on the object state, which is in turn dependent on other methods. Therefore

the smallest basic unit for the unit test has to be the object or the class. Encapsulation can

also have an impact on integration testing. Integration testing combines many tested modules

into subsystems which are incrementally tested. In procedural programming, the modules are

subprograms, but in OO systems they are objects instead. It is necessary to consider if objects

can be integrated into systems in the same way that subprograms can be. If they can’t then

the impact on the integration test strategy needs to be considered.

70

2.3. THE OBJECT ORIENTED PARADIGM

Information hiding can also make life difficult for testers. In order to test an operation, one may

want to check the object’s state before and after invocation. Information hiding however means

that the internal state of the object may be hidden from the tester. State reporting methods

(e.g. getAttX()) can be used to inspect the internal state of an object by returning attribute

values, however there may not be a state reporting method for each internal data item. Even

if there is, these methods themselves may not have been validated and therefore cannot be

trusted. A strategy for testing these state reporting methods is therefore needed. The unit for

abstraction in an OO system is the object, and this can essentially be treated as a black-box.

This means that we are told what functionality an object can provide, but not told information

about how the functionality is implemented (the object is essentially defined by its interface).

This black box view is acceptable from the point of view of the client object who only needs

visibility of the interface, however it makes life difficult for the tester. The information that has

been abstracted by the object is required if it is to be satisfactorily tested.

Inheritance must also be considered when testing OO software. When testing inherited classes

there are two extreme possibilities. The first is to test the inherited class as a flattened class.

This is a representation of the class which includes all attributes and operations inherited from

classes higher in the hierarchy, as well as those added or changed by the inherited class. This

effectively means that all the properties of the base classes are being completely retested for

the inherited class. Although this approach is sound and thorough, it means that no benefit

is gained, from a testing perspective, through the use of the inheritance mechanism. This is

a long way from a ‘testing by difference’ approach, where only the aspects that have changed

need to be tested.3

The second extreme case is to assume that if the base class has been adequately tested, then its

properties in a derived class do not need to be retested. There are a number of reasons why this

approach is unsound. The first is that overriding allows a different subclass implementation

of a function. This could be in the form of a different algorithm, different functionality, or

both. The test suite that was used to test the overridden method in the base class will almost

certainly not be suitable to test the overriding method. It is also necessary to consider the effect

of functions in the derived class on attributes of the base class and vice-versa. Neither of these

extreme positions is acceptable. The best solution is certainly somewhere in between the two

extremes.

3There is debate as to whether reuse of testing is achievable at all, such as [62], however it is felt that this is
still a noble and realistic aim

71

CHAPTER 2. SURVEY OF RELATED LITERATURE

Adequacy of existing testing methods

The discussions above indicate that existing approaches to testing will not be sufficient for

OO programs. Weyuker[85] has proposed an axiomatic theory of test data adequacy. In [62],

Perry and Kaiser apply these axioms to OO programs and conclude that adequacy can only be

achieved if the following conditions are applied. When a new subclass is added, or an existing

subclass is modified the inherited methods from each of the super-classes must be retested even

if they were already thoroughly tested. Class-level testing is required even if every method

in a class is individually tested. Retesting components in most contexts of reuse is required.

These observations seem to fit with those made previously in this section. In her PhD thesis

[32], Kim also looks at the adequacy of traditional testing techniques for OO systems, and

attempts to identify why they are insufficient. She identifies that traditional test adequacy

criteria (program mutation methods) are not reliable for assessing the adequacy of OO software

testing. The choice of mutation operations for OO programs should be extended to deal with

new characteristics of OO. The additional mutant operators for an OO language (in this this

case Java) are generated using a HAZOP analysis of Java language constructs. These constructs

are claimed to be adequate for successful use of mutation testing on programs written using

Java 1.0. In the rest of this section some approaches to addressing the issues raised above in

verifying OO systems are briefly examined.

Base class unit testing

The purpose of unit testing is to assure that the individual parts of the complex system work

correctly in isolation, before their eventual integration. Our interest is in testing a class for

its correctness and its completeness. Correctness means that the class delivers the service it

has promised to perform, and responds acceptably in the face of unexpected conditions [4].

Completeness involves checking that the class has all the necessary functionality, that the func-

tion is available at the public interface, and that each method completely executes its specified

responsibility [4]. If a unit larger than a class were chosen, then completeness would be harder

to achieve as it is easier to get coverage of all possible paths at the class level.

Correctness of a class depends on whether the data attributes are correctly representing the

intended state of an object, and whether the class’ functions are correctly manipulating that

representation. Perry and Keiser’s Anticomposition Axiom [62], indicates that adequately test-

ing the individual methods of a class does not ensure that the class has been adequately tested.

72

2.3. THE OBJECT ORIENTED PARADIGM

This is because the state of the object during testing must also be considered. In order to do

this it is necessary to test each of the data attributes separately. To do this, a class can be

viewed as a composition of a set of slices. A slice of a class can be defined as a quantum of a

class with only a single data member and a set of member functions such that each member

function can manipulate the values associated with this data member [4]. Figure 2.26 shows

how a class can be split into slices. It is assumed that the data attributes are independent.

Class

Data
Attributes

Member
Functions

Slices

Figure 2.26: Splitting a Class into Slices

Bashir and Goel assert that testing all sequences of the methods in a slice is equivalent to

testing the class for this slice or this data member. They claim that if all slices of a class are

tested in this way, it can be concluded that all member functions are correctly manipulating an

object of that type.

Derived class unit testing

In the testing of derived classes, a slice based approach can again be used. It is important

when forming the slices however, that as well as considering functions within the class itself,

member functions of the base class are also considered. It is possible to think of a matrix

containing four quadrants as illustrated in figure 2.27

Quadrant 1 captures those derived class member functions which could impact the data members

of the base class. Quadrant 2 is the base class testing as discussed in the previous section.

Quadrant 3 deals with functions which have been inherited from the base class, which refer to

data in the derived class. These base class functions must be identified and included in the

slice for the data member of the derived class. Quadrant 4 is in effect doing the same as for

the base class, but for the inherited class. If it had been assumed that the properties of a base

class do not need to be retested in a derived class then it is only quadrants 2 and 4 that would

73

CHAPTER 2. SURVEY OF RELATED LITERATURE

43Derived class
data members

12Base class data
members

Derived class
member fns

Base class
member fns

Figure 2.27: Matrix structure for testing derived classes

have been tested for. The relationships in quadrants 1 and 3 would have been missed. This

approach is a good way of ensuring that all the necessary dependencies are tested for.

In [19], Harrold et al. describe a method for incrementally testing inherited classes. This in-

volves the use of a testing history which stores and controls the execution of the test cases for

each class. For each class the test case is formed by combining existing tests from its parent

classes, with new ones developed specifically for the new class. In essence this is very similar to

the approach described above, however the process for deciding which tests to reuse is different.

Integration testing

The complexity and interdependencies of an OO program makes testing of such programs diffi-

cult [35]. Traditionally, integration testing would focus on ensuring that the interfaces between

individual units are correct. For OO programs it is necessary to consider the state associated

with each of the units. Kung et. al. [35] suggest the use of an Object Relational Diagram

(ORD) to capture the different relationships (inheritance, aggregation and association) that

exist between classes. As before, it is necessary to construct slices for testing, as the state as-

sociated with the individual objects is important. The order in which the tests are undertaken

also needs to be considered, with the aim being to find an order to test the classes such that

the effort required to construct the test stubs is minimum. In [35] the authors describes a test

order identification algorithm which will compute an optimal test order for unit and integration

testing of OO programs.

The features of dynamic binding and polymorphism also make integration testing of OO sys-

tems more complex. The procedure called cannot be determined statically as it will depend on

the run-time determination of the class of which the variable is an instance. This can result

in many possible combinations of classes at run time, and these relationships can be hard to

74

2.3. THE OBJECT ORIENTED PARADIGM

capture. This is also a problem for static analysis and this shall therefore be considered in more

detail shortly

Object state testing

An alternative approach to testing OO software is to use state-based testing. In certain cases

it may be easier to detect errors using this approach than with more conventional functional

and structural testing as discussed above. Kung proposes a method for object state testing in

[34]. In [79] an approach to integrating state-based testing with more conventional functional

and structural testing is described.

Static code analysis

Static Code Analysis (SCA) has been proven to be a powerful software verification technique,

which provides the necessary rigour for safety-related software. Indeed many of the standards

discussed earlier such as Def Stan 00-55[51] and IEC 61508[23] mandate its use for safety-critical

applications. As Sampson points out however [69], it also has a reputation for being costly and

labour-intensive. He believes that this is mainly because it is generally felt that it is necessary

to demonstrate that all the software requirements have been correctly implemented. If SCA is

used only to analyse the safety requirements, then it becomes much more viable. As was seen

seen to be the case for testing, the use of OO can bring particular difficulties when using SCA.

This is again due to the presence of polymorphism, and particularly overridden functions (that

is ones which are re-declared in the sub-class).

All overridden functions are essentially hidden branching statements in the program which are

difficult to trace. This is because the actual target for a function call isn’t known until run-

time, and therefore, statically, there are many possible options for the target function. These

options for polymorphic calls may be buried in several different classes scattered throughout the

system. This makes it difficult to identify and collect the different options for all of the possible

branches. It may even mean that one is unaware that a function is overloaded at all. There are

SCA tools available, such as those discussed in [86], which will generate calling trees to assist

in the analysis. However there can still be a huge combinatorial explosion in the number of

possible paths, thus impinging on the ability to perform SCA successfully on OO software.

An interesting approach to avoiding this combinatorial explosion [12] is to take advantage of

75

CHAPTER 2. SURVEY OF RELATED LITERATURE

the Design-By-Contract (DBC) approach which was discussed earlier. The way in which DBC

helps with the dynamic binding problem is that the caller of the method need refer only to the

precondition of the nominal target in order to be guaranteed the postcondition by the actual

target. In this case the actual target does not need to be known by the caller and we no longer

have the explosion of branches. This is reliant however on the contract of the nominal target

being correctly linked to the contract of the actual target which is actually satisfied. In order

to ensure this, Liskov’s substitution principle (LSP) [42] must be applied. LSP requires that

the contract for a method in the subclass must conform with the contract in the superclass.

Again, to put this in simple terms, the new contract (for the actual target) may assume no more

than the old (for the virtual target), and it must promise no less. This is often paraphrased

as “weakening the precondition and/or strengthening the postcondition”. Crocker goes on to

discuss in [12] how contracts can be formally verified.

Review of OO verification

The use of contracts as a way of specifying constraints on the system design has been shown

to have advantages for static code analysis in dealing with dynamic binding. It should also

simplify class unit testing as it provides clarity on what it is that is being tested for, this clarity

should also help to make SCA more viable. This suggests that the safety contracts approach

to OO safety being proposed in this thesis could be beneficial when it comes to verification of

the software. Contracts could potentially cause complications for integration testing, as it is

necessary to ensure that any caller meets the preconditions, however this will essentially just

mean that there are additional requirements to check. In this section the focus has been on

class testing, as this is by far the most common approach. Some other approaches such as [53]

use cluster testing, where clusters of classes are the smallest tested unit, which is perceived to

be cheaper, both in time required to write code to support the class, and in time writing test

plans.

2.4 Thesis Contribution

Based on the results of the survey performed in this chapter it is possible to identify the

contribution that this thesis makes. Below are some problem statements which are addressed

by this thesis.

76

2.5. CONCLUSIONS

• Ensuring the safety of an OO software system requires that the contribution of the software

to system level hazards be identified and mitigated.

• There exist a number of techniques for analysing OO software designs, however, there is

a lack of a coherent process.

• As part of any such process, it is necessary that safety requirements may be generated in

a way that supports the OO paradigm.

• There exists little guidance on how a defensible safety argument may be produced for an

OO system based on the use of a combination of techniques.

• It is essential that safety is considered during all stages of the development lifecycle of the

software.

Based on these requirements, the proposition from chapter 1,

Through the development of safety contracts, it is possible to establish a systematic,

thorough and scalable process to effectively support the use of an OO approach when

developing software for safety critical systems.

is supported in this thesis through:

1. The development of a hazard-driven, product based safety analysis process for OO soft-

ware.

2. The integration of safety requirement elicitation as part of the process.

3. The development of safety argument patterns which support the use of this approach.

In chapter 7, the success with which this thesis addresses the proposition is evaluated.

2.5 Conclusions

This literature survey firstly looked at the safety lifecycle, and identified current best practice

for developing safety critical systems, and particularly the approach and techniques that are

available for developing safe software. This part of the review identified what needs to be

achieved for an OO system if it is to be accepted for use in a safety critical role. The review

then went on to look at the OO paradigm and explored the way in which OO systems may be

77

CHAPTER 2. SURVEY OF RELATED LITERATURE

designed. The way in which these designs may be analysed and verified was then discussed.

Finally the way in which safety arguments can be constructed for software systems was explored.

The results of the literature survey have been used in identifying the contributions that are made

by this thesis.

78

Chapter 3

Performing Safety Analysis of

OO Systems

3.1 Introduction

The literature survey in chapter 2 explored two separate areas. Firstly the safety analysis process

for safety critical software systems was discussed. Then the unique characteristics of the OO

paradigm were explored. The aim of this thesis is in essence to propose a method to allow an

OO approach to be safely used for safety critical systems by building on existing practices and

results. Chapter 2 showed how the first part of the safety process which explicitly considers

software is the PSSA stage, where the design is analysed, and derived safety requirements are

produced. It is the PSSA stage which the author contends to be a crucial area that must be

addressed for OO software. It is felt that although certain aspects of analysis and specification

are dealt with in great detail (such as Gorski and Nowicki’s state chart analysis [54] or Jurjen’s

UML stereotypes [28]), the current literature does not adequately consider the nature of the

derived safety requirements that need to be generated for OO software. The analysis that is

necessary to perform will be determined by the nature of the safety requirements. Producing

safety requirements which are in the correct form is seen as being crucial to successfully providing

an integrated and verifiable approach to assuring the safety of the system. The nature of

derived safety requirements for OO systems is not properly addressed elsewhere and is a major

contribution of this thesis.

Chapter 2 looked at many techniques which are available for performing PSSA on software,

79

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

including some techniques that specifically analysed OO designs. This chapter will propose an

approach for carrying out the analysis, however as was discussed above, in order to understand

the best approach for PSSA on OO software, the nature of the safety requirements which the

analysis will generate must first be understood.

3.2 A Framework for Analysis

As discussed in chapter 2, one of the principal aims of PSSA of software is deriving a set of

software safety requirements which are sufficient to ensure that the behaviour of the software

will not contribute to the identified system hazards, and thus ensure that the system is safe.

The approach can be summarised as shown in figure 3.1.

Missile fired at
friendly target

Target located
incorrectly

Inadvertent
launch

Etc….

Missile
Targeting

Hazard

Software Component

Functional Failure

System

Figure 3.1: Deriving safety requirements for a software system

The safety process starts at the level of the system. The hazards associated with the system

under consideration are identified. Through performing the hazard analysis, it is hoped to

understand how these hazards may be brought about, so that they may be prevented from

occurring or otherwise controlled. The next stage of analysis is therefore to identify the failures

which may occur at the sub-system level to contribute to the hazards of interest. Chapter 2

discusses the techniques available to perform such analysis. These higher level PSSA techniques

(such as FTA) are applicable to any software system, including one developed using OO.

Once the failures which may contribute to the hazards have been identified, it is necessary to

80

3.2. A FRAMEWORK FOR ANALYSIS

specify derived safety requirements for the software which prevent those failures occurring or

detect and mitigate them. It is at this point in the analysis that the existing techniques become

more difficult to apply to an OO system. With a traditional (i.e. functionally decomposed)

software system the functions will be allocated such that there will generally be many black

box sub-systems responsible for different functions. The safety requirements can be assigned to

the relevant sub-system and the software implemented to meet these requirements.

For example in figure 3.1, the functional failure of interest is ‘Target located incorrectly’. Due

to the functional decomposition of the software components in the system, it is fairly easy to

identify which part of the system may contribute to that failure (i.e. there will be part of the

system which has responsibility for that function). So safety requirements could be derived for

the missile targeting component.

If we now consider an OO system, as was discussed in chapter 2, we know that in such systems

the software is not directly decomposed according to the system functions, but into a set of

objects. There will not be a ‘missile firing’ object. The missile firing function is realised by

a number of collaborating objects passing messages between themselves. In this case how can

the safety requirement be assigned? No one object has responsibility for a particular function.

As illustrated in figure 3.2, there is no longer a direct relationship between a functional failure,

and one particular part of the software system. In addition, objects may be involved in many

different system functions as part of separate object collaborations. In addition, the basic unit

of any OO system is not the function but the object. To support the use of an OO approach,

and facilitate reuse, it is desirable that safety requirements can be derived for objects. The

safety requirements obviously need to be broken down further in some way. This raises the

question of how this may be achieved.

In order to answer this question it will be necessary to better understand the way in which

faulty behaviours, and therefore hazards, manifest themselves in an OO system. Firstly, the

way in which functionality is realised in an OO system is examined in more detail.

It was previously mentioned that functionality is achieved in an OO system due to a collab-

oration between interacting objects. The way in which this occurs is illustrated in figure 3.3.

This shows four different objects, O1 to O4, with a sequence of interactions occurring between

them, i1 to i3. Within this thesis, an interaction is defined as any communication which occurs

between objects in order to perform a function. Each of the objects can be considered to have

a set of states associated with it. The object can therefore be represented using the statechart

notation described in chapter 2. When an object interacts with another object, this interaction

81

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

Target located
incorrectly

Missile
Targeting

:aircraft
systems

:weapon

:target

:position

Figure 3.2: Identifying software contributions for functional (left) and OO (right) systems

can trigger that other object to change its state. For example in figure 3.3, the transition of

object O2 from state A to state B is of the form: i1[c]/i2. So if O2 is in its initial state A, then

the interaction, i1, sent from object O1, will cause the transition to state B if condition c is

met. As well as changing the state of O2, this transition will also result in the event i2, which is

an interaction with object O3. In the example in figure 3.3 this can cause a further transition

to occur in O3, and so on. It is through such interaction sequences that an OO system realises

its required functionality.

O1 O2 O4O3
i1 i2 i3

A

C

B

D

E

O2
O3i1

i2

i1 [c] / i2 i2 [c] / i3

i3

Figure 3.3: Sequence of interactions occurring in an OO system

It is the interactions between the objects which are crucial to the safety of OO software. These

interactions must be constrained such that the software’s behaviour will not contribute to haz-

ards. The survey in chapter 2 identified that contracts provide an excellent way of constraining

such interactions. Chapter 4 will look in more detail at the specification and use of contracts for

82

3.3. DEVELOPING AN ANALYSIS PROCESS

this purpose. The analysis carried out on the OO design at the PSSA stage must provide the

necessary information for forming safety requirements in the form of contracts. This chapter

explores an analysis approach for gaining such information.

3.3 Developing an analysis process

Considering the interactions between objects in the design suggests that what is of interest is

failures in flows between components. From the review of PSSA techniques in chapter 2 it

is clear that this suggests the use of a HAZOP style analysis is the most appropriate. Since

we are examining software systems, SHARD would suggest itself as the obvious technique to

use. It was seen in chapter 2 how the SHARD analysis classifies information flow failures as

service provision (function), service timing, and service value failures. Each of these types of

failures must be considered as part of the analysis. The literature survey also discussed how

design notations for OO software (such as UML) represent the system using different views,

which each view showing different aspects of the design. The view that provides the most

useful information for each classification of failures will be different, therefore it was decided to

consider the analysis each of the three classes of failure separately.

The discussion of figure 3.3 above, essentially considered only functional aspects of the interac-

tions, that is aspects relating to what the interaction accomplishes. It was seen in figure 3.3 how

objects can also be viewed as state machines, and how the state behaviour of the object can

determine the way objects interact. As part of considering what an interaction accomplishes,

the state behaviour of the objects may therefore also be considered. State machines provide a

more detailed view of the behaviour of the objects in the system.

Since most systems with safety implications are real-time in nature, it is just as important

to consider when the interaction is accomplished. In many cases for example, an interaction

occurring later than required, could be as bad if the interaction didn’t occur at all. These are

the temporal aspects of the interactions.

It was noted in chapter 2 that a set of values for data attributes of an object can be represented

by a state. Therefore a state transition of an object represents a change in these data attributes.

The correct state behaviour of an object can therefore be dependant on the accuracy of the

data attributes. An interaction may also involve an exchange of data between objects. These

are the value aspects of the interactions, and must also be considered. Although there would

seem to be cross-over between function and value aspects of the interactions, a valid distinction

83

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

can be made. Value aspects are those where the value of the data itself is the cause of the

failure. Errors caused by functional changes to the operations which manipulate that data are

dealt with as functional aspects.

To attempt to perform SHARD-style analysis on all the possible interactions in any even mod-

erately sized system design would quickly become intractable. In any case, the failures in many

of the information flows in the design may have no impact on the hazardous failure modes that

the safety analysis is concerned with. Therefore it is crucial to identify firstly which parts of

the design are important with respect to the hazardous failure modes. Fault trees were seen in

chapter 2 to provide a way of identifying how combinations of failures can lead to some event

which is of interest. In this way fault trees can be used to identify the failures in which part

of the design could lead to a hazardous failure mode. Those parts of the design identified in

this fault tree analysis would then form the subject of further investigation through the use of

SHARD. This approach should ensure that all the relevant failures are considered, but also that

effort is not wasted on unnecessary analysis.

The remainder of this chapter proposes an approach for performing the analysis of the interac-

tions. Firstly, a simple example system is introduced.

3.4 An Aircraft Stores Management System

The analysis approach introduced in this chapter is best described with the aid of an example

software system. In order to illustrate this in a clear and concise way a simplified example will

be used. A larger scale, and more realistic example is presented as a case study in chapter

6. The simple example to be used is a hypothetical stores management system (SMS) for an

aircraft.

The stores management system contains software which is responsible for the management of

stores associated with the aircraft. In the context of an aircraft, a store is essentially anything

which is attached to the wing or underside of the aircraft and can be removed. The most

common examples of stores are weapons or fuel tanks, but can include other things such as

navigation equipment. The stores are attached to the aircraft via stations. The purpose of the

SMS is to maintain an up to date inventory of the stores on the aircraft. This will include

information on the location of each store (which station it is attached to), what type of store it

is, and the store’s current status. The SMS will also manage the stores by selecting the correct

stores to be, for example, jettisoned or released at a particular time. This is done by responding

84

3.4. AN AIRCRAFT STORES MANAGEMENT SYSTEM

to commands from the aircraft pilot or co-pilot. In reality, an SMS is a more complex system

than described here and will provide more functionality. For the purpose of the use of the

example in this thesis however, this description will suffice.

Figure 3.4 shows a UML class diagram for the system described above.

+getCurrentInventory()
+checkConfig()
+initialise()
+checkWOW()
+checkIntervals()
+runRecorder()
+setWOW()

-WOW : bool
-late_arm : bool
-MASS-live : bool

Stores_Manager

+addStore()
+removeStore()
+getID()

-ID
-configError : bool

Station

+jettison()
+release()
+select()
+getID()

-type
-status
-mnemonic
-ID

Store

1

*

1

*

1 0..*

+locate()

-stationID
-storeID

Location

Figure 3.4: UML class diagram for aircraft SMS

Figure 3.5 shows a UML sequence diagram of a normal scenario for the releasing stores function.

This scenario involves the release of two stores in sequence, sequence diagrams for alternative

scenarios could also be developed.

UML has been chosen as the design notation to be used in the example. This is because, as

discussed in 2, UML is by far the most popular notation for designing OO systems. The analysis

process is not dependant on the notation used however. As long as the information required

for the analysis is available, notation is unimportant.

85

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

stores manager store A station 1

Pilot

Select()

Release()

CheckWOW()

RemoveStore()

Select()

Release()

CheckWOW()

RemoveStore()

store B station 2 location

locate(Store A)

locate(Store B)

Select store A
for release

Select store B
for release

Request release
 of Store A

Request release
 of Store B

Figure 3.5: UML sequence diagram for release of store

86

3.5. ANALYSING FUNCTIONAL ASPECTS

3.5 Analysing Functional Aspects

In this section a method for analysing the safety of the functional aspects of the behaviour

of an OO system is described. The purpose of this analysis is to generate a set of hazardous

behaviours associated with a particular hazard in the system which requires mitigating. These

hazardous behaviours will later be used when deriving a set of safety requirements to mitigate

the hazard. The overall process for the analysis of the functional aspects is illustrated in figure

3.6.

1. Identify Hazards

2. Extract
Hazardous

 Failure Modes

3. Identify
basic failure events

4. Investigate
causes of
failures

5. Define
hazardous

object behaviour

Repeat for each
failure mode

Figure 3.6: Overview of safety analysis for functional behaviours of objects

The five steps in this process are now described using the SMS system from section 3.4 as an

example.

3.5.1 Step One: Identify Hazards

The first step involves identifying the hazards that are associated with the system under consid-

eration. These hazards must be acceptably mitigated for the system to be safe. The identifica-

tion of hazards for a system developed using an OO approach is the same as would be adopted

for any safety critical system. As the hazard is a property of the system as a whole, the design

paradigm chosen is unimportant. Therefore standard PHI techniques, such as those discussed

in 2, can be used to identify system hazards. In practice many of the known hazards associated

with a particular system will be recorded in a system hazard log. There will be different levels of

risk associated with each hazard, the risk must be reduced to an acceptable level. It is therefore

not always necessary to analyse every identified hazard as the risk associated with some hazards

may already be acceptably low.

Initial hazard identification for the SMS identifies a number of hazards associated with the

system. These hazards include:

87

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

• Inadvertent release of store

• Release of store whilst on the ground

• Inadequate temporal separation of store releases

• Unbalanced stores configuration

• Release of incorrect store

The system would need to be analysed for each one of the identified hazards. In order to

illustrate the process however, just one hazard will be used. The ‘Release of store whilst on the

ground’ hazard has been chosen for this purpose. This hazard has a potentially high severity

associated with it.

3.5.2 Step Two: Define hazardous software failure modes

Having identified the hazards associated with the system in step one, step two involves defining

hazardous failure modes relating to the hazards. A hazardous software failure mode has been

defined by [84] as “a potential failure within the software which may lead to a system level

hazard”. At this stage the hazardous failure modes are considered at the level of the software

component. Hazardous failure modes for a software component will often be identified based

on the results of an FFA used for the system level hazard analysis, as discussed in chapter 2.

For the SMS, the hazardous failure modes (HFM) associated with the hazard ‘Release of store

whilst on the ground’ are identified below. As with step one, an existing technique can be used

for this step of the analysis, despite the SMS software being OO in nature. As was noted in

section 3.2, it is only once the PSSA part of the analysis begins (from step three) that OO

requires a different approach.

Hazard - Release of store whilst on the ground

HFM 1 - System fails to prevent a release commanded whilst on the ground

HFM 2 - Release occurs without being commanded by system

HFM 3 - System fails to detect aircraft on ground

Of these identified failure modes, HFM 2 and 3 relate to actuator and sensor failures, respec-

tively. It is therefore HFM 1 which relates to the software system and can be defined as a

hazardous software failure mode (HSFM). The HSFM ‘Software system fails to prevent release

on the ground’ will be analysed further in the rest of the process.

88

3.5. ANALYSING FUNCTIONAL ASPECTS

3.5.3 Step Three: Identify basic failure events

Step three of the process involves identifying the ways in which the software might fail, and lead

to the HSFMs under consideration. As was discussed in section 3.2, it is through sequences

of interactions between objects that functionality is achieved by the OO system. This step

of the process is therefore concerned with identifying those failures in the interactions which

may lead to the HSFMs identified in the previous step. In order to do this it is necessary to

understand the interactions that occur. This requires a dynamic view of the system design. A

UML sequence diagram can provide the necessary information about what interactions occur

between different objects in the system to achieve the desired functionality.

The sequence diagram can be used to work back through the sequence of interactions that

occur, and identify which interactions are required to fail in order to bring about the HSFM. A

simple fault tree can be constructed to capture the combination of failures which contribute to

the HSFM. As was discussed in Chapter 2, there have been a number of attempts at applying a

fault tree analysis method to software. The most notable of these is probably Leveson’s SFTA

technique [38], [39]. In this method Leveson attempted to use fault trees as a way of identifying

the contributions of code-level behaviour to software-level hazards. The purpose of this step is

different in that fault trees are used in order to identify the failures at the software sub-system

level which may contribute to a system hazard. As such the code itself is not considered in

the fault tree. additionally, unlike Leveson, the use of fault tree templates is not advocated for

this purpose. The fault tree is used to identify the basic events, which are those which relate

to failures of individual elements of the design (such as objects or interactions). These failure

events require further analysis. This process can again be illustrated using the SMS example.

For the SMS, the top level failure in the fault tree is taken as ‘Software system fails to prevent

release on the ground’ as shown in figure 3.7. In order to construct the fault tree below this

failure, it is necessary to consider the UML sequence diagram for release of store as shown in

figure 3.5. For this part of the analysis it is only necessary to consider release of a single store,

as the general case is being considered. In order to work back through the sequence, the starting

point will be the call of the RemoveStore() operation on the station object. This represents

the end of the store release sequence. For the top level failure to occur the aircraft must be on

the ground, and the remove store operation must be sent. If these events do not occur then

neither will the top level failure. The aircraft being on the ground is however considered to be

a normal event as it is not a failure (the aircraft is meant to be on the ground at the time). It

is therefore represented in figure 3.7 by the normal event symbol. The remove store operation

89

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

call being sent is a failure event however, as this should not be allowed to happen when the

aircraft is on the ground. This event is therefore developed further.

S/W fails to prevent
release of store on the

ground

RemoveStore()
sent

WOW
detected

incorrectly

Aircraft on
ground

WOW ignored

WOW value
held is

incorrect

Failure of
checkWOW()

Failure of stores
manager

Incorrect value
obtained from

sensor

Figure 3.7: Fault tree for SMS HSFM

It can be seen from the sequence diagram (figure 3.5), that before the remove store operation

is called, an interaction occurs to check whether there is weight on the wheels (WOW) or not.

WOW is a boolean value used to determine if the aircraft is on the ground (true), or not. If this

interaction returns true then the remove store operation should not be called. If the remove

store operation is sent with the aircraft on the ground then this will either be that the value

of WOW is not detected correctly, or that the WOW is detected correctly but is ignored and

the store is release anyway. A failure to detect the WOW correctly could either be due to some

sort of failure in the interaction that checks the WOW, or that the WOW value was incorrect

in the first place. This could either be due to a failure of the stores manager, for which WOW

is an attribute, or a failure of the WOW sensor to provide the correct information. The fault

tree (figure 3.7), shows how these events relate to the top level failure. It can be seen that four

basic events are identified (indicated by a diamond symbol under the event). It is necessary to

derive requirements that can mitigate these failures. In order to do this the possible causes of

these failures must be investigated. This is done in step four. The fault tree generated in this

simple example is quite small. For more complex designs there may be many more levels of

decomposition required to identify all the basic events. A more complex design is analysed as

part of the case study in section 6.

90

3.5. ANALYSING FUNCTIONAL ASPECTS

3.5.4 Step Four: Investigate causes of failures

Having identified the failures that could lead to the HSFM in step 3, it is necessary to derive

safety requirements that may mitigate those failures. This requires some further analysis of

the design to investigate possible causes of the failures. Step 4 deals with this analysis. It

is possible to split this step into two distinct parts, a SHARD-style analysis, which is mainly

used for investigating interaction failures, and an analysis of state charts. As a result of this

analysis it is possible to identify the hazardous behaviour associated with individual objects in

the design. This information can be used to define the necessary derived safety requirements.

Firstly the SHARD-style analysis is discussed.

3.5.4.1 Step 4a: SHARD-style analysis

In chapter 2, the SHARD analysis technique was introduced as a software analysis technique

based on HAZOP. SHARD is used to assess the suitability of proposed software designs, and

to derive safety-related requirements. It is structured around information flows between the

components of the system. As such, it is extremely well suited to analysing the interactions

between objects in the system. SHARD involves applying a set of guide words to the flows to

consider deviation from expected behaviour. The guide words can be interpreted in different

ways for different flows. With an OO design there are basically two types of interaction that

may occur, an operation call or a signal. For a signal, which is a simpler form of asynchronous

inter-object communication, suitable interpretations of the guide words already exist which can

be applied (for example MASCOT 3 device output interpretation in [64]). These guide words

can be used to determine the potential causes and effects of the deviation, to identify plausible

deviations which may lead to one of the failures identified at step 3.

For operation calls, which are the more common form of interaction between objects, there

is no existing set of guide word interpretations that is suitable. Therefore a set of suggested

interpretations is developed here. The syntax used for an operation is:

name(parameter-list):return-typeopt

These represent the three key elements of the operation call. The name is the name of the

operation. The parameter list is a comma-separated list of parameter declarations comprising

a name and type. The parameter list may be empty. The return type is optional, and con-

sists of a string containing a comma-separated list of names of classifiers. All three elements

need considering in interpreting the SHARD guide words. As part of this thesis, guideword

91

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

interpretations for operation calls have been developed, and are shown in figure 3.8. The guide

word is the SHARD guide word being used. It can be noticed that the service timing group

of SHARD guide words has not been used. This is because the timing analysis is carried out

separately from the functional analysis, and is discussed in section 3.6. Deviation describes

the deviation from intent that the guide word suggests. Responsibility identifies which of the

objects involved in the interaction is responsible for the deviant behaviour. This is recorded

as client or supplier. The client is the object which makes the operation call. The supplier is

the object that performs the operation. The responsibility is useful in defining the hazardous

object behaviour later in the process.

ClientUnexpected parameter

SupplierUnexpected value returned

SupplierReturn value incorrect

ClientParameter incorrectVALUE

ClientOperation call made when not
required

COMISSION

ClientParameter missing

SupplierReturn value not returned

ClientOperation call not sentOMISSION

ResponsibilityDeviationGuideword

Figure 3.8: SHARD guide word interpretation used for operation calls

It is proposed in this thesis that the deviations described in figure 3.8 are applied to those

interactions whose failure has been identified as potentially contributing to the HSFM. For

these interactions the possible causes and effects of each deviation are identified as well as

whether this effect could contribute to the HSFM.

For the SMS, the following failure events where identified at step 3 as potentially contributing

to the HSFM:

1. WOW ignored

2. Failure of stores manager

3. Incorrect value obtained from sensor

4. Failure of checkWOW()

Failure number 4 is the failure for which SHARD analysis is required as this relates to the

failure of an interaction.1 The checkWOW() interaction is an operation call between the store
1Failure 3 also relates to an interaction, that being between the sensor and the software. As this is a hardware

92

3.5. ANALYSING FUNCTIONAL ASPECTS

object and the stores manager object. Therefore the guide words from figure 3.8 are applied.

The results of this analysis are shown in figure 3.9.

YesWOW value incorrectFailure of supplier*1.4 Returned WOW
value is incorrect

VALUE

YesWOW value incorrectValue obtained by
supplier incorrect*

NoN/AN/A1.3 CheckWOW ()
call made when not
required

COMMISION

YesWOW value not
obtained

Failure of supplier
to return a value

1.2 WOW value not
returned

YesWOW value not
obtained

Failure of client to
send call

1.1 CheckWOW ()
call not made

OMISSION

Contribute
to HSFM?

EffectCauseDeviation

Interaction 1 –

CheckWOW() : Boolean – Operation Call

Client – Store

Supplier – Stores manager

* Failures already identified in FT

Figure 3.9: SHARD analysis of checkWOW() interaction

The causes identified in figure 3.9 will be used in defining hazardous object behaviour in the

next process step.

3.5.4.2 Step 4b: Statechart analysis

As was discussed earlier, a statechart can be used to represent how an object evolves over time

in response to events. Analysing statecharts is therefore a good way to understand the potential

causes of failures. In chapter 2, the work of Gorski and Nowicki on analysis of state charts was

discussed. This work can be used to investigate the potential causes of the failures of interest.

This can be done in two stages. Statecharts are required for the relevant objects in the system

design. The first stage assumes that the object being analysed will behave exactly as specified

in the design. This means that there are no mistakes in implementation which cause the object

to exhibit faulty behaviour. The aim of this stage is to check that the proposed statechart

design will not lead to any of the identified failure conditions. In this way it is possible to check

that the statechart design is safe, that is to say that the design if implemented correctly would

not contribute to any HSFMs. If the design is found to exhibit any of the failure events then

the statechart design must be changed, and the redesign analysed, such that the failures will no

interaction, and is not considered as part of the software design, for clarity, it is not analysed here. Instead this
failure will be treated as a simple hardware failure. It should be noted however that a SHARD style analysis of
this interaction is possible.

93

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

longer occur. For simple statechart designs a manual inspection of design will often be enough.

However for more complex designs with many states, manual inspection may not be feasible.

In such case a statechart reachability analysis tool [20] can be used.

The second stage of the analysis involves investigating how the object might behave in an

unexpected manner, that is to behave in a way other than that specified in the design due to

mistakes in the implementation. By doing this, the type of faults that could lead to the failure

events can be identified and then constraints defined to prevent them. To investigate this

faulty behaviour, the transitions in the state chart can be mutated. The approach adopted by

Gorski [17] is to add extra transitions into the state chart to represent possible faulty transitions.

Gorski identified five distinct faulty transitions. Given the general form of a transition as e[c]/a,

where e is the event that triggers the state transition, c is boolean condition expression which

must evaluate to true for the transition to occur, and a is an action that is triggered when the

transition fires, the faulty transitions can be defined as:

1. e[c] self-transition

2. not e[c]/a parallel transition

3. e[not c]/a parallel transition

4. e[c] parallel transition

5. e[c]/b parallel transition, where b is an action other than a

These five faulty transitions are derived by considering provision and value failures on each

of the transition elements (event, condition and action). As such these five faulty transitions

represent a complete set of fundamental faulty transitions that may occur. This approach relies

for completeness upon all the possible states and transitions for the object being represented in

the analysed state chart. If this were not so, then it would be possible, for example, for an error

in implementation to result in the object moving to a state which has not been considered in

the analysis. It is also the case that if sequences of transitions are considered, additional faulty

transitions are possible through different combinations of the fundamental faulty transitions.

Due to the large number of possible combinations, considering sequences of transitions is only

really feasible when using tool support. This is considered in section 3.5.4.3. These five mutant

transitions are applied to each state relevant to the identified failures, and each outcoming

transition of that state in the statechart. As for the non-mutated statechart in the first stage, the

mutated statechart is now checked to see if it may lead to any of the failure events. This thesis

94

3.5. ANALYSING FUNCTIONAL ASPECTS

proposes that if it is identified that any mutant states can lead to the failure condition then it will

be necessary to define constraints to prevent their occurrence in the implemented software. The

results of the statechart analysis can also be considered as definitions of potentially hazardous

errors in the implementation. It is therefore possible to use this information to specify test

cases to specifically look for these hazardous errors in the code. This is particularly powerful

when using tool support to help with conducting the analysis. This is discussed in more detail

shortly.

For the SMS, the statechart for the store object is considered. The statechart is shown in figure

3.10. The failure events that are being investigated are failures 1 and 2. By examining the

statechart the failures can be defined as, ‘Object moves to release state when WOW is true.’

It can be quite easily seen in this very simple statechart, that the statechart design does not

allow this. Once the store is in the selected state, a release event causes a transition first to a

WOW checked state. This ensures the value of WOW is the current one. The transition to the

released state only then occurs if the WOW is false.

WOW Checked

Release

Select /
status=select

Deselect /
status=deselect

Release/
check WOW

Selected

[WOW=true]

[WOW=false]

Unselected

Jettison / remove
store

Figure 3.10: UML statechart for the SMS store object

The mutated state chart, with the faulty transitions added, is shown in figure 3.11. It should be

noted that the unselected state, and the transitions between unselected and selected have not

been included in the analysis as they are not relevant to the failure of interest. This state could

be included for completeness, however it should be noted that for more complex state charts,

with a large number of states, it is advantageous to limit the number of states considered to

those that are relevant in order to keep the analysis manageable. The faulty transitions have

been labelled 1 to 5 as appropriate, which corresponds to the five possible mutations defined

earlier. Not all the mutations are relevant for each transition, as none of the transitions contains

95

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

Selected

WOW checked

Released

A. release /
check WOW

A2. not release
/check WOW

A4. release A5. release /
remove store

A1. release

C. [WOW=true] C3. [WOW=false]

C1. [WOW=true]B.
[WOW=false]

B3.
[WOW=true]

B1.
[WOW=false]

Figure 3.11: Mutated statechart for SMS store object

all of the three basic elements. Each of the faulty transitions is now considered in turn to identify

if they could lead to the failure conditions. The results are presented below:

A1 - release Not Hazardous Although commanded to release, release state will not be reached.

A2 - not release/checkWOW Not Hazardous WOW value is checked prior to release. 2

A4 - release Hazardous Release state may be entered without WOW value being known.

A5 - release/remove store Hazardous Store is removed without required checks.

B1 - [WOW=false] Not Hazardous Release state will not be reached, even when WOW is

false.

B3 - [WOW=true] Hazardous release state is entered when WOW is true.

C1 - [WOW=true] Not Hazardous Release state will not be reached.

C3 - [WOW=false] Not Hazardous Release state will not be reached, even when WOW is

false.

It should be noted that all the transitions discussed above represent incorrect behaviour, that

is they all represent behaviour which deviates from the intent of the design. Not all of the

incorrect behaviour is potentially hazardous however (as identified above). Behaviour which is

incorrect, but will not lead to a hazard is not of concern from a safety point of view. So the

analysis above has identified from many possible errors that could be made, which could be

hazardous. This information, along with the results of the analysis in step 4a, will be used in

step 5, when defining hazardous object behaviour.
2However, although not commanded to release, release state can be reached, so this would probably be

contributory to the inadvertent release hazard. This would therefore be picked up when analysing for that
hazard.

96

3.5. ANALYSING FUNCTIONAL ASPECTS

For more complex statechart designs than that shown in figure 3.10, a manual approach to

analysis, as described above, may not be feasible. Even with just a few states and transitions, as

in this example, the number of mutated transitions can still become potentially large. Therefore,

for this statechart analysis to be feasible, it is desirable that tool support is available.

3.5.4.3 Statechart analysis tool support

Of all the parts of the analysis proposed in this thesis, this state chart analysis has the greatest

potential to become intractable for larger systems. To ensure that all parts of the analysis are

scalable to larger and more complex systems it was therefore identified that the assistance of

an automated tool is required. A toolset developed at the University of York was identified

as being able to be applied to meet the requirement for an automated tool. The tools in the

toolset have been used to provide assistance in a number of ways. Firstly, they can identify

sequences of transitions that may bring about a defined hazardous state, and generate mutations

of transitions which may arise due to mistakes in the implementation. These two operations

may be performed in combination to identify which mistakes in implementation could lead to

a defined hazard, as for the second stage of analysis step 4b. The toolset is described in more

detail in [20].

There are two additional functions which are possible with tool support which could not be

performed manually. Firstly, the method described in section 3.5.4.2 considers only failures in

single transitions. Through the use of the toolset it is possible to consider the consequences of

sequences of faulty transitions. Also, an extra function which is provided by the toolset is the

ability to perform test data generation. This is done by identifying the input values that would

trigger a hazardous transition, and the output values that would result from that transition and

inputs. Input and output values are then determined simultaneously. The solutions are written

out in a form suitable as input to a test harness tool. This makes it possible to create test cases

to check for the existence in the implemented design of any of the hazardous potential mistakes

in the implementation.

3.5.5 Step Five: Define hazardous object behaviour

The final step in analysing functional aspects of the system is to define the hazardous behaviour

of the objects in the system which must be eliminated to prevent the occurrence of each identified

HSFM. This is done based on the information obtained from the previous steps in the process.

There are two main sources of this information; the output of the SHARD analysis for step 4a,

97

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

and the results of the statechart analysis performed in step 4b.

Each of the deviations, for each of the interactions analysed in step 4a, which were identified as

contributory to a HSFM is taken. For each of these, the cause of the failure is used to define the

hazardous behaviour of the relevant object. For each HSFM there will normally be behaviour

of more than one object which has been identified as hazardous. Each of the faulty transitions

from step 4b which were identified as hazardous is also taken, and again can be used to define

hazardous behaviour for the relevant object. Once the complete set of hazardous behaviours

relating to each HSFM has been identified, it is necessary to consolidate these behaviours. By

doing this it is intended to remove duplication, and also to ensure that there are no conflicting

hazardous behaviours for any HSFM.3 The outcome of this will be a set of hazardous object

behaviour which can be used later in defining constraints. This will be discussed further in

chapter 4.

For the SMS the hazardous object behaviour relating to HSFM ‘Software system fails to prevent

release on the ground’ has been identified as follows:

From step 4a

Deviation 1.1 Store object does not send checkWOW() call prior to removeStore() call

Deviation 1.2 Stores manager object returns no value in response to checkWOW()

Deviation 1.4 Stores manager object returns incorrect value in response to checkWOW()

Deviation 1.5 Hardware failure of aircraft WOW sensor

From step 4b

A4 Store object does not check WOW value prior to release

A5 Store object does not check WOW value prior to release

B3 Store object release when value of WOW is true

These hazardous behaviours can be consolidated into the following 4 for the analysed HSFM:

1. Store object does not send checkWOW() call prior to removeStore() call

2. Stores manager object returns no value in response to checkWOW()
3It is not expected that conflicts should be present for any of the HSFMs. A conflict may be for example

that it was identified to be hazardous for an object both to do, and not to do, the same thing. If this did occur
then it is most likely that there has been an error made in the analysis, or there is an inherent weakness in the
design which should be rectified.

98

3.6. ANALYSING TEMPORAL ASPECTS

3. Stores manger object returns incorrect value in response to checkWOW()

4. Store object releases when returned value of WOW is true

These behaviours will be used in chapter 4 to specify constraints used to prevent this HSFM.

3.6 Analysing Temporal Aspects

In this section a method for analysing the safety of the temporal aspects of the behaviour of an

OO system is described. The purpose of this analysis is to generate a set of timing requirements

associated with a particular hazard in the system which requires mitigating. The overall process

for this analysis is illustrated in figure 3.12.

1. Split scenarios
into tasks

2. Investigate
effects of

timing deviations

3. Analyse
alternative
scenarios

4. Define timing
requirements

Figure 3.12: Overview of safety analysis for temporal behaviour of objects

There are four steps to this process which are described below. Again, the SMS described in

section 3.4 is used as an example.

3.6.1 Step One: Split scenario into tasks

The analysis of temporal aspects is concerned with identifying execution times, separations and

priorities for tasks performed by the system. These three properties could affect the safety

of the system by causing behaviour which may contribute to a system hazard. A task is an

encapsulated sequence of operations that executes independently of other tasks [14]. Therefore,

informally, a task can be considered to be made up of a number of interactions between objects

in the system which accomplishes some task. Although eventually timing requirements will be

identified for each relevant interaction, such that safe behaviour can be guaranteed, this thesis

proposes that the analysis initially is performed at the level of tasks. The reason for this is that,

as discussed earlier, an individual interaction will normally only contribute to the functionality

of the system as part of collaborating sequence of interactions. Therefore to understand the

99

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

behaviour in order to be able to perform the analysis, it is necessary to consider tasks rather

than interactions. A scenario may sometimes contain only one task, however it is often the

case that scenarios contain many tasks, which together provide a particular functionality. The

identification of tasks in a scenario is best illustrated with an example as for the SMS below.

The scenario that shall be considered here is the same scenario as was under consideration in

the functional analysis. The UML sequence diagram for this scenario is in figure 3.5. Initially

it is necessary only to consider the release of a single store, so the release of store A only will be

considered. The scenario is releasing a store, however it can be seen that a number of separate

tasks are required to realise this scenario. These are that the relevant store is located, selection

of the store and releasing the store. In fact it is possible to consider the location of the store as

part of the selection task, as both actions are part of accomplishing the same aim. Therefore

just two tasks have been identified. From an analysis point of view, it is generally better to

split a scenario into a small number of tasks, however it must be remembered that tasks must

each execute independently of one another. An example of something in this scenario which

could not be considered a task is checking WOW, as this is part of the execution of the release

task.

So the two tasks identified for this scenario are:

1. Select store

Begin - Pilot selecting store to release

End - Store is selected

2. Release store

Begin - Pilot commands release

End - Removal of store from station

These tasks will be used in the next analysis step. Tasks can similarly be identified for each

scenario under consideration.

3.6.2 Step Two: Investigate effects of timing deviations

For each of the tasks identified in step 1, the effects of a set of deviations are investigated to

identify if the deviations may lead to behaviour which could contribute to a system hazard. The

deviations considered are taken from the SHARD guidewords [64]. The SHARD guidewords

related to timing are early and late. These guidewords can be interpreted as deviations from

100

3.6. ANALYSING TEMPORAL ASPECTS

expected behaviour. Defence standard 00-58 [50], also provides some more detailed timing

related guideword interpretations. The interpretation given for early and late is actions or

events taking place before or after they were expected. In addition, 00-58 also provides an

interpretation of the guidewords more and less for response times. These are interpreted as the

time from input to output being longer or shorter than required. For this step of the analysis

it is necessary to reflect these different deviations by using two different interpretations of the

early and late guidewords. The guidewords more and less do not capture the timing deviations

of tasks clearly, and therefore this thesis proposes the introduction of two additional guidewords,

quick and slow to ensure these deviations are captured. The interpretation that is proposed in

this thesis for these guidewords when applied to tasks in this step of the analysis is given below.

Quick The execution of a task4 happens faster than expected

Slow The execution of the task happens slower than expected

Early The task begins too soon after the end of the previous task

Late The task begins too long after the end of the previous task

It should be noted that the terms faster, slower, too soon and too long used in the guideword

interpretations are identified with respect to some ‘most desirable’ time which has not been

explicitly defined here. It is not felt that a more concrete definition is in fact necessary, as there

is an implicit assumption in the design that the most desirable is represented. It is therefore

deviations from the intent of the design that is of interest.

Each of the deviations is applied to each task. For each deviation it is identified if the behaviour

could contribute to any hazardous behaviour as identified in step 1 of the functional analysis.

For deviations which could lead to hazardous behaviour, timing requirements which can ensure

the behaviour is not hazardous will be defined later in the process.

For the tasks identified in the release store scenario for the SMS, the effects of the deviations

were identified as shown below in figure 3.13.

The task deviations which could impact safety are therefore:

1. Select store - Slow

2. Release store - Slow

3. Release store - Early
4Execution is considered from the beginning to the end point as described in the task description in step 1.

101

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

Not HazardousLate

Hazardous – A weapon released too soon after a
previous weapon could be catastrophic for some weapon
types

Early

Hazardous – A delay in releasing a store could be
hazardous to the aircraft under certain circumstances

Slow

Not Hazardous (positive effect) – It is desirable that the
store be released as quickly as possible when requested

QuickRelease Store

Not Hazardous – The pilot will trigger this in response to
operational requirements

Late

Not Hazardous – There is no requirement to wait before
selecting another store

Early

Hazardous – Delays in selecting the appropriate store
for release may delay release

Slow

Not Hazardous (positive effect) – It is desirable that the
selection of the correct store occur as quickly as possible

QuickSelect Store

EffectDeviationTask

Figure 3.13: Timing deviations applied to tasks for the SMS

Timing constraints must be derived which define response times and separations required to

ensure these deviations do not occur and contribute to a system hazard. This will be done in

step 4.

3.6.3 Step Three: Analyse alternative scenarios

Defence standard 00-58 suggests before and after guidewords for capturing events happening

before or after another event which is meant to precede or follow it. Rather than use these

deviations in this way, this thesis proposes a slightly different approach. Before and after

guidewords for tasks essentially suggest an alternative scenario, that is a scenario different

from the normal, or expected behaviour. It should be noted that there are many potential

alternative scenarios for any particular function. This step of the analysis considers this by

generating alternative scenarios, which can then be analysed.

The analysis performed in step two considered only the normal behaviour scenario for the

functionality being considered. The normal scenario simply represents the normal or expected

sequence of tasks which occurs for a particular functionality. When considering the safety of

the system, it is important to also consider alternative scenarios which may occur as these

could be potentially hazardous, or may lead to a requirement for additional timing constraints.

Alternative scenarios can be identified by applying deviations to the normal scenario. The

deviations proposed are as follows:

• Task omitted

102

3.6. ANALYSING TEMPORAL ASPECTS

• Extra task added

• Task occurring concurrently with others

• Task occurring out of order (c.f. before and after)

There is potentially a huge number of alternative scenarios that could be considered, as the

various deviations could be applied in combination, and any number of times. Most of these

possible scenarios will be of little interest however, either because they are essentially identical to

previously identified scenarios, or because they would realistically never occur. There will also be

a number of scenarios where it is clear that there would be no additional contribution to hazards,

over that which has already been seen in other scenarios. Therefore most possible alternative

scenarios can normally be easily discounted leaving a fairly small number of significant scenarios

to consider.

It is useful for this part of the analysis to be able to represent the scenarios clearly and concisely,

as well as emphasising the sequential and concurrent nature of the tasks in a scenario. It has been

found that the UML notation of activity diagrams can be adapted for this purpose. Activity

states in an activity diagram are normally used to model a step in the execution of a procedure.

For this analysis, it is proposed that each activity state will be used to represent a task in the

scenario.

For the SMS, this analysis is fairly trivial as the scenario that is being analysed (release of store)

entails only two tasks. For completeness however the scenario is shown in figure 3.14 along with

some example alternative scenarios that may be considered through applying the deviations. In

the first alternative scenario, extra tasks have been added to the end of the original scenario.

This considers the situation where two releases occur one after the other. In this particular case

the effects have already been considered via the early and late key words used in step two, so

no additional constraints are required.

A more interesting scenario is number two. In this case the effect of another store being selected,

before the previous one has released, is considered. The key thing here is that it is important

that the actions of the pilot in selecting the next store does not prevent the current release, as

this could be hazardous in situations were release is required for the protection of the aircraft.

It is important therefore that the priority in execution is given to the release task. Any request

from the pilot for release of a different store must only be dealt with once the current release

task has been completed. This may of course have a knock-on effect on the execution times of

the tasks, as waiting for the previous release to finish will increase the time for the next tasks

103

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

Select Store

Release Store

Select Store

Release Store

Select Store

Release Store

Select Store

Release Store Select Store

Release Store

Select Store

Release Store

Release Store

Normal Scenario Alternative
Scenario 1

Alternative
Scenario 2

Alternative
Scenario 3

Figure 3.14: Possible alternative scenarios for release of a store

to complete. This will be considered when defining timing constraints.

The final scenario that is considered is where the select store task is omitted. In this case there

has obviously been an inadvertent release request either by the pilot, or by the system itself,

however this should not result in hazardous behaviour as the release will not occur, as the

selected store has already been removed. There are no additional timing constraints generated

from this scenario.

3.6.4 Step Four: Define timing requirements

Based on the analysis performed in steps two and three, it is necessary to define timing con-

straints which state requirements which must be met so as not to contribute to any of the

system hazards. This firstly involves defining constraints on tasks whose timeliness was identi-

fied as potentially contributing to a hazard. The constraint required will depend on what type

of deviation might be hazardous. For those tasks where quick or slow might be hazardous it

is necessary to constrain the response time of the task. A minimum response time is required

for those tasks where too quick was identified as being hazardous, and a maximum response

time, or deadline, is required for those where too slow could be hazardous. For tasks where

early or late may be hazardous, minimum and maximum separations respectively between the

completion of one task and the triggering of the next, or between an event and the triggering

of a task must be specified. Figure 3.15 illustrates how these constraints can be used together

to define a safe scenario for the tasks.

In order to specify the requirements, a high level of domain knowledge is required to understand

the timing behaviour of the system. It should be noted that in specifying the requirements, it

104

3.6. ANALYSING TEMPORAL ASPECTS

Task 1 Task 2

Min. response time

Deadline

Max. separation

Min.
separation

Figure 3.15: Timing constraints on tasks in a scenario

is not intended to produce accurate estimates of execution times for tasks or operations, but

to specify the minimum requirements for a safe system. Indeed it is desirable that as much

flexibility as possible is included when defining the timing constraints, as this makes it simpler

to ensure that the requirements can be met.

These timing constraints are defined upon tasks. It was explained earlier that ultimately it is

required that timing constraints can be specified on interactions, such that they can be enforced

along with the functional requirements which are identified on the interactions. There are some

issues associated with this which are discussed below. Figure 3.16 shows a task in the form of a

sequence diagram. Sig1 is a signal, which is an asynchronous communication between objects.

The signal is the most fundamental interaction between objects and is therefore fairly easy to

deal with. Let us consider, however, the interaction Op1. This is an operation call which is an

asynchronous communication between objects. When a call is sent from object B to object C,

an invocation of an operation of object C occurs. This moves the thread of control temporarily

from the calling procedure of object B to the called procedure of object C. Object B regains

control when object C returns. The timing for an operation call interaction is the time from

sending the call message to the receipt of the returned message. What this would mean is that

any timing requirement, such as a deadline, placed on interaction Op1, would implicitly also

place requirements on interactions Op2, 3 and 4, as these interactions need to occur before Op1

can complete.

For the SMS, based on the earlier analysis, timing requirements were identified to be required

on the following tasks:

Select store Deadline

Release store Deadline

105

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

Object A Object B Object C Object D Object E

Sig1()
Op1()

Op2()
Op3()

Op4()

Figure 3.16: Sequence diagram representing a task

Release store Min. separation

Release store Priority

The requirements will be different depending on the type of store being used on the aircraft.

However based on an understanding of the performance of typical store types the following

requirements can be made:

Select store Deadline 200ms

Release store Deadline 50ms

Min. separation 100ms

Since priority is to be given to the release store task, this may delay a subsequent select store

task by as much as the deadline for release of store (in this case 50ms). Therefore the timing

budget actually available to be allocated for the execution of operations in the select store task

is reduced to 150ms to ensure that the task deadline can still be met. In allocating budgets

to specific operations there is normally a trade-off to be made in how much of the budget

is assigned to the different operations. This will be based on a judgement of computational

requirements of the operations. In this example it is assumed that all operations demand equal

timing resource, and the timing budget is shared out accordingly. This leads to the following

timing requirements for safety:

locate(store) 70ms deadline

select() 70ms deadline

106

3.7. ANALYSING VALUE ASPECTS

release() 100ms min. sep, 50ms deadline

checkWOW() 20ms deadline

removeStore() 20ms deadline

3.7 Analysing Value Aspects

The final part of the analysis process involves consideration of the potential contribution to

system hazards of errors in the data within the system. The data which will be considered

for an OO system can be data attributes associated with an object, it can also be parameters

passed as part of an interaction, data returned in response to an operation call, and could also

be the value of an object pointer. The aim of this part of the analysis is to define constraints

which will control any data whose inaccuracy could contribute to hazardous behaviour. The

process used for this analysis contains only three steps as shown in figure 3.17.

1. Identify critical
data

2.Identify
manipulators

3. Define
constraints for
 critical data

Figure 3.17: Safety analysis process for value aspects

3.7.1 Step One: Identify critical data

The first step of the process involves identifying critical data within the system design. Critical

data is defined in this thesis as any data whose inaccuracy could contribute to a system hazard.

The way in which this can be done is by using a fault tree to investigate causes of hazardous

failure modes, and identify failure events relating to data in the fault tree. The advantage of

this approach is that such fault trees for hazards of interest in the system will already have

been constructed during step 3 of the functional analysis (section 3.5.3). For this first step it

is therefore possible to revisit these fault trees and identify the critical data. The type of data,

and the object or interaction in the design that it relates to, should also be identified.

For the SMS, a fault tree was created in figure 3.7 for the hazardous failure mode ‘Software

system fails to prevent release on the ground’. It can be seen from this fault tree that an

incorrect value of WOW could contribute to this failure mode. Therefore WOW is identified

107

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

as critical data. When fault trees are constructed for hazardous failure modes relating to other

system hazards, similar data-related failures can be identified. For example, relating to the

‘Release of incorrect store’ hazard, selection of incorrect store is identified as a contributing

failure, which can be caused by a store being associated with the incorrect station. It can be

seen in the class diagram for the SMS (figure 3.4) that store and station are identified by an ID

attribute. Therefore, in this case both store ID and station ID would be identified as critical

data. There are more items of critical data which can be identified for this system design,

however to illustrate the process we will concentrate on these three:

WOW attribute, Stores Manager

ID attribute, Store

ID attribute, Station

3.7.2 Step Two: Identify manipulators

In order to control this critical data such that it will not contribute to a hazard, it is necessary

to understand how this data may be manipulated. With an OO approach, information hiding

allows a certain amount of protection for critical data. If an attribute is declared to be private,

then it can only be manipulated by operations provided by the object of which the data is an

attribute. Reporter operations (also referred to as inspectors) are used to report the value of

the data. Transformer operations may alter the value of the data. Transformer and reporter

operations associated with the critical data item must be identified. Another way in which

data can be used is through being passed as a parameter in an interaction to another object, or

returned in a method call. It is therefore necessary to also identify interactions where critical

data is passed via interactions. Any of these mechanisms for affecting critical data shall be

referred to here as manipulators. The information required can be obtained from a UML class

diagram or other suitable static view of the system design.

For the critical data identified for the SMS in step one, the manipulators can be identified using

the UML class diagram in figure 3.4. Firstly, for the WOW attribute, there is a transformer

operation setWOW() which is used to update the WOW value. There is also a reporter op-

eration, checkWOW(). For the store and station IDs, it is a little more complex. The only

transformer operation associated with this data is addStore(). This takes a parameter of the

store ID and creates an association between that store and the station ID via the creation of a

location object. This location object has a reporter operation, locate() which takes a store ID

108

3.7. ANALYSING VALUE ASPECTS

as a parameter and returns the value of station ID. There are also reporter operations getID()

for both station and store. The manipulators identified can be summarised in a table as in

figure 3.18 below. These manipulators are used in defining constraints which can be used in

ensuring the critical data remains correct.

ID-ReportergetID()

station IDstore IDReporterlocate()

-store IDTransformeraddStore()

WOW-ReportercheckWOW()

-WOWTransformersetWOW()

ReturnParameterTypeManipulator

Figure 3.18: Manipulators identified for critical data in the SMS

3.7.3 Step Three: Define constraints for critical data

Whereas for the function and timing aspects of the interactions it was possible to identify fairly

precisely what the necessary constraints would be to control the behaviour, for the data aspects

it is much harder. The correct value of the data at any point in time will be dependant on

many contextual and environmental factors. For example, when adding a store to a station,

it is impossible to specify constraints to ensure that the correct store ID has been associated

with the station. This could only be done by checking that the actual store on the aircraft

corresponds with the data representation. There are however, certain constraints that can be

defined to ensure that the data is valid. That is that the value of the data is a value that would

be expected. In this way, if critical data is found to be invalid, then this will be identified as

potentially unsafe. Although this can provide some protection, it should be noted that subtle

value errors (that is errors which are valid data) will not be detected. These subtle errors can

only be mitigated by verifying that the data manipulation performed by the software is correct.

For the SMS, it is possible to define the following constraints on the critical data identified in

step two:

WOW Boolean

store ID integer 1≤ ID≤ 1000 and exists store.ID=ID

station ID integer 1≤ ID≤ 20 and exists station.ID=ID

109

CHAPTER 3. PERFORMING SAFETY ANALYSIS OF OO SYSTEMS

For boolean data the only check possible is that the value is indeed boolean. For the ID value,

more consistency checking is possible. Firstly, it is possible to check that the value is an integer

within the expected range. It is also possible to check that it is a valid value by checking that

there is indeed a store, or station, which has that value for its ID.

3.8 Conclusions

In this chapter a process has been described for identifying potentially hazardous behaviour

in an OO system design. Despite the existence of a number of techniques for analysing OO

systems, chapter 2 identified that no systematic and thorough process exists. The process

described in this chapter addresses this weakness. The process makes use of existing analysis

techniques (such as FTA and SHARD) which have been identified as being the most appropriate

for each step of the analysis process. The case study in chapter 6 shows how the process is

applied to a large-scale and more complex system design.

The analysis focusses on interactions between objects. This is used to identify failures in the

behaviour of the interactions that could contribute to a system hazard, and thus potentially to

an accident. In order to prevent the hazards arising it is necessary to define and enforce a set

of derived safety requirements (DSRs) on the software design. In the next chapter, the way in

which these DSRs are defined and implemented in the form of safety contracts, based on the

outcome of the analysis described here, is discussed.

110

Chapter 4

Safety Contracts

4.1 Introduction

In chapter 3, an analysis process for OO system designs was identified and described. The

outcome of this process is a set of behaviours associated with the interactions between objects

in the system design, which if present in the implemented software, could contribute to a system

hazard. These behaviours can be used to specify derived safety requirements (DSRs) on the

software design. The role of DSRs is to define constraints in the system design which must

be met by the software in order to guarantee that there will be no contribution to a hazard.

By verifying that the DSRs are met, it is possible to conclude that the software is safe in the

system context within which the DSRs were derived.

The way in which DSRs are specified for a system can be very important, as the ability to verify

the system against those requirements is the key to assuring the safety of the system. In this

chapter the use of contracts as a way of specifying safety requirements is proposed. Firstly the

reason that a contracts approach to specifying DSRs has been chosen is discussed, before looking

at how DSRs, such as those identified from the analysis in chapter 3 may be represented in the

form of safety contracts. The advantages gained for OO systems from using safety contracts

are then examined in more detail. This is done firstly by discussing how the effects of changes

to the design may be minimised through using safety contracts. Secondly, how safety contracts

make design reuse in safety critical OO systems more manageable is explored.

111

CHAPTER 4. SAFETY CONTRACTS

4.2 The Need for Contracts

In chapter 2 the concept of software contracts was reviewed. A contract is made up of pre

and post condition assertions on an object’s operation. The precondition must be true when

the operation is called, and the postcondition must be true when the operation returns. The

contract links the operation supplier with the client objects calling that operation. The supplier

guarantees that the postconditions hold if the preconditions have been met. The client therefore

can know that the desired outcome will be achieved, without needing to know any information

about how this is done. The supplier, in turn, can assume that the precondition will be met

and need not be concerned with cases where this is not so.

As well as pre and post conditions, contracts may also contain invariant assertions. Whereas

pre and post conditions are assertions on an operation, assertions can also be placed on the

object class. Such assertions are known as invariants, or class invariants and must be preserved

by all the operations of a class. For each participating object, the contract assertions identify

a set of obligations. These obligations specify the behaviour of that object. An object may

participate in many interactions, and therefore an object’s obligations may arise from many

contracts.

The discussion above indicates that the use of contracts could be a useful way to specify DSRs.

It was shown in chapter 3 that the key to ensuring safe behaviour in an OO system is to

control the interactions that occur between the objects in the system. Contracts can be used

to explicitly specify interactions among objects, and therefore can be used in controlling the

behaviour of the interactions. Assertions in contracts are normally used to specify the expected

behaviour of the participant objects. If contracts are used for specifying DSRs, as this thesis

proposes, then their intention is different. The contract no longer specifies expected behaviour,

but only that behaviour which is required to ensure the participant objects do not contribute

to a HSFM. As such there may be behaviour which is expected of the object which is not

specified in the contract, as it is does not impact the safety of the system. There may also

be obligations within the contract which are more stringent than would be otherwise required,

which appear because they are necessary for safety. The contracts used to specify DSRs will

therefore be referred to as safety contracts to distinguish them from more conventional software

design contracts. It should be noted that both safety and non-safety contracts could be used for

a system design, as they each serve different purposes. It is of course necessary that the design

contracts do not specify behaviour that could breach a safety contract, as this could result in a

hazard. This will be discussed in more detail later.

112

4.2. THE NEED FOR CONTRACTS

By identifying the obligations on an object arising from the safety contracts in which it par-

ticipates, it is possible to identify the complete set of safety obligations for that object. These

are the obligations which that object must meet to ensure it does not contribute to any unsafe

behaviour. Figure 4.1 shows how a set of safety obligations for an object is constructed from

a number of contracts. Object A interacts with a number of other objects (objects B to E).

In these interactions object A is either the client of an operation (opB() and opD()), or the

supplier of the operation (opA1(), opA2(), and opA4()). For the interactions, there may be

safety contracts defined, as identified from analysis of the design. For each interaction there

may be pre conditions, post conditions, or both defined. For each of the interactions for which

object A is a client, object A must meet the preconditions of any safety contract on that in-

teraction. For each interaction of which object A is a supplier, object A must meet the post

conditions of any safety contract on that interaction. As object A is involved in a number of

interactions, there could be a number of obligations on object A arising from safety contracts.

These obligations can be identified for object A as the set of safety obligations associated with

object A, as illustrated in figure 4.1. In order to be safe (to not contribute to a system hazard),

object A must behave in a manner such that it meets this set of safety obligations. Object A

(or the implementor of object A) does not need to have any knowledge of the behaviour of other

objects in the system in order to achieve this. The set of obligations can in effect be viewed as a

safe envelope within which object A can operate and be sure it will not contribute to hazardous

behaviour.

:object A

OpA1()
OpA2()
OPA3()
OpA4() :object C

:object E

:object D

:object B
opA1()

opB()

opD()

opA4() opA2()

post: opA1()
pre: opB()
pre: opD()
post: opA2()
post: opA4()

Figure 4.1: Identifying safety obligations for an object

By identifying safety obligations relating specifically to an object in the system, it makes it much

easier to cope with changes to the design. It was seen in chapter 2 that robustness to change

113

CHAPTER 4. SAFETY CONTRACTS

is an important feature of OO systems which is often stated as an advantage to adopting an

OO approach. Because the safety properties of an object are explicitly identified, those safety

properties potentially affected by any change, can be restricted to those which relate to the

objects impacted by the change. If the safety properties relating to each object were not so

clearly identified, it would be very difficult to identify which properties could be affected by a

design change. The use of safety contracts to limit the effect of changes is investigated in more

detail in section 4.4.1.

Identifying safety obligations for an object also increases the potential to reuse parts of a design.

Again, it was seen in chapter 2 that OO systems are claimed to offer greater reuse potential

than other approaches. As the safety obligations required of individual parts of the design are

made explicit, it makes it possible to reuse existing design artifacts which provide the required

behaviour and meet the safety obligations. Without identifying explicitly the set of safety

obligations relating to the objects in a design, it would be very difficult to identify whether an

existing design artifact exhibited safe behaviour. The use of safety contracts in reusing elements

of an existing design is investigated in more detail in section 4.4.2.

As discussed earlier, the implemented software must behave in such a way as to meet obligations

arising from contracts. If this is not the case then the software’s behaviour may be unsafe. As

noted by Meyer in [46], any violation of a precondition indicates a bug in the client, whereas

any postcondition violation indicates a bug in the supplier. Precondition violations, although

caused by the client object, could be checked by the supplier. However this approach does not

fit in with the philosophy discussed previously. Since the supplier should be able to rely on the

client meeting its precondition, it is important that the preconditions are checked by the client.

An important question arises as to what happens if an obligation cannot be satisfied during

execution. Verification that software meets its obligations can be performed prior to run-time

using static analysis techniques or testing.1 However it is still necessary to consider the effect

that failures would have and how they may be dealt with. As was discussed previously, if a

precondition obligation is not met by the client of an interaction, then the supplier of that

interaction is not obliged to do anything. For safety contracts this situation is not acceptable.

It means that if the precondition of a safety contract were not met, a client object may behave

in an unspecified manner, which could potentially be hazardous.

For safety critical applications it is necessary that any failures are handled in a safe manner.

This means that the system must end up in a safe state even if a safety contract obligation has

1Verification methods are beyond the scope of this thesis, but were briefly discussed in chapter 2.

114

4.3. DEFINING SAFETY CONTRACTS

failed to be met for some reason. This thesis contends that this can be dealt with through a

safety contract approach, however it requires that an additional clause be introduced into the

contracts to specify acceptable behaviour should part of a contract not be met. The idea of

an otherwise clause was first introduced by Cliff Jones as a way of presenting error-tolerant

specifications2. Jones suggest multi-level specifications of the form:

attempt S1 otherwise S2 otherwise...Sn

Where S1, S2 and Sn are component specifications. These specifications contain rely and

guarantee conditions (which can be considered for our purposes to be analogous to pre and post

conditions respectively3). For the specification above, the guarantee of S1 must be achieved if

the rely of S1 is satisfied, otherwise the guarantee of S2 must be achieved if the rely of S2 is

satisfied, and so on.

In this thesis these ideas are adapted to make it possible to specify failure-tolerant safety

contracts. In such contracts, the objects attempt to meet pre and post condition obligations

of the safety contract. If any obligation is not met, then the otherwise condition must be met.

The otherwise condition will specify the obligation required to reach a safe state (or the safest

state possible), that is a state where system hazards do not exist. It should be noted that

by not meeting safety contract obligations, the system has already failed, therefore the system

will not in such circumstances function correctly, the key thing is however that the system has

remained safe. The otherwise condition is illustrated in more detail in section 4.3.2, along with

an example.

4.3 Defining Safety Contracts

In chapter 3 an analysis process was used to identify potentially unsafe behaviours of the software

in a system. The behaviour of the software must be controlled such that the unsafe behaviours

do not occur. This can be achieved through defining DSRs which specify constraints on the

software’s behaviour. This thesis proposes that these DSRs be incorporated into the design

as safety contracts such that when the design is implemented it is possible to ensure that the

software will not exhibit unsafe behaviour.

The SMS example from chapter 3 will be used to illustrate how DSRs may be derived from
2The author feels that failure-tolerant would be a more appropriate term, since errors that do not lead to

failure do not need to be dealt with in this way
3Although the terms are analogous, they are not identical. Unlike pre and post conditions, rely and guarantee

conditions can be used to capture assumptions about the state of the entire system.

115

CHAPTER 4. SAFETY CONTRACTS

the output of the hazard analysis process. The following hazardous behaviour was identified in

section 3.5.5 as relating to the HSFM ‘Software system fails to prevent release on the ground’:

1. Store object does not send checkWOW() call prior to removeStore() call

2. Stores manager object returns no value in response to checkWOW()

3. Stores manger object returns incorrect value in response to checkWOW()

4. Store object releases when returned value of WOW is true

The DSRs required to constrain this hazardous behaviour can therefore be defined as:

1. checkWOW() call must be sent by store prior to removeStore() call

2. A value must be returned in response to checkWOW()

3. Return value of checkWOW() must be correct

4. removeStore() call must only occur if WOW is false

In addition to these functional DSRs, there are also DSRs relating to timing. These requirements

were identified in section 3.6.4 as:

locate(store) 70ms deadline

select() 70ms deadline

release() 100ms min. sep, 50ms deadline

checkWOW() 20ms deadline

removeStore() 20ms deadline

These requirements must also be captured as safety contracts. The final set of DSRs arises from

the value aspects of the analysis process. These were identified in section 3.7.3 as:

WOW Boolean

store ID integer 1≤ ID≤ 1000 and exists store.ID=ID

station ID integer 1≤ ID≤ 20 and exists station.ID=ID

116

4.3. DEFINING SAFETY CONTRACTS

This thesis proposes to represent these DSRs in the form of safety contracts. This involves

representing the DSRs in the form of pre and post conditions and invariants. The safety

contracts must also contain an otherwise condition. For the hazard of ‘Release of store whilst

on the ground’ which was considered for the SMS in chapter 3, the safest state in response to

system failure would be to not allow a release. This condition must be implemented as part of

the safety contract. Although this condition could lead to operational difficulties, it is the only

acceptable response if a release on the ground might be possible as a result of a failure. For

some hazards and for some systems, the associated fail safe state may not be as easily defined as

in this example. The dynamic behaviour of the system, such as could be represented in a UML

sequence diagram, can be used to identify where safe states exist for the relevant functionality.

In some cases a fail safe state may not even exist. In such circumstances, the safest response

must be identified which minimises the risk from the hazard.

Before the safety contracts can be defined, a suitable notation in which to represent them must

be identified.

4.3.1 Notation for Safety Contracts

In order to represent safety contracts in a clear and unambiguous way, a notation must be defined

which can capture the necessary safety properties for the OO system under consideration. In

chapter 2, various approaches to representing safety properties such as [28], and [13] were

discussed, however these do not provide support for contract specifications. Chapter 2 showed

how contracts can be represented in the Eiffel language [47], and there are other languages in

which contracts can be defined. These could be used for defining safety contracts on object

classes and operations. The safety contracts that are defined should become part of the design

specification, in this way the safety properties are independent of any implementation decisions.

Using languages such as Eiffel have the distinct disadvantage of making it difficult to use the

safety contract constraints, if implementation is not carried out in that language. It is for this

reason that OCL [60] has been identified as a potential way of representing safety contracts.

OCL was introduced in chapter 2 as a formal constraint expression language. OCL is a modeling

language and not a programming language, therefore OCL expressions are guaranteed to be

without side effect. All implementation issues are out of the scope of, and cannot be expressed

in OCL. This is an important advantage of OCL over other notations such as Eiffel. It was

noted in chapter 2 that OCL is often used for describing constraints on UML models. This

is because OCL is highly compatible with UML and has been developed via the OMG, who

117

CHAPTER 4. SAFETY CONTRACTS

also have responsibility for UML standardisation. This is an important feature as it makes it

easier to specify the DSRs as part of the design itself, rather than being a separate entity. This

means that DSRs are communicated more easily to the system developers. It was emphasised

in chapter 3 that the safety process should be independent of notation as far as possible. The

use of OCL for specifying safety contracts does not affect this, as UML is not a requirement of

using OCL.

The current specification for OCL provides the mechanism required to represent most of the

safety properties of interest, including invariant and pre and postcondition constraints. Some

examples of safety constraints in OCL are given later. There are certain features of safety

requirements which require further consideration if they are to be represented successfully in

OCL. Firstly, as was seen in chapter 3, safety requirements often refer to messages sent be-

tween objects. OCL provides a mechanism for specifying messages. It can be specified that

communication has taken place during the execution of an operation using the hasSent operator

(ˆ). If the communication is an operation, then there may be a return value which needs to be

constrained as part of the safety contract. This can be accessed using the result() operation of

the OclMessage type. It is possible to check that a result was returned using the hasRetuened()

operation. Thus, in an example taken from [60], OCL could be used to specify the following.

Where getMoney() is an operation on an object of type Company that returns a boolean, it

can be specified for the operation giveSalary() that a call is made to getMoney(), that the call

is returned, and the the result of the call is true. This is done as shown below:

context Person::giveSalary(amount:Integer)

post:let message:oclMessage=company^getMoney(amount) in

message.hasReturned() --getMoney was sent and returned

and

message.result()=true --the getMoney call returned true

This is all standard OCL, as defined in [60]. Chapter 3 identified temporal aspects of the

system behaviour as also being an important part of safety requirements. Unfortunately the

OCL 2.0 specification does not provide a way of specifying such features. An extension to

OCL, OCL/RT, for modeling real-time systems has been proposed in [8], which provides a way

to specify deadlines and delays in OCL. This uses a new primitive data type Time, which is

defined to represent the global system time, to provide a mechanism for specifying deadlines

and delays.

Deadlines can be specified using OCL/RT in the following manner:

118

4.3. DEFINING SAFETY CONTRACTS

contextTypename::operationName(param1:Type1,...):ReturnType

pre:...

post:Time.now<=Time.now@pre+timeLimit

In this expression now is an attribute of Time which shows the current time, Time.now@pre

is the value of the current time when the precondition was evaluated, and timeLimit is a

variable used to define the deadline.

OCL/RT also defines an event model with three types of event, CallEvent, StartEvent, and Ter-

minationEvent. A CallEvent is raised when a sender issues a call to an operation, a StartEvent

is raised when an object is about to start executing an operation, and a TerminationEvent is

raised when the execution of the operation is finished. These events can be used in OCL/RT

to specify temporal properties such as delays, as shown below:

contextTypename::operationName(param1:Type1,...):ReturnType

pre: LastCallEvent.at+timeLimit<=Time.now

post:...

In this expression LastCallEvent.at is the time at which the last CallEvent was raised, this

corresponds to the last time the operation was called. Again timeLimit is a variable, used in

this expression to specify a minimum delay between calls to the operation. Events can also be

used in a similar way to specify properties such as timeouts.

Using the UML 2.0 OCL Specification, along with the OCL/RT extensions, it is possible to

represent safety requirements in the form of contracts.

4.3.2 Safety Contracts for the SMS

The DSRs identified in section 4.3 can now be represented as safety contracts using OCL. The

DSRs relate to various operations of different classes of objects within the SMS system. To

illustrate the use of OCL for defining safety contracts it is only necessary to develop contracts

for one operation. A full development of safety contracts from DSRs is performed as part of a

case study in section 6. A safety contract shall be developed for the Release operation of the

Store class. The contract on this operation illustrates many of the interesting properties of a

safety contract. From the DSRs identified in section 4.3, the following can be seen to relate to

the release operation.

• checkWOW() call must be sent by store prior to removeStore() call

119

CHAPTER 4. SAFETY CONTRACTS

• removeStore() call must only occur if WOW is false

• release() 100ms min. sep, 50ms deadline

The first DSR requires that a message is sent, which can be done using the ‘has sent’ operator

as part of the postcondition for release. The second DSR can be specified using the result

operation of message. The third DSR can be specified using constructs from OCL/RT. The

resulting safety contract for the the release operation can thus be specified:

context Store::Release()

pre: previousRelease.at+100<=Time.now

post: let message:OclMessage=stores manager^checkWOW() in

message.hasReturned()

and

message.result()=false

and

Time.now<=Time.now@pre+50

Note that the CallEvent previousRelease must be defined within the context of Store.

It was identified previously that the otherwise clause required for this interaction is not to allow

a release. This must be represented as part of the safety contract. The otherwise clause must be

met both in the situation where the precondition is not met, and also when the postcondition

is not met. It is the client object which has responsibility for meeting the precondition. If the

object cannot meet all the preconditions for the release operation then it must ensure that a

release does not occur (as defined in the otherwise clause). This can be achieved by specifying

the client object does not call the release() operation when the preconditions cannot be met.

It should be noted here that once the release call is made by the client there is an assumption

that the preconditions of the safety contract have been met, as the supplier object would not

(and indeed, in general could not) check the precondition.

The supplier object has responsibility for meeting the postcondition. If the supplier object

cannot meet all the postconditions then it too must meet the otherwise clause and ensure that

a release does not occur. In this case, this can be achieved by ensuring that removeStore() is

not called on the relevant station, the status of the store should also be set to fail. This will

ensure that even once release() has been called, if, for example, the supplier will not be able

120

4.4. UTILISATION OF SAFETY CONTRACTS

to guarantee a timing requirement in the postcondition can be met, or the checkWOW() call

fails, a safe outcome is still guaranteed. It should be noted here that, as in this case, once

the otherwise clause has been used, the system has failed to achieve what it was intended to

achieve, however it will have remained safe, which is the priority for a safety related system.

The otherwise clause, either for the pre or post condition, can be included as part of the safety

contract. OCL can be used to represent these otherwise clauses in the same manner as for

other constraints. To indicate that they are an otherwise clause to the contract, the constraint

otherwise shall be used. This is not a standard part of the OCL specification, but is introduced

here as a way of representing otherwise clauses in a safety contract. The safety contract for the

release operation, with otherwise included, is as shown below:

context Store::Release()

pre: previousRelease.at+100<=Time.now

otherwise: store^release()=false

post: let message:OclMessage=stores manager^checkWOW() in

message.hasReturned()

and

message.result()=false

and

Time.now<=Time.now@pre+50

otherwise: station^removeStore()=false

and

status=fail

The use of the otherwise approach to dealing safely with failures, as described above, relies

upon the objects involved in an interaction checking that safety contract obligations have or

have not been met. If the conditions of the safety contract are verified prior to runtime, and no

verification of these conditions is done at run-time, then the otherwise clause serves no useful

purpose. In such situations any failures leading to safety contract violations not identified prior

to runtime, have the potential to manifest themselves as hazardous failures.

4.4 Utilisation of Safety Contracts

This section examines the way in which safety contracts, such as those developed in the previous

section, may be used to assist in verifying that an OO design is safe. In particular, the way in

121

CHAPTER 4. SAFETY CONTRACTS

which safety contracts support changeability and reuse of OO design artifacts, whilst ensuring

the system remains safe, is investigated. Through this, it can be seen how the use of safety

contracts allows maximum benefit to be achieved from OO features such as encapsulation and

inheritance without prejudicing the safety of the system.

The first step in ensuring the correct behaviour of an object in the system is to identify the set

of safety obligations on the object’s class arising from the safety contracts which are in place.

As was discussed previously, the safety obligations on a class in a system design will arise as

a result of safety contract constraints from many interactions involving that class. Once the

safety contracts have been defined within the system design, it is therefore necessary to explicitly

identify the safety obligations associated with each class, in order to ensure that all necessary

obligations are assigned to the correct class.

To identify safety obligations for a class, the first step is to identify all the interactions in

which the class is involved, either as a client, or a supplier. This can be done using dynamic

design views of the system. For the SMS, many interactions for the store class can be identified

from the sequence diagram in figure 3.5. For a complete set of interactions, the other sequence

diagrams containing store objects would also need to be considered. From figure 3.5, it can

be seen that the store class is a client for the checkWOW() and removeStore() interactions,

and is the supplier of select() and release(). The safety contracts for these interactions are

used to define the safety obligations for the store class. These obligations will consist of the

preconditions of the safety contracts of the client interactions, and the postconditions of the

supplier interactions. An example of how these obligations could be captured for the store class

in the SMS is shown in figure 4.2. It should be noted that this example is incomplete. Since

all the necessary analysis of the SMS has not been presented in this thesis, only the obligations

which have already been generated are included. To be complete, the table would need to

contain the obligations for all interactions, and the safety contracts would need to developed

based on analysis of all identified system hazards. A complete example is given in the case

study in chapter 6.

The table in figure 4.2, firstly identifies the system for which the obligations are identified.

This is very important as the safety obligations captured in the table relate to a specific design

model. If the system design is changed, then the safety obligations may not be the same.

This is discussed in more detail in section 4.4.1. The class within the system design which is

being considered is then stated. The supplier interactions are then identified, along with client

interactions. For each of these interactions, any relevant safety obligations, otherwise clauses,

122

4.4. UTILISATION OF SAFETY CONTRACTS

Precondition from safety contract
for removeStore()…

removeStore()

Precondition from safety contract
for checkWOW()…

checkWOW()

Client
Interactions

Postcondition from safety
contract for select()…

select()

WOW status
does not
change
between check
and release

station^removeStore()=false
and
status=fail

let message:
OclMessage=manager^checkWOW()
message.hasReturned()
and
message.result=false
and
Time.now<=Time.now@pre+50

release()

AssumptionsOtherwiseSafety ObligationsSupplier
Interactions

Class: Store
System: SMS Aircraft X v.1.2

Figure 4.2: Safety obligations identified for the store class

and assumptions are recorded, based on the hazard analysis previously performed.

In figure 4.2, only the release() interaction has been completed, based on the results of the

analysis from chapter 3. For this interaction the safety obligations are obtained from the

postcondition of the safety contract that was defined in section 4.3.2. The otherwise clause

states the required response should those safety obligations not be met, and was again defined

in section 4.3.2. The assumptions captures information, relevant to the interaction, that was

assumed to be true when the hazard analysis of the system was performed. This could be

assumptions made about the system, such as it’s operational role, or equipment specifications, or

it could be assumptions made about the operating environment of the system. The assumptions

are important as the safety obligations can only be used to assure the safety of the software when

the assumptions hold. Many assumptions will also be captured in the design documentation

for the system under consideration. This emphasises the importance of recording exactly which

system design the obligations apply to.

Safety obligations can be explicitly defined in this way for each class of objects in the system

design. When an object is implemented in the software, it must behave in such a way that all

of the safety obligations are met. It is therefore possible to view the set of safety obligations

as a safe envelope within which an object of the class may operate. So long as the object’s

behaviour stays within this safe envelope, the object will not contribute to any of the identified

123

CHAPTER 4. SAFETY CONTRACTS

system hazards. The fact that it is possible to reason about the safety of each object in such

a way, brings many advantages when changes are made to the design of the system, and also

when reusing existing design elements in another system design. In the rest of this chapter the

use of class safety obligations when changing or reusing a design is investigated in more detail.

Since maintainability and reuse are stated as key advantages to using an OO approach, it is

extremely desirable that these properties can be achieved in an efficient, yet safe, manner for

safety related systems.

4.4.1 Supporting Design Change through Safety Contracts

It is to be expected that many changes will occur to the design of a system throughout the

development process. It is possible therefore, that changes may occur to a system design at

a time after safety requirements have been defined as contracts in the design. As mentioned

previously, OO systems offer improved stability in the face of system changes, that is that if

there is a change to the system, then the affects on the design should be localised to specific

elements of the design, rather than effecting the entire design structure. This can mean that the

cost associated with making design changes can be greatly reduced in comparison with some

non-OO designs.

As was discussed in the previous chapter, when using OO designs for safety-related applications,

it is necessary to analyse those designs to ensure that they will not contribute to system level

hazards. Any changes made to the system could affect the potential ways in which the system

might contribute to the system level hazards. This means that, as a result of any changes made

to the system, the altered design must be re-analysed to ensure that the system remains safe.

Analysing the design for a system can be a large and onerous task. If, as a result of changes

to the design, re-analysis of the entire system was required to ensure the system was still safe,

then the ability to limit the effects of design changes through the use of an OO approach,

would not be achieved for a safety related system. It is important, therefore, if the benefit of

improved stability to change is to be realised for safety related systems, that the re-analysis that

is required as a result of any change, can be localised to those specific design elements affected

by the change rather than the whole system. In this section some different change scenarios

which could affect an OO system design are considered. For each of these scenarios, it is shown

how safety contracts can be used as a mechanism for limiting the effects of that change on the

resulting amount of analysis which is required to ensure the system remains safe.

124

4.4. UTILISATION OF SAFETY CONTRACTS

4.4.1.1 Changes to a Class Design

The first change scenario that will be considered is a change made to the design of a class in

a system. Changes covered under this scenario include changes to the class state behaviour,

changes to existing operations, or introducing additional functionality to a class. These changes

may all result in changes to the interactions occurring between objects of the class, and other

objects in the design. Before the effects of changes to interactions are investigated however, a

simpler case must first be considered.

As described previously, DSRs captured in safety contracts on interactions are used to ensure

that an OO system will not contribute to system hazards. If a change made to a design

for a class does not change the interactions present in the original design, then the DSRs,

derived previously through analysis of the original system design will remain valid. The safety

obligations for the class, arising from the safety contracts, will therefore remain the same. It

must be shown that the altered class design can still meet the safety obligations placed upon

it. The class may well behave differently than it did before, and indeed its behaviour may

not be as good in terms of, for example, response times as it was previously. As long as the

class still behaves in such a way as to remain within the safety envelope described by its safety

obligations, then the class will not contribute to a system hazard.

To determine that an altered class design will still meet its safety obligations will require some

re-verification of that class, such as unit testing of the class instances. The amount of re-

verification required should be relatively small however, and will be limited to verifying only

the instances of the class whose design has changed. This is only possible because of the use

of safety contracts. Using contracts ensures that changes within one class in the design, do not

have an effect on other classes. This is a simple, if fairly trivial, example of how the impact of

change can be limited through a safety contract approach.

More interestingly, changes to a class design will often result in changes to the interactions

which occur between that class and others in the system. This could be, for example that new

operation calls are introduced into the design. In this case, the safety obligations obtained from

the safety contracts derived from the hazard analysis performed on the original design will no

longer suffice. Any changed interaction may introduce new ways in which a hazard may occur

at the system level. Any changed interactions must therefore be analysed to see if they may

contribute to a HSFM, and a safety contract defined for the interaction as necessary.

The analysis performed would take the form of SHARD-style analysis of the interaction (as

125

CHAPTER 4. SAFETY CONTRACTS

defined in section 3.8) to identify if functional failures in the interaction could lead to a HSFM.

Any impact on timing behaviour caused by the interaction can be analysed by identifying

which tasks the interaction is involved in. The output of the timing deviation analysis (defined

in section 3.6.2) will identify if these tasks could impact the safety of the system. If so, timing

requirements can be derived for the interaction (as in section 3.6.4) to ensure it does not

contribute to the hazardous deviation. Finally, it is necessary to check if the interaction is a

manipulator of any critical data in the system design (see section 3.7.2).

This analysis may result in DSRs which must then be reflected in a safety contract. This will

result in new safety obligations upon the relevant classes. Although analysis of the changed

interaction has been required in order to identify safety requirements for that interaction, it is

not necessary to analyse any other elements of the system design. The safety contracts that

existed upon other interactions, which have not been affected by the change, remain unaltered.

If HSFMs had not been decomposed into safety contracts, the impact of the change on the

safety of the system would be unclear, which could potentially require that large parts of the

system be reanalysed to check that a HSFM could not be brought about.

An example from the SMS shall now be used to illustrate more clearly how a design change

may be handled. It is decided that the design must be changed to ensure that the released store

is deleted from the location object for the station to which it was attached. This change has

been reflected in the UML sequence diagram for release of store as shown in figure 4.3. It can

be seen that a deleteStore() interaction between station and location objects has been added

when the store is removed by the station.

SHARD analysis (shown in figure 4.4), identifies a number of ways in which the operation

may lead to a HSFM (in all cases an unbalanced stores configuration). DSRs will therefore

be required to prevent the HSFM occurring. These will be captured in a safety contract for

deleteStore().

The new interaction (deleteStore()) is part of the release store task. Reviewing the results of

the timing analysis in section 3.6.4 reveals there to be a deadline, and a minimum separation

requirement on this task. The deleteStore() operation is not affected by the minimum separation

requirement, however, it does need to be budgeted as part of the deadline of 50ms. This will

place a timing requirement on the deleteStore() operation, which will be captured as part of the

safety contract. It will also have an effect on the other operations in the task, as their timing

requirements must be altered to accommodate the execution of deleteStore(). This will lead to

more stringent safety obligations (tighter deadlines) on those operations.

126

4.4. UTILISATION OF SAFETY CONTRACTS

stores manager store A station 1

Pilot

Select()

Release()

CheckWOW()

RemoveStore()

store B station 2 location

locate(Store A)
Select store A

for release

Request release
 of Store A

deleteStore(Store A)

Figure 4.3: Changed UML sequence diagram for release of store

Of the critical data identified in section 3.7.1, the deleteStore() operation can be identified as a

manipulator of store ID. deleteStore() is a transformer which passes the store ID as a parameter,

a constraint similar to that defined in section 3.7.3 is therefore required as part of the safety

contract. No other parts of the analysis performed on the original design need to be revisited,

the safety contracts defined as a result of the original hazard analysis remain valid.

4.4.1.2 Introducing New Classes

Another change scenario, is the introduction of a new class into a system design. Once again it

will be seen that using safety contracts to specify DSRs means that the effect of the change on

the safety of the system is more easily identified, and the re-analysis required can be minimised.

When a new class is introduced as part of the design, it is the interactions of that class with other

classes in the design which is of interest. It is necessary to identify if the interactions involving

the new class could contribute to a HSFM. The techniques for analysing these interactions were

discussed previously. For many interactions in which the newly introduced class instances are

the client of the interaction, a safety contract may already exist for the operation being called.

For these interactions, the preconditions of the contract will become safety obligations upon

the new class. In such cases the analysis will be needed to check for additional requirements

only. For interactions in which the new class instances are suppliers of the interaction, a full

analysis of the interaction is required since the interaction did not form part of the original

analysis. Once again the use of safety contracts has ensured that the reanalysis required has

127

CHAPTER 4. SAFETY CONTRACTS

NoUnknownFailure of client4 Incorrect Store
parameter sent

VALUE

Yes –
Unbalanced
stores config.

Inventory information
incorrect

Failure of client3 deleteStore () call
made when not
required

COMMISION

Yes –
Unbalanced
stores config.

Inventory information
not updated

Failure of client to
specify parameter

2 Store parameter
missing

Yes –
Unbalanced
stores config.

Inventory information
not updated

Failure of client to
send call

1 deleteStore () call
not made

OMISSION

Contribute to
HSFM?

EffectCauseDeviation

deleteStore(Store) : – Operation Call

Client – Station

Supplier – Location

Figure 4.4: SHARD analysis of deleteStore()

been localised to the new class, with limited effect on the other classes.

When considering introducing new classes to an OO system design, the inheritance mechanism is

very important. As was discussed in chapter 2, inheritance is one of the key characteristics of OO

systems, allowing new classes to be created from existing ones. The subclasses created inherit

all the attributes and operations from the parent class. Additional attributes and operations

may be added by subclasses if required. This concept is sometimes referred to as programming

by difference as it allows new classes to be produced without starting from scratch. This is a

very useful feature of OO designs which must be exploitable in a safe manner for safety related

systems.

4.4.1.3 Using Inheritance

It is important when using inheritance, that the subclasses created are substitutional for in-

stances of the parent class. This ensures that as far as anything using the objects of the parent

class can tell, the objects of the subtype behave the same as those of the parent. A set of subtyp-

ing rules which ensure this is the case was developed by Liskov [42], these rules became known

as Liskov Substitution Principle (LSP). In [46], Meyer explained how contracts can be used to

enforce these principles, by subclasses inheriting a contract from their parent. When creating

the contract for the subclass, it is permissable to weaken the preconditions or strengthen the

postconditions inherited from the parent class if this is necessary, however the opposite of this

is not permitted. This ensures that LSP is followed. In this thesis it is proposed that safety

128

4.4. UTILISATION OF SAFETY CONTRACTS

contracts may be inherited in a similar manner to that suggested by Meyer for design contracts.

These ideas are best illustrated with an example. Once again the SMS will be used for this

purpose. It is only necessary here to consider one small part of the design, as shown in figure

4.5.

+jettison()
+release()
+select()

-type
-status
-mnemonic
-ID

Store

+release()

Weapon Fuel Tank

+getCurrentInventory()
+checkConfig()
+initialise()
+checkWOW()
+checkIntervals()
+runRecorder()
+setWOW()

-WOW : bool
-late_arm : bool
-MASS-live : bool

Stores_Manager

1 *

Figure 4.5: Using inheritance to create new classes

In figure 4.5, two new subclasses of class Store have been created using inheritance. These

classes are Weapon and Fuel Tank, which are both types of store that may be used on an

aircraft. Both these subclasses will inherit the attributes and operations of the store class.

They may also add their own attributes and operations as required, but for simplicity such

changes are not shown in figure 4.5. The weapon class has however also redeclared (provided a

new implementation of) the inherited release operation. This new release operation may require

different pre and postconditions to the original. Polymorphism allows store to become attached

to instances of weapon. When a stores manager object makes a call to the release operation,

then dynamic binding will ensure that the redeclared version of release (in the weapon class) is

called, rather than the original version in store. The problem here is that stores manager only

has visibility of the contract for release in store, and it is possible for weapon to violate this

contract. This could occur in two ways:

• If weapon makes the precondition of release stronger than it was in store, then some calls

which are correct from the store manager’s viewpoint will not be handled properly.

• If weapon makes the postcondition of release weaker, then the results promised by store

will not be achieved.

If the contracts under consideration were safety contracts, then these violations could be poten-

tially hazardous. The reverse of these changes (weakening the preconditions, and strengthening

129

CHAPTER 4. SAFETY CONTRACTS

the postconditions) is however permitted. If this rule is followed then LSP will be complied

with. This thesis proposes that this rule can be used to help in assesing whether a subclass

is a “safe subclass” or not. It should be noted that a subclass of a class for which a safety

contract exists is not necessarily a safe subclass just because LSP has been complied with. The

safety of the subclass must be considered in terms of how the behaviour of the subclass may

contribute to the system level hazard. The safety contract put in place for the subclass must

always define safety obligations sufficient to ensure that the subclass does not contribute to a

system hazard. The safety contract placed on that subclass must also comply with LSP. This

is illustrated more clearly in the examples below.

Some simple examples of how this rule can be useful in creating safe subclasses are now con-

sidered. The simplest case is when the operations are inherited directly from the parent class.

In this case subclasses can inherit the safety contracts directly from the parent class. In other

cases, additional functionality can be added by a subclass, by introducing a new operation. For

example the weapon class may introduce a detonate() operation which is specific to weapons,

and not a general function of a store. In this case, in the same way as when a new class was

introduced to the class design, the operation must be analysed to identify if a safety contract

is required.

Weapon

Dumb Weapon

+release()

Smart Weapon

Figure 4.6: Operation redefinition using inheritance

A subclass may also redefine an operation inherited from a parent. In figure 4.6, the inheritance

mechanism has been used to introduce two different types of weapon into the system, dumb

weapons and smart weapons. Although both are types of weapon, inheriting attributes and

operations of the weapon class, the two types of weapon also have certain features which are

different. In this case, the way in which a smart weapon is released differs from other types of

130

4.4. UTILISATION OF SAFETY CONTRACTS

weapon, so the release operation has been redefined for the smart weapon. Analysis of this new

release operation may reveal that the safety contract required is different from that inherited

from the parent. It must be ensured that the new safety contract follows the rules described

earlier for ensuring that LSP is complied with.

Let us assume, for example, that analysis of the redefined release operation has revealed that the

release must be quicker for a smart weapon to ensure that a HSFM does not occur. The safety

contract for the release operation must therefore be changed from that which was inherited, in

order to reflect this. This involves strengthening the postcondition of the release operation to

specify that the deadline is reduced from 50ms to 30ms as shown below, the rest of the safety

contract is the same as that defined for the release operation of store previously.

context Smart Weapon::Release()

pre: previousRelease.at+100<=Time.now

post: let message:OclMessage=stores manager^checkWOW() in

message.hasReturned()

and

message.result()=false

and

Time.now<=Time.now@pre+30

Since the postcondition has been strengthened, this satisfies the rules established earlier for

complying with LSP. This safety contract is therefore acceptable, and the safety obligations

from this contract must be met by the relevant objects.

Let us now consider that the analysis also revealed that, to be safe, the release of a smart weapon

must occur later after a previous release than was specified for the store class. This would

require that the precondition in the safety contract of store be strengthened for a smart weapon.

This breaks the rules established earlier complying with LSP, so this is not an acceptable safe

subclass. In such a case, the only way to avoid violating these rules would be to strengthen the

precondition of the safety contract of the parent class as well. This would mean that the safety

contract of store would need to be changed to reflect this, as well as the safety contracts of all

the other sub-classes of store. This in turn would result in changes to the safety obligations of

many objects in the system, which would become unnecessarily stringent.

The result of this is that objects must be verified against the new obligations and may no longer

131

CHAPTER 4. SAFETY CONTRACTS

meet safety obligations where previously they did. This situation is obviously to be avoided

where possible. It is therefore desirable that when safety contracts are specified, they are made

as flexible as possible. That is that they are as weak as they can be whilst still defining safe

behaviour. If this is done, then through inheriting the safety contract, much analysis effort can

be saved when introducing classes to the system design. Another approach to introducing new

elements to a system is to reuse existing elements. This is discussed in the next section.

4.4.2 Supporting the Reuse of Design Elements through Safety Con-

tracts

As discussed in chapter 2, encapsulation is a feature of OO systems that provides a great

potential for reusing elements of one system in another similar system. If software classes

providing the required functionality already exist, then encapsulation ensures that including

them in a new system is relatively straight forward. The advantages of this are that the part

of the system being reused does not need to be developed from scratch, considerably saving

on effort and hence cost. However, as was discussed for design changes previously, in safety

critical applications it must be ensured that reused design elements will not affect the safety of

the system. It is desirable that assuring safety can be achieved in a way which will minimise

the effort required. Once again, safety contracts can be used to facilitate this. The part of

the design which is to be reused must behave safely as part of the system in which it is to

be used. This means that the reused element’s behaviour must not contribute to any HSFMs.

Since safety contracts are in place within the system design, the safety obligations relevant to

the elements to be reused can be clearly identified. When reusing classes in the new system it

is therefore not sufficient that they provide the functionality required, it is also necessary that

they meet the safety obligations identified from the contracts. If the elements to be reused can

fulfill these obligations then then they can be safely used as part of the system. It is important

to note that the safety obligations are specific to the the system for which they were derived.

This means that the safety obligations of a reused element from another system cannot be

simply carried across into the new system. Instead it is necessary always to demonstrate that

the reused element meets the safety obligations imposed upon it by the system in which it is to

be used. Where the reused element is from a very similar system, which placed similar safety

obligations on that element, it would be relatively easy to demonstrate compliance with the

safety obligations in the new system, however it is necessary that this is done explicitly.

It is only through identifying explicit safety obligations on classes in the system design that it

132

4.5. CONCLUSIONS

is possible to know if an existing element is safe to use in that system. If this were not possible

then the system would need to be reanalysed as a result of the change, and thus the benefits of

reuse would not be realised.

4.5 Conclusions

In this chapter, the concept of safety contracts was introduced as an ideal way to represent

DSRs as part of an OO design. It has been shown how such safety contracts can be constructed

based on the analysis that was described in chapter 3. It has also been shown how OCL provides

an implementation independent notation for specifying contracts, and has the expressive power

necessary for representing the constraints required in a safety contract. These safety contracts

can be then be used to identify the safety obligations relating to objects in the system. It

has been shown how the specification of safety contracts makes it easier to deal with changes

to an OO design, and the reuse of design elements, whilst ensuring that the system under

consideration remains safe. In this way a safety contract approach supports maintainability

and reuse, key benefits of adopting an OO approach, for safety critical OO systems.

By showing that the safety obligations arising from safety contracts have been met, evidence as

to the safety of the system is generated. This evidence can be used in demonstrating that the

OO system is safe to operate. In order to demonstrate this clearly, it is necessary to produce

a safety argument for the system. In the next chapter, the way in which a safety argument

can be generated, to demonstrate that an OO system, developed using the approach described

in chapters 3 and 4, is safe to operate, is investigated. It shall be seen how the development

of safety contracts assists in establishing an effective safety argument structure. Producing a

successful safety argument is a key aspect of certifying an OO system such that it may be used

in safety critical applications.

133

Chapter 5

Creating a Safety Argument for

OO Systems

5.1 Introduction

In chapter 2 it was seen that in order to certify a safety related system it is necessary to

produce a safety case for that system. A key part of this is providing a clear and defensible

safety argument that the system is acceptably safe to operate within a particular context. For

the approach described in this thesis to be used successfully in safety related systems, it is

necessary that a robust safety argument can be produced, which shows how the process ensures

the resulting software system is safe. Chapter 3 described a process for analysing OO systems

for safety, then in chapter 4 the output of the analysis was used to define safety requirements

in the form of safety contracts on the system design. Once these requirements for the system

have been defined, the system is verified against these requirements to generate evidence that

the requirements have been met. This evidence will form part of the safety argument. In this

chapter an appropriate structure for such an argument is developed. The structure should

provide the flexibility required to support change and reuse of the system. If the argument

structure does not provide this flexibility then the certification effort could easily negate the

advantages gained elsewhere in the process. Safety case patterns are developed which can be

used to aid the development of safety arguments for OO systems.

134

5.2. MODULAR SAFETY ARGUMENT STRUCTURES

5.2 Modular Safety Argument Structures

The traditional approach to producing a safety argument for a system is to produce a monolithic

safety argument for the entire system under consideration. This means that the entire system is

considered as one entity. There is nothing inherently wrong about this approach, and acceptable

monolithic safety arguments have been produced for many complex systems. Indeed it would

be possible in principle to produce a monolithic argument for an OO system, which successfully

made an argument that the system was safe to operate. In this section, however, it will be

shown that using a monolithic structure for the safety argument has certain drawbacks and,

instead, an alternative modular approach is more appropriate for OO systems.

In chapter 2 GSN was introduced as an effective notation for representing safety case arguments.

In this chapter GSN shall be used to represent the safety argument structures. Initially different

modular argument structures will be considered. These can be represented using the module and

away goal extensions to GSN [30]. A module is a self-contained component of the argument and

supporting evidence relating to a particular aspect of the safety case for the system. Figure 5.1

shows a modular representation of the monolithic safety argument. As such only one argument

module is required. This module contains the safety argument and evidence relating to all of

the classes in the whole of the system under consideration.

OOSystemArg
Argument concerning
the whole OO System

Figure 5.1: Monolithic safety argument structure

In assessing whether a particular argument structure is good for an OO system, the criteria

that shall be used are the same as have been considered throughout this thesis. That is that the

argument structure is robust in the face of changes to the system design, and that the structure

supports the reuse of design elements. Therefore, the amount of the argument that is affected

by a change to a system design should be as small as possible. A change to a design will effect

a module if the argument within that module relates to the changed part of the design in some

way. It should also be possible to identify and isolate modules of the argument relating to

specific parts of the system design, such that if that part of the system were reused in another

system design, the corresponding module may also be reused as part of the safety argument for

the new system. This will reduce the effort required, compared with developing the relevant

135

CHAPTER 5. CREATING A SAFETY ARGUMENT FOR OO SYSTEMS

argument module from scratch.

When considering the monolithic safety argument structure, there is found to be very poor

support for change. Since there is just one argument for the whole system, the argument

contained within the module will commonly (and almost inevitably) contain a large web of

argument dependencies between different elements of the argument. Although the argument

produced could be valid, any change to the design of the system would affect large parts of the

argument. This would mean that in order to remain valid for the changed design, the whole

argument would, in effect, need to be revisited. Since the arguments produced can be extremely

large, this could represent a huge effort. In addition, it could be potentially very difficult to

identify the parts of the argument that have been affected by the change. Due to the monolithic

structure, the effects of the change could be spread throughout the argument, making it difficult

to identify the affected parts.

If part of the design were reused in another system then it would be extremely difficult, with this

argument structure, to reuse the corresponding part of the safety argument in the argument

for the new system. The argument is very highly coupled, and therefore separating out the

argument relating to the particular element of the system being reused, without losing important

elements of that argument, would be very difficult. It is for these reasons that it is felt that

this traditional approach to constructing a safety argument is insufficient to retain the desirable

features of OO designs. An alternative argument structure is therefore required.

Figure 5.2 shows another possible argument structure that might be used. In this structure,

the top-level argument module provides the scope of the overall system argument, and the

child modules present independent safety arguments about the classes in the system design.

The links between the modules indicate that a claim in one module is solved by the argument

contained in another module. These links are made using away goals as illustrated in section

5.3. Evaluating this argument structure in a similar manner to the monolithic structure reveals

some interesting observations. It can be seen that this structure has better support for change

than the monolithic structure. Because there is a separate module containing the argument

relating to the safety of each class, it is easier to identify the impact of design change on the

argument structure. For those classes which have been changed in the design, the relevant class

argument module will also have been affected, and must be updated to reflect the change. For

those classes that have not been changed, the corresponding module will remain unaffected.

Due to the separation in the argument there are no knock-on effects throughout the argument

structure.

136

5.2. MODULAR SAFETY ARGUMENT STRUCTURES

Class Z ArgClass Y ArgClass X Arg

Software
System Arg

Figure 5.2: Modular argument structure including class modules

Another type of change that would commonly be encountered is to introduce a new class into

a system design. At first it would seem that the argument structure in figure 5.2 supports this

type of change, as a new argument module relating to that new class could be added to the

structure. In fact, things are more complicated than that, and this structure is far from ideal.

It has been seen throughout this thesis how the interactions between class objects in the system

are crucial to the behaviour, and hence the safety of the system. In the structure in figure 5.2,

the argument about the safety of the interaction between the classes is contained within the

class argument modules themselves. When a new class is added, it may interact with a large

number of the other classes in the system. Therefore the addition of a new class will also affect

the argument modules of all the other classes with which that class interacts.

It would similarly appear that there is a greater reuse potential with this argument structure.

It is now easier than in the monolithic case to identify the relevant part of the argument to

be reused. However, due to the dependencies that exist between modules, resulting from the

interactions, the reuse potential of the argument modules is also limited. When an argument

module is reused the interactions will change from those with other classes in the old system to

those in the new. This may require a great deal of reworking of the argument module for it to

be valid in the new system. This could negate the advantage gained from reusing the argument

module.

The problems associated with the previous argument structure can be dealt with by introducing

a module which deals explicitly with the safety argument about the interactions between classes.

This argument structure can be seen in figure 5.3. In this structure, an argument about all

the interactions is made in a separate module. There are no longer any links between the class

argument modules as the class arguments no longer have responsibility to reason about their

effect on other classes. The individual class argument modules now just make an argument

137

CHAPTER 5. CREATING A SAFETY ARGUMENT FOR OO SYSTEMS

that they will meet any constraints arising on them from these interactions. As a result of

this, handling changes to the system design is now much easier. For example, introducing

a new class to the system design, in addition to a new argument module for the new class

will primarily impact just the interactions module. This will be changed to handle the new

interactions introduced. There is no longer a knock-on effect on the rest of the argument, as

there was with the other argument structures.

Software
System Arg

Class X Arg Class Y Arg Class Z Arg

Interactions
Arg

Figure 5.3: Modular argument structure with separate interactions argument

The structure also provides better potential for reusing parts of the argument. As stated earlier,

because of the interactions module, the class modules no longer need to reason about other

classes in the system as part of their argument. This means that any of the class argument

modules could be used as part of the argument for a different system with minimal rework

required. It is for these reasons that the argument structure in figure 5.3 is proposed as the

most desirable for presenting a safety argument for an OO system. Later in this chapter, the

effects of change and reuse on the safety argument itself will be considered in more detail. Firstly

it is necessary to develop those arguments, which are contained within each of the argument

modules. In the next section patterns for the arguments are presented in GSN. These patterns

can be instantiated for the OO system to which they are applied.

5.3 Developing the Safety Arguments

In this section, the safety argument necessary to show that an OO software system is acceptably

safe is developed. The argument will show how the safety of the system is demonstrated based

upon the approach described in chapters 3 and 4 of this thesis. The argument shows how

the evidence generated using this approach supports the top-level claims about the safety of

the system. The argument will be developed using the argument structure suggested in figure

138

5.3. DEVELOPING THE SAFETY ARGUMENTS

5.3. Each of the modules shall be developed, with the away goals which link the arguments

in different modules highlighted where necessary. Firstly the software system level argument

module is developed.

5.3.1 Software System Level Argument

The software system level argument module provides the top-level argument that the software

is acceptably safe. The safety argument pattern for this module is shown in Appendix A. The

argument pattern is described in the format proposed by Kelly in [29].

The way in which the safety of the software is demonstrated is through a hazard control ap-

proach. This reflects the process described in chapter 3 which takes a top-down approach

starting from the system level hazards and identifying how the software may contribute to

these hazards. The top level claim is made in the context of the description of the current

system. The strategy adopted is to argue over all the identified hazards. The context for this

will be a hazard log, or other repository of known hazards for the system. The argument then

shows that the software contribution to each system level hazard is acceptable. This is done in

the context of the software design (this may take the form of a UML model, or other design

description), and also in the context of the HSFMs identified for each of the hazards. This

argument is made by showing that all the HSFMs have been identified correctly (G3 Sys), and

will not occur in, or are mitigated by, the software (G4 Sys).

In order to show that the HSFMs do not occur, the strategy adopted (again based on the

approach proposed in this thesis) is to argue separately that the interactions are safe and that

the individual classes themselves will not behave in such a way that they will contribute to the

HSFMs. This strategy also fits in with the prefered safety argument module structure in figure

5.3. It is also necessary to argue that there are no unintended interactions between classes in the

system. The argument as to why unintended interactions do not occur is specific to properties

of the software architecture used in implementing the software. The argument supporting this

claim has therefore been left undeveloped as this lies outside the scope defined for this thesis.

The arguments could, for example, appeal to the rigour of a partitioning mechanism which

ensures objects do not interfere. There are two away goals as part of this argument. These are

goals which are addressed by arguments made in other modules (in this case the interactions

argument and the argument for the class).

139

CHAPTER 5. CREATING A SAFETY ARGUMENT FOR OO SYSTEMS

5.3.2 Interactions Argument

The Interactions Argument Module Pattern can be seen in Appendix B.

This argument module argues that the interactions that occur between classes in the system

are acceptably safe. This argument satisfies an away goal from the system-level argument. It

was seen in chapter 4 how DSRs can be specified in the form of safety contracts, from which

safety obligations for classes in the system can be identified. This approach is reflected in this

argument. This is done by arguing firstly that the contracts have been correctly identified

(G2 Int), and then that the safety obligations arising from those contracts have been satisfied

(away goal G2 Class). It is shown that the contracts are identified correctly by arguing that

the relevant interactions for each of the identified HSFMs have been identified (G5 Int). This is

done by appealing to evidence generated from the fault tree and interactions analysis described

in chapter 3. This claim is made under the assumption that the software design contains

complete and accurate information on the interactions in the system. Without this the analysis

would not be correct. It is then shown that for each of these relevant interactions, the necessary

DSRs have been identified to ensure that the HSFM will not occur (G6 Int). These DSRs are

captured as safety contracts for each relevant interaction. This is again argued by appealing to

various forms of evidence which are generated from the analysis process described in chapter 3.

This includes evidence from SHARD-style analysis, timing analysis of interaction diagrams and

analysis of statecharts. The resulting contracts are captured as context for the claim G7 Int.

The argument that all the classes can meet the safety obligations arising from the contracts is

made through away goal G2 Class. This is a goal from the class argument module. By making

this argument in the class module, it is ensured that the argument about the behaviour of the

classes is separated from the argument made about the interactions. Again, this strategy fits

in with the argument module structure in figure 5.3.

5.3.3 Class Argument

An argument module is developed for each class in the system design. The argument developed

for each class is as shown in the Class Argument Module Pattern in Appendix C.

The purpose of the class argument is to show that the class will not contribute to any of the

relevant HSFMs. This is done firstly by arguing that the safety obligations on each instance of

that class (each object) arising from its contractual constraints have been satisfied (G2 class).

This argument is referenced as an away goal from the interactions argument.

140

5.4. HANDLING CHANGE AND REUSE

G2 Class is made in the context of the safety contracts derived as part of the interactions argu-

ment. The argument involves identifying all the contractual obligations from the interactions in

which that object is involved. Chapter 4 of this thesis described how such safety obligations are

identified. It is necessary then to show that those obligations are met, chapter 4 discussed ways

in which the software may be verified against its safety obligations. The evidence generated

from verification activities is captured through solution S1 Class. This solution represents a

placeholder for the evidence used to support claim G5 Class. Once a specific verification strat-

egy is decided upon, S1 Class must reflect how the verification evidence supports the claim.

This may require further decomposition of the argument below G5 Class.

Secondly, it is necessary to argue that the class itself will not behave in such a manner as to

contribute to the HSFM (G3 Class). This is to cover behaviour which classes may exhibit other

than as a result of interactions with other classes. This will be, mainly, such things as subtle

value failures which could be present in an implemented system. Goal G3 Class provides this

argument. This goal requires further development to show how such contributions are identified.

5.4 Handling Change and Reuse

It has been shown in the previous section how a safety argument for an OO system can be

produced using the approach described in this thesis. A number of claims were also made

about the argument structure used. It was claimed that the argument is robust to changes

that may be made to the system design. It was also claimed that elements of the argument

for a design may be reused, when elements of that design are used in other systems. In this

section a safety argument made for the SMS using the patterns presented in section 5.3 shall

be considered. A number of changes that might occur to the SMS design are considered, and

the effects upon the SMS safety argument resulting from these are examined in some detail.

Similarly, a reuse scenario will also be considered, to illustrate how safety argument elements

may be reused.

5.4.1 Changes to the Design of a Class

The change to a class design that will be considered is a change to the algorithm for the

checkConfig() operation (see figure 3.4) of an object of type stores Manager. This operation

checks the configuration of the stores on the aircraft to identify which store is attached to which

station. This operation could contribute to HSFMs associated with the release of incorrect store

141

CHAPTER 5. CREATING A SAFETY ARGUMENT FOR OO SYSTEMS

hazard. Safety obligations identified for the stores Manager object must still be met when the

change has been made. It must therefore be shown that all safety obligations, specifically those

associated with checkConfig() are still met.

The safety argument must be updated to reflect the changes that have occurred. This will

ensure that the argument remains valid. The effects of the change on the arguments in each of

the argument modules will be considered. In the software system level argument, the only claim

which is affected by a change to an object such as this, is the goal G1 Class, which considers

the contribution of the the class to the HSFMs. This goal however is an away goal in the

class argument module, and is therefore not dealt with in the software system argument. The

software level argument module is therefore unaffected by this change.

Investigating the interactions argument, it can be seen that this module of the argument is

also unaffected by this change. The interactions argument deals with the identification of the

contractual constraints necessary to mitigate against a HSFM. This module will therefore be

affected by design changes which lead to these constraints requiring alteration. This would be

due to changes to the nature of the interactions between the classes. Since these interactions

have been unaffected by this change, the DSRs and hence safety obligations remain unchanged.

Goal G2 Class deals with the satisfaction of the safety obligations by each of the classes, but

again this is an away goal in the class argument module.

It is therefore only the class argument module for the stores Manager class (the changed class

in this example) which will be affected by the change. The most obvious effect on the argument

is to goal G5 Class. It must be shown that the safety obligations for the stores Manager object

can still be satisfied with the algorithm for checkConfig() having been changed. This will involve

generating evidence that the obligations are met by the stores Manger object. This evidence is

recorded as part of S1 Class. By ensuring these parts of the argument are updated to reflect

the change, the argument will remain valid. Most of the argument structure, as was seen here,

is unaffected by this type of change.

5.4.2 Introducing a New Class

A more complicated type of change is to introduce a new class into the system design. The

introduction of a new store class into the SMS design shall now be considered. This change

will have more effect on the argument structure than the change discussed previously, as it will

result in changes to the interactions that occur between objects. Starting again by looking at

the system level argument module, this time goal G1 Int will be affected, as it must be shown

142

5.4. HANDLING CHANGE AND REUSE

that interactions introduced by the new store class are acceptably safe. This is an away goal in

the interactions argument module. This module will now be considered.

It must be shown, as part of the interactions argument that all contracts have been correctly

identified. As part of this, G5 Int requires that all interactions relevant to each HSFM are

identified. To ensure that this remains valid when a new store class is introduced, it must be

identified if any of the interactions introduced between the new class, and existing classes in

the system, could contribute to a HSFM. The results of the analysis performed to determine

this is captured in the solutions S1 Int and S2 Int.

Once the argument is updated to reflect this new analysis, the new interactions identified as

contributing to a HSFM must have DSRs defined. The analysis used to derive the DSRs is

captured in the relevant solution elements. These additional DSRs are identified in safety

contracts, and the context C4 Int is updated to reflect the changes to the safety contracts. The

interactions argument has now been updated to reflect the addition of the new store class to

the system design. The changes made to the safety contracts results in new safety obligations

on classes in the system. It must be checked that the objects can meet these obligations. This

will impact the class argument modules in just the same manner as with the previous change.

That is that more evidence is needed to show that the obligations are met. It can be seen with

this simple example that most of the effect of introducing a new class is on the interactions

argument module. The effect on the class argument is minimal. Containing most of the impact

within one module is an advantage of the chosen argument structure.

5.4.3 Reusing a Class

It may be the case that a new class being introduced to the SMS design is one that has previously

been developed for another similar system. For example, a new type of weapon may have been

used previously on a different aircraft. If this is the case then as well as reusing that part of an

existing system design, there is much benefit to be gained from also using as much as possible

of the corresponding safety argument. So if an argument module exists for the new weapon

type, this module could be included in the argument structure for the SMS. The key thing

in doing this is that the links that exist between the reused argument module and the other

modules in the argument structure remain valid. In the case of the class argument module, the

crucial link is the contextual link made to C4 Int in the interactions argument module. It is

the safety contracts that are defined in the interactions argument which define the set of safety

obligations for the class. These contracts will be specific to each system, and therefore the safety

143

CHAPTER 5. CREATING A SAFETY ARGUMENT FOR OO SYSTEMS

obligations which must be satisfied will also be specific. Once these obligations are identified

from the interactions argument, evidence must be generated to show that the obligations are

met. It is possible that, for example, testing evidence which formed part of the class argument

in the previous system, may also be applicable in discharging obligations in the new system.

Such evidence may be reused.

This illustrates how separating out the argument about the individual classes from the argument

about the interactions makes it much more possible to reuse large parts of the class arguments,

thus reducing the rework required. This is another indication of the advantage of the argument

structure from figure 5.3.

5.5 Conclusions

In this chapter safety argument patterns have been presented for use in creating arguments

about the safety of OO software system designs. Such safety arguments are a crucial part of

the safety case for a system. The safety contracts resulting from the analysis process described

in this thesis can be used to generate the evidence which is required in support of the safety

claims which must be made about the system. It has been seen in the discussions in this chapter

that certain goals in the argument modules have not been fully developed, specifically G7 Sys,

G3 Class and G5 Class. The way in which these claims are supported is outside of the scope

of the method developed in this thesis. In order to be a complete and compelling argument,

the claims and evidence supporting the undeveloped goals must be provided. Although this

has resulted in incomplete argument patterns where goals are outside of the scope of the thesis

and have been left undeveloped, it has been suggested in the discussions in section 5.3 how

the claims may be supported. With these goals fully developed, the arguments produced using

these safety argument patterns can be used to show how this evidence demonstrates that the

resulting software system is acceptably safe to operate. The argument presented has been split

into modules. The module structure has been chosen such that alterations required to the

safety argument are minimised should there be changes made to the system design. The chosen

modular structure also maximises the amount of the argument that can be reused when elements

of the design are used in other systems. It is the use of a safety contract approach which allows

such a modular argument structure to be used, as the argument can thus be separated into

modules regarding the interactions, and the individual classes.

The SMS has again been used as an example, to illustrate the effects that changes to a design,

144

5.5. CONCLUSIONS

or reuse of a class, would have on the safety argument. Producing and maintaining a safety

argument for a system are typically costly and time consuming activities. Therefore reducing

the effort required in maintaining the validity of the safety argument is of great advantage. Since

benefits are often claimed for an OO approach due to their being maintainable and reusable, it

is particularly important for OO systems that a safety argument can support such properties.

145

Chapter 6

Aircraft Avionics Control

System; A Case Study

6.1 Introduction

This chapter presents the results of a case study undertaken upon an avionics control system

design produced by a large aerospace company. The purpose of the case study is first and

foremost to show how the analysis process described in chapter 3 of this thesis can be used to

generate DSRs upon a large-scale OO software design in a systematic and rigourous manner.

The case study will also be used to illustrate how these DSRs can be used to define safety

contracts upon the design, and how a safety argument can thus be constructed for the system.

All figures referred to in this chapter may be found in appendix D.

6.2 System Overview

This description of the system and all other information presented about the system and the

system design, including all design diagrams are taken directly from the Software Requirements

Specification (SRS) document [77], and the Software Design Description (SDD) document [76].

Some of the information used may have been altered where required for commercial reasons.

The Avionics Control System (ACS) is the main navigation system of an aircraft, and can be

considered to have two main roles:

Mission Management Management of the flight paths and mission objectives.

146

6.3. SAFETY ANALYSIS OF ACS

Navigation Calculation of aircraft navigation status from sensor data.

The system architecture diagram in figure D.1 shows the logical architecture of the system. The

functionality of the system is described below.

An ACS continuously collects sensor data to estimate the actual state of an aircraft,

compute desired aircraft state with respect to guidance modes, and performs actions

that advise pilots and directly manipulate aircraft effectors in ways that bring actual

and desired state in closer agreement. The system modelled is a simplified ACS

which addresses a small subset of the functionality normally associated with an

ACS used by modern military aircraft.

The pilot interacts with the ACS via a control panel and a VDU located in the cock-

pit. The ACS obtains navigation data from a suite of navigation sensors. The ACS

provides mission data, flight path information and aircraft navigation status data for

presentation to the pilot via the VDU. In addition it computes the required heading

and altitude to maintain the programmed flight path. The system computes and

displays cues on the VDU which prompt the pilot to fly the aircraft in a particular

direction in order to maintain the programmed flight path. Finally, commands are

provided to the autopilot which ensures that, when it is engaged, the autopilot also

maintains the programmed flight path.

6.3 Safety Analysis of ACS

The safety analysis of the ACS software design will follow the process steps for analysis of the

functional, temporal and value aspects of the system as described in chapter 3 of this thesis.

The relevant design artifacts for each stage of the analysis are introduced as required. Firstly

the results of the functional analysis are described.

6.3.1 Functional Analysis

6.3.1.1 Step one: Identify Hazards

The system level PHI activities identified just one hazard associated with the ACS. This hazard

is stated as follows:

Hazard Aircraft descends below minimum safe altitude during low level operations.

147

CHAPTER 6. AIRCRAFT AVIONICS CONTROL SYSTEM; A CASE STUDY

This is a hazard for the aircraft as it could lead to loss of the aircraft due to impact with the

ground.

6.3.1.2 Step two: Define hazardous failure modes

This step of the analysis identifies potential failure modes for the ACS software, which may lead

to the identified hazard. These are referred to as Hazardous Software Failure Modes (HSFMs).

During low level operations the system uses the terrain following (TF) function of the ACS

to ensure that a minimum altitude selected by the pilot is maintained. System level hazard

analysis identified the following two HSFMs associated with the system hazard:

HSFM 1 With TF enabled, the ACS fails to warn the pilot that the aircraft has descended

below the minimum safe altitude.

HSFM 2 With TF enabled, the ACS fails to command the autopilot to gain height when the

aircraft descends below the minimum safe altitude.

It will actually be seen that these two HSFMs are essentially the same, with the difference being

whether the TF output is sent to the pilot or the autopilot. It can also be argued that, provided

the pilot is warned when the aircraft descends below the minimum safe height, the autopilot can

be disengaged, and avoiding action taken. For these reasons, just HSFM 1 shall be considered

for this case study. For completeness it would also be necessary to perform analysis of HSFM

2, however in this case, it will be highlighted where the results for HSFM 2 would be different

from those obtained for HSFM 1.

6.3.1.3 Step three: Identify interaction failures

This step identifies failures in the software which may lead to the identified HSFM. This involves

investigating the sequence of interactions that could result in the HSFM. A fault tree can be

constructed for the HSFM using the sequence diagram for the relevant scenario. There is one

use case related to the HSFM which is ‘maintain minimum height’. The use case is given in

figure D.2. The normal scenario for this use case is described in the sequence diagram in figure

D.3. In this scenario, the TF mode is selected by the pilot. Once TF mode is enabled, the pilot

is able to select a minimum height for low level operations. This minimum height is read by

the ACS software and displayed back to the pilot via the VDU. The ACS continually monitors

the aircraft navigation sensors to determine the aircraft’s current height. The set of sensors

148

6.3. SAFETY ANALYSIS OF ACS

that are used for doing this is dependant upon the current navigation mode of the ACS. The

ACS uses the current aircraft height to determine if the minimum height has been maintained.

A TF cue is calculated to maintain the minimum height. This TF cue can be displayed to the

pilot, or if the autopilot is in use, can be sent as a vertical command to the autopilot.

The fault tree is constructed by working back through the sequence of interactions that occur,

as described in the sequence diagram in figure D.3. The top level event in the fault tree is ‘ACS

fails to warn pilot when aircraft altitude falls below minimum safe altitude’. The fault tree is

shown in figure D.4.

The interaction failures can be identified from the set of basic events in the fault tree. There

are 11 basic events as listed below:

1. Failure of Flight Director to decode minimum height

2. Failure of Minimum Height() - Interaction

3. Failure of Read minimum height signal - Interaction

4. Pilot selects wrong minimum height value via control panel

5. Failure of Navigator to calculate current height correctly

6. Failure of Sensor interactions - Interaction1

7. Failure of Sensor

8. Failure of Update Height() - Interaction

9. Failure of Flight Director to calculate radar cue correctly

10. Failure of Display TF Radar Cue() to display - Interaction

11. Failure of Display TF radar cue signal to VDU - Interaction

Those events which are interaction failures are indicated above and will be investigated further

in the next step of the analysis. The other basic events are different types of failure which will

be dealt with in other parts of the analysis.2

1It should be noted that there are a number of different sensors and sensor interactions, as can be seen
in figure D.3. The set of sensors used depends uppon the current navigation mode. For simplicity, and for
presentational reasons, the sensors and their interactions are each identified as just one failure event. It should
be evident to the reader that the analysis for all sensor interactions can be generalised in this manner.

2Basic events 1, 5, and 9 are dealt with in the value analysis. Event 4 is a human factor failure relating to
the behaviour of the pilot. This failure is outside the scope of this process. Event 7 is a hardware failure, which
again falls outside the scope of this process.

149

CHAPTER 6. AIRCRAFT AVIONICS CONTROL SYSTEM; A CASE STUDY

6.3.1.4 Step four: Investigate causes of failures

This step of the analysis involves determining potential causes of the failures identified in step

3. There are two elements to this step of the analysis. Where statechart representations of

the relevant objects in the system design are available, these statecharts can be analysed to

understand the causes of hazardous failures. However the analysis will first focus on SHARD-

style analysis of the interactions.

6.3.1.5 Step 4a: SHARD-style analysis

The interactions to be investigated for failures, as identified at step 3 are:

1. Min Height()

2. Read minimum height signal

3. Sensor interactions (Get Height(), Get Position(), Ground Level())

4. Update Height()

5. Display TF Radar Cue()

6. Display TF radar cue signal

The details of the interactions are obtained from the class diagrams (parameters, return variables

etc.) and sequence diagrams (client and supplier objects). These interactions are analysed

using the SHARD-style analysis. This investigates deviations from the expected behaviour of

the interactions, in order to identify hazardous behaviour. The results of the analysis are shown

in figures D.5 to D.10.

6.3.1.6 Step 4b: Statechart analysis

Where a statechart representation of an object is available, this statechart should be analysed

to give further understanding of potential causes of hazardous failures. A simple statechart has

been developed for the Navigator class as shown in figure D.11. This shows that the navigator

object has responsibility for reading the sensors. The sensors that are read depends on the

current navigation mode which is selected. The navigator then updates the height based on

these obtained sensor readings. The failure events that are being investigated using this analysis

are therefore:

150

6.3. SAFETY ANALYSIS OF ACS

Failure 6 Failure of sensor interactions

Failure 8 Failure to update height

With respect to the statechart for the navigator class, these failures can be defined as:

• Object fails to read all active sensors

• Object fails to update height

Firstly the statechart is examined to ensure that these failures won’t occur in the proposed

design for the statechart (figure D.11). If we consider the object in the state ‘Navigation mode

selected’, it can be seen that when the time t reaches the time limit Time, the action ‘Get

sensor readings’ is performed and the object moves to the ‘Reading sensors’ state. Once all the

sensors have been read the object moves to state ‘Updating height’. This state is exited once

the height has been updated. The time t is reset to zero, such that the sensor reading cycle will

continue. It can therefore be seen that if the object behaves normally, that is as defined in the

statechart, then the hazardous failures under investigation will not occur.

It is necessary to also consider the abnormal, or faulty behaviour of the object. This can be

done by mutating the statechart. The mutated statechart for the navigator class is shown in

figure D.12. The transitions between only the three states shown have been mutated, as the

other states in the original statechart are not relevant to the failures being investigated. Each

mutated transition is considered for its contribution to a hazardous failure. This information is

useful in defining the hazardous object behaviour at the next step of the analysis. The way in

which the mutated transitions may be hazardous is described below.

A1 Sensors are not read, and height not updated.

A3 Although the sensors are read, since the time limit is not achieved, the height value may

be stale.

A4 Although the object moves to the reading sensors state, the sensors will not be read, and

height not updated.

A5 Although the object moves to the reading sensors state, the sensors will not be read, and

height will be updated with a stale value.

B1 Current height is not updated.

B3 Height is updated incorrectly.

151

CHAPTER 6. AIRCRAFT AVIONICS CONTROL SYSTEM; A CASE STUDY

B4 Although moving to updating height state, the height will not be updated.

B5 Although moving to updating height state, the height will not be updated.

C1 Although height is updated, object remains in updating height state so next sensor reading

cycle will not occur.

C3 Although moving to navigation mode selected state, the height has not been updated.

C4 Height is updated, however time is not set to zero, so the next sensor reading cycle will not

occur.

C5 Height is updated and sensor readings will be obtained, however object will remain in

navigation mode selected state, so new height will not be updated.

6.3.1.7 Step five: Define hazardous object behaviour

Each of the deviations identified as hazardous in the analysis in both parts of step 4 represents

a hazardous behaviour of an object in the system design. This step of the analysis defines these

hazardous behaviours in terms of the objects responsible for them.

1.1 Flight Director fails to check minimum height using Minimum Height() call

1.2 Control Panel returns no value in response to Minimum Height()

1.4 Control Panel returns incorrect minimum height to Flight Director

2.1 Control Panel Hardware fails to send signal to software

2.2 Control Panel Hardware sends valid spurious signal to software

2.3 Control Panel Hardware sends incorrect minimum height signal to software

3.1 Navigator fails to get data from relevant Sensor object using Get Data() call

3.2 Sensor object returns no data in response to Get Data() call

3.4 Sensor object returns incorrect data to Navigator

4.1 Navigator fails to update aircraft’s current height using Update Height() call

4.2 Navigator does not provide Height In Feet parameter for Update Height() call

4.4 Navigator provides incorrect Height In Feet parameter to Aircraft

152

6.3. SAFETY ANALYSIS OF ACS

5.1 Flight Director fails to display radar cue using Display TF Radar Cue() call

5.2 Flight Director does not provide TF Radar Cue parameter for Display TF Radar Cue()

call

5.4 Flight Director provides incorrect TF Radar Cue parameter to Status Display

6.1 Status Display fails to send signal to VDU

6.2 Status Display sends valid spurious signal to VDU

6.3 Status Display sends incorrect Radar Cue signal to VDU

A1 Navigator fails to get sensor readings

A3 Navigator fails to meet time condition for getting sensor readings

A4 Navigator fails to get sensor readings

A5 Navigator updates height before getting sensor readings

B1 Navigator fails to update height

B3 Navigator fails to get sensor readings before updating height

B4 Navigator fails to update height

B5 Navigator fails to update height

C1 Navigator ceases to renew sensor readings

C3 Navigator fails to successfully update height

C4 Navigator ceases to renew sensor readings

6.3.2 Temporal Analysis

6.3.2.1 Step one: Split scenario into tasks

In order to understand timing effects on the behaviour of the system, it is necessary to consider

sequences of interactions, referred to as tasks, performed as part of a scenario. A task is defined

more fully in section 3.6.1. For the HSFMs in the ACS, the scenario that is of interest is that

shown in figure D.3. This scenario can be split into the following tasks:

1. Select TF mode Begin - Pilot selecting TF Mode via control panel

End - TF Mode enabled

153

CHAPTER 6. AIRCRAFT AVIONICS CONTROL SYSTEM; A CASE STUDY

2. Select minimum height Begin - Pilot alters minimum height selection

End - Minimum height displayed on VDU

3. Determine aircraft height from sensors Begin - Determine height from first TF sensor

End - Flight director checked current height

4. Compute pilot TF cue Begin - System computing pilot TF cue

End - TF radar cue displayed on VDU

6.3.2.2 Step two: Investigate the effects of timing deviations

Timing deviations are applied to the tasks identified at step 1. The results of this are shown in

figure D.13.

6.3.2.3 Step three: Analyse alternative scenarios

Figure D.14 shows a representation of the normal scenario from figure D.3. Feasible alternative

scenarios are obtained through deviating the normal scenario. Alternative scenarios 1 and 2 in

figure D.14 represent the potentially hazardous alternative scenarios. Scenario 1 was obtained

by omitting the task ‘Determine current height’, scenario 2 was obtained by introducing tasks

concurrently with other tasks.

The way in which scenarios 1 and 2 may be hazardous is given below:

Scenario 1 The current height must be determined prior to computing a TF cue, otherwise

the TF cue may be invalid.

Scenario 2 If the pilot selects a new minimum height whilst a TF cue is being computed, the

TF cue must be updated first to ensure the current height is maintained. Priority must

be given to the compute TF cue task. N.B. This may have a knock-on effect on task

execution times.

6.3.2.4 Step four: Define timing requirements

Based upon the analysis performed in the previous steps, the nature of the timing requirements

needed for the various tasks is identified (i.e. deadlines, separations etc.). The actual value

of these requirements is determined using specific domain knowledge of the ACS. The values

specified below indicate typical values that could be expected for this system.

154

6.3. SAFETY ANALYSIS OF ACS

Select minimum height Deadline 300ms

Determine aircraft height Deadline 300ms

Max. separation 1000ms

Compute pilot TF cue Deadline 300ms

Max. separation 1000ms

Priority

These requirements upon the tasks will be decomposed to timing requirements on individual

interactions.

6.3.3 Value Analysis

6.3.3.1 Step one: Identify critical data

Firstly the critical data items for the system are identified. These can be obtained from the

fault tree in figure D.4. Detailed information on the nature of the data items can be obtained

from the system class diagrams. For the ACS, three critical data items are identified:

Minimum Height attribute, Flight Director

Height In Feet attribute, Navigator

TF Radar Cue attribute, Flight Director

6.3.3.2 Step two: Identify manipulators

All the manipulators for the critical data are stated in figure D.15. Identifying all the manipu-

lators for the critical data ensures that the set of constraints defined for the data takes account

of all the ways in which the data may possibly be corrupted.

6.3.3.3 Step three: Define constraints for critical data

The constraints on the critical data are used to check that the critical data is, and remains,

valid. A safe default value for the data is also defined.

Minimum Height Minimum Height = normalisation factor * analogue voltage input

and 0 < Minimum Height ≤ min height threshold

else Minimum Height = safe default

155

CHAPTER 6. AIRCRAFT AVIONICS CONTROL SYSTEM; A CASE STUDY

Height in Feet Height in Feet from valid sensors should not differ by >5%

and rate of change should not exceed ± rate of change threshold

else Height in Feet = safe default

TF Radar Cue -100 ≤ TF Radar Cue ≤ 100

else TF Radar Cue = safe default

6.4 Defining Safety Contracts for the System

The hazardous behaviour identified through the analysis performed in section 6.3 is used to spec-

ify Derived Safety Requirements (DSRs) on the system design in the form of safety contracts.

The safety contracts that are required for the ACS system are given below:

context Control Panel::Minimum Height() : Height in Feet

pre:

post:result=voltage input * 200

and

0<result<=1000

and

Time.now<=Time.now@pre+100

otherwise: result=500

context INS::Get Height() : Height in Feet

pre: previousGet Height.at+1000>=Time.now

otherwise: self.status=invalid

post:previousGet Height.result-result<=8000

and

Time.now<=Time.now@pre+50

otherwise: self.status=invalid

context RADALT::Get Height() : Height in Feet

pre: previousGet Height.at+1000>=Time.now

otherwise: self.status=invalid

post:previousGet Height.result-result<=8000

156

6.4. DEFINING SAFETY CONTRACTS FOR THE SYSTEM

and

Time.now<=Time.now@pre+50

otherwise: self.status=invalid

context DMG::Get Height() : Height in Feet

pre: previousGet Height.at+1000>=Time.now

otherwise: self.status=invalid

post:previousGet Height.result-result<=8000

and

Time.now<=Time.now@pre+50

otherwise: self.status=invalid

context Aircraft::Update Height(Height in Feet : Integer)

pre: Height in Feet>0

post:Time.now<=Time.now@pre+50

context Status Display::Display TF Radar Cue(TF Radar Cue)

pre: previousDisplay.at+1000>=Time.now

and

-100<=TF Radar Cue<=100

otherwise:TF Radar Cue=100

post:Time.now<=Time.now@pre+100

6.4.1 Identify Safety Obligations

The safety obligations for objects of each class can be identified as a set of pre and post

condition requirements. These obligations can be captured in tabular form as shown in figures

D.16 to D.21.3 Note that the real value of the tables is only seen where classes have multiple

obligations arising from contracts on different interactions (such as for the Navigator class).

However, for consistency and completeness, tables have been developed for all classes with any

safety obligations.
3Of the three sensor classes considered in the analysis, a table of obligations has only been produced here for

the INS. The safety obligations tables for RADALT and DMG will be identical to that for the INS.

157

CHAPTER 6. AIRCRAFT AVIONICS CONTROL SYSTEM; A CASE STUDY

6.5 Creating a Safety Argument for the ACS

The analysis performed as part of this case study can be used in the construction of a safety

case for the ACS software system. Figures D.22 to D.24 show the argument represented in GSN

using the patterns developed in chapter 5. Only the class argument for the Navigator class has

been developed here, however similar arguments for the other classes in the system design can

be produced using the same class argument module pattern.

6.6 Conclusions

In this chapter, a case study has been used to demonstrate how the analysis techniques developed

in this thesis can be successfully applied to a software system design. Once the fault tree had

been developed, the functional part of the analysis was straight-forward using the deviation

patterns for SHARD and statecharts analysis proposed in this thesis. Working systematically

through the basic events in the fault tree ensures that all the failures that could lead to the

hazard under investigation are analysed. The case study highlighted the importance of taking

a decompositional approach, to ensure the fault tree is developed effectively. This means that

the failures should first be considered at the level of the tasks involved in the scenario (eg.

minimum height selection incorrect), before working back through the sequence of interactions

in that task, starting with failure of the output of the final interaction. By constructing the

fault tree in this manner, it was found that the basic events can be extracted fairly simply.

The case study has demonstrated that performing the timing analysis at the level of tasks allows

a set of necessary requirements to be identified without having to perform analysis of individual

interactions, which would be much more complicated and time-consuming. This approach also

has the advantage of allowing the system designer to have some freedom in assigning timing

constraints to specific operations. The case study has highlighted the fact that defining values

for timing requirements requires a great deal of system knowledge. Therefore the analysis

performed is focussed on identifying the nature of the timing requirements, rather than their

value. Similarly for the value aspects of the analysis. The important benefit of the value analysis

in the ACS case study was seen to be ensuring that the critical data, and the manipulating

interactions were identified correctly. The system designer again has a crucial role in assigning

the actual constraints upon the data items.

One of the key results of the case study is that it demonstrated how effective the output of the

analysis is for defining safety contracts upon the software design. The process used was seen

158

6.6. CONCLUSIONS

to provide a systematic way of decomposing safety properties of the system down to individual

requirements upon the objects in the design. These contracts enable a set of safety obligations

to then be identified for each object in the system. By verifying that these obligations are met

it is possible to demonstrate that the software system is acceptably safe.4 The case study has

shown how a coherent safety argument can be developed using the analysis techniques, resulting

safety obligations and verification activities.

4The nature of the verification activities is outside the scope of this case study.

159

Chapter 7

Evaluation

7.1 Introduction

In chapter 2.1, the following proposition was stated:

Through the development of safety contracts, it is possible to establish a systematic,

thorough and scalable process to identify the properties required of software objects

to adequately address their contribution to system-level hazards.

In chapter 2 it was stated that the thesis would support the proposition through:

1. The development of a hazard-driven, product based safety analysis process for OO soft-

ware.

2. The integration of safety requirement elicitation as part of the process.

3. The development of safety argument patterns which supports the use of this approach.

This thesis has described the development of these three elements in much detail. In order to

evaluate the extent to which this thesis addresses the proposition, it is necessary to assess how

well the approach meets the criteria stated in the proposition. These are that the approach

should be:

• Systematic

• Thorough

• Scalable

160

7.2. SYSTEMATIC APPROACH

The thesis will also be evaluated against the problem statements presented in section 2.4.

7.2 Systematic Approach

A systematic approach can be described as one which is “Arranged or conducted according to

a system, plan, or organised method” [72]. This is crucial to the effectiveness of the approach

proposed in this thesis, as the intention is that the approach may be adopted by engineers

wishing to utilise an OO approach for a safety critical application. One of the weaknesses

identified in the existing literature relating to the area was seen to be the lack of such a

systematic method.

A number of techniques were identified for analysing aspects of OO designs, as well as others

which could be adapted for use in such analysis. Although providing useful output in isolation,

no guidance could be found in the literature on when the use a particular technique was required,

or indeed what the purpose or intended output of each technique was. As well as making it

difficult for a system analyst to identify which techniques might be appropriate, crucially, it is

also very difficult from existing literature to know which analysis is necessary in order to ensure

that complete information is used in deriving safety requirements. This of course will therefore

affect the level of rigour which is achieved.

Given this weakness in current literature, one aim of this thesis is to provide a coherent step-

by-step process which can be followed by safety engineers when analysing OO designs. For each

step of the process it should be clear which techniques are being used, which elements of the

design are being analysed, and the outcome which is generated. This thesis uses the concept

of safety contracts in order to provide the necessary structure. The analysis is focussed upon

safety contract construction, giving each aspect of the analysis a clear and defined purpose.

Each step of the analysis should provide information which is necessary in the construction of

safety contracts, any analysis which does not provide such information, although perhaps useful

for other reasons, is not considered necessary as part of the safety process. The safety contracts

also form the basis of the safety arguments which are produced. The approach proposed in this

thesis, through the exploitation of safety contracts, therefore provides the required integration

between the different parts of the process.

In this thesis, chapter 3 identified the steps of the process, and the techniques best suited to

that analysis. A small worked example of an SMS has been used to illustrate clearly how the

analysis at each step should be performed. In identifying the techniques required, the purpose

161

CHAPTER 7. EVALUATION

of each analysis step has first been determined, and the information which must be captured

as a result of the analysis is made clear. This ensures that all the information required for the

construction of safety requirements is taken forward to the requirements definition stage.

For example, section 3.8 identifies the purpose of the analysis step as identifying the potential

causes of interaction failures identified at the previous step. A SHARD-style analysis is identified

as the technique to be used, and a suggested output format which captures all the required

information is presented in figure 3.9. The SMS example is used to illustrate how the analysis

is performed. Each step of the process defined in chapter 3 follows this format, such that it is

possible for the reader to systematically work through each step.

The fact that each step in the process is clearly defined also brings other advantages. For

example it facilitates a review of the process, which could be undertaken by using a checklist-

based approach to identify which aspects of the analysis require further work. The fact that the

requirements of each analysis step are clearly defined also makes it easier to provide automation

for those parts of the analysis where such assistance may be found to be useful.

To illustrate how the approach may be applied in practice, the process is applied to a more

realistic case study in chapter 6. The case study is helpful for analysts who wish to reproduce

the analysis process for their own system design, as it demonstrates how the entire process can

be applied and how the resulting evidence is used in supporting a safety argument which can

be used as part of the certification of the system.

One of the key characteristics of the approach presented in this thesis is that each stage of the

analysis process is performed for a specific reason, that is to generate safety contracts which

can be used to provide evidence which is required to support the safety claims made about the

system. Chapter 5 provides safety argument patterns which can be instantiated for any OO

system to which the approach has been applied. This makes it straightforward, as illustrated

with the case study in section 6.5, to produce a compelling argument as to the safety of the OO

system.

Based on the evaluation above, it is possible to conclude that the approach developed in this

thesis is systematic in nature, in that it presents an organised, structured and coherent method

which could be reproduced successfully by others.

162

7.3. THOROUGH APPROACH

7.3 Thorough Approach

A thorough approach can be described as one which is “applied to or affecting every part or

detail” [72]. This implies a level of completeness of the process, which in this case means

that the process identifies and mitigate all possible contributions of the software to the system

level hazards. Although it is extremely difficult to prove completeness, the effectiveness of the

approach can be assessed by the level of thoroughness which is achieved. In order to be able

to make a claim about the safety of a system, the potential contribution of all aspects of the

system’s behaviour must be considered, and mitigated where necessary.

Considering the process described in this thesis, a hazard-driven approach is proposed. The

starting point for the analysis is the hazards which have been identified for the system, then

the causes of the hazards are identified. The advantage of such an approach is that it ensures

that the analysis which is performed is focussed upon those situations which will could lead to

an accident. Whereas the number of possible accidents and the number of potential causes of

the accidents may be very large, the number of hazards is generally a much smaller number.

By addressing the causes of the hazards it is therefore much easier to ensure that all potentially

unsafe behaviour is addressed.

One thing to note about the contribution of this thesis is that no new method is proposed for

identifying system level hazards. Since the thesis is primarily concerned with the contribution of

software to the system level hazards, the thesis does not concern itself with how such hazards are

identified. Since the systems in which OO software may be used are likely to be either existing

systems, or systems which are well understood, the hazards which are present for the system

are also likely to be well understood. There is therefore an explicit assumption that the list of

system hazards, which is used as the starting point of the process is complete and accurate. This

assumption is captured in the safety argument, as shown in the software system level argument

in Appendix A. Consequently if the hazard list were incomplete then this assumption would be

broken and the safety argument would not be valid.

Given that all the hazards associated with the system have been correctly identified, the contri-

bution that may be made by the software to each hazard must then be identified. This is done

by considering all types of failure of the software. The analysis in chapter 3 considers three

separate groups of failures, these are the function, timing and value. These failure groups are

based on a classification used by Pumfrey, based on the models of Bondavalli and Simoncini [6],

and Ezilchelvan and Shrivastava [16]. These failure classifications are obtained by considering

the behaviour of the software in terms of services which it provides. As such, this classification

163

CHAPTER 7. EVALUATION

can be considered to provide coverage of all the potential failure behaviour of the software.

For each failure type the behaviour which may contribute to each hazard is identified using a

combination of techniques, this includes the use of both deductive analyses such as FTA, and

inductive analyses such as SHARD. It should be noted that the analysis techniques proposed

in this thesis analyse different views of the software design. This identifies a limitation of

the approach which is that the completeness of the analysis is heavily dependent upon the

expressiveness and representativeness of the view used for the analysis. If interactions are

not included in the dynamic view of the system for example, then their potential impact on

hazardous behaviour could not be fully analysed. It was identified in section 3.5.4.2 that this is

also an important issue when considering the completeness of statechart analysis. It is perhaps

also worth noting at this point that providing a rigorous evaluation of the thoroughness of a

safety analysis methodology is very difficult. Even if the approach proposed in this thesis were

applied to a real system which is then commissioned, it would only be through the analysis

of accidents and incidents which occur that any feedback on the rigour of the approach could

be obtained. Given the exceptionally low accident rates achieved by modern safety-critical

systems, it would be impossible to obtain results which are statistically significant.

Despite this, the approach presented in this thesis is based on sound principles which guarantee

a level of thoroughness necessary to form a convincing safety argument.

7.4 Scalability

A key consideration in the effectiveness of the approach is its ability to be taken and applied to

large scale software systems. Although a case study was used in chapter 6 to demonstrate the

feasibility of application to a larger example system, the question still remains as to how well

the process can be applied as the size and complexity of the software system increases.

A key thing to note in answer to this problem is that the effort required to carry out the process

is as much linked to the number of hazards that have been identified for a particular system,

as it is to the size of the software. It is, for example, quite possible that a fairly small software

design used in the context of a system with a large number of hazards would require similar

effort to perform the analysis as a large and complicated piece of software being used within a

system with only a few hazards.

It should also be noted that since the process is hazard-driven, it is only those parts of the

design which are identified as potentially contributing to a hazard which require extensive

164

7.4. SCALABILITY

investigation. The effect of this is that just because a software system is very large, does not

imply that a large amount of analysis is necessarily required. In many cases large parts of

the software may not be involved in any safety critical activities. The process developed in

this thesis enables the analysis to be focussed upon only those areas which may contribute to

hazardous behaviour. The amount of effort required in the analysis will therefore increase in

proportion to the number of hazards present. The process defined, however, allows each hazard

to be treated separately, and therefore it is possible to address a system with a large number

of hazards through a proportional increase in the size of the analysis team. The amount of

analysis effort required for each hazard is then dependant upon the number of potential failures

identified in the design relating to that hazard. Although this is likely to increase with the

complexity of the design, again it is only those aspects of the design relating to that particular

hazard which need to be considered, and not the entire system.

The discussion above explains how complex software does not necessarily lead to a huge increase

in the amount of effort required to follow the thesis approach. However, should large amounts of

analysis be required it is contended that this remains feasible. An increase in design complexity

may lead to an increase in the amount of analysis required, however the complexity of that

analysis should not increase. For example, the number of interactions requiring investigation

may become large, but the method used for each interaction does not become more complex.

The systematic nature of the approach enables large scale analysis to be conducted in a thorough

way.

The one aspect of the process where the complexity of the design will affect the complexity

of the analysis performed is the state chart analysis. It can be seen through the very simple

examples provided in the thesis that this analysis can start to become intractable quite quickly.

It is for this reason that tool support has been used to automate this aspect of the analysis.

Using the toolset discussed in section 3.5.4.3 it is possible to perform the described analysis of

more complex statecharts.

Another property of the proposed approach which aids its scalability arises from the ability to be

able to use safety contracts to identify the safety obligations on individual classes of objects, as

described in chapter 4. What this means is that the verification effort required to demonstrate

the safety obligations are met by the software can be easily split up amongst a number of people.

Since the obligations are so clearly broken down, it is possible for the evidence for one part of

the design to be generated independently of other parts. In addition, the modular structure of

the safety argument allows the argument for each class to be developed as a separate module,

165

CHAPTER 7. EVALUATION

this again facilities the partitioning of effort when developing large systems.

Producing figures (even realistic estimates) for the effort required to apply the process described

in this thesis to a software system is impossible. In any case no corresponding figures for other

approaches are available which can be used in estimating the relative feasibility of the approach

for large systems. The discussion above described features of the approach which enable the

author to have sufficient confidence that the approach could be applied to software systems of

the complexity that may be encountered in safety-critical systems.

7.5 Evaluation Against Problem Statements

In chapter 2, based on the survey of relevant literature, a number of problems were identified

which the thesis should address. In this section the approach developed in this thesis is evaluated

against each of these problem statements.

Problem Statement 1 Ensuring the safety of an OO software system requires that the con-

tribution of the software to system level hazards be identified and mitigated.

This thesis has developed a hazard-driven approach which identifies hazardous failure modes for

the software system. The thesis has shown how the ways in which the software might fail, and

lead to these failure modes, can be identified, and how such failures may be prevented through

the use of safety contracts.

Problem Statement 2 There exist a number of techniques for analysing OO software designs,

however, there is a lack of a coherent process.

This thesis has presented a process developed based on a number of analysis requirements

which are necessary to meet one overall aim, that of identifying behaviour of the software that

may contribute to a system hazard. The techniques used are identified based on their ability

to generate particular desired results as part of achieving this aim. In this way this thesis

demonstrates how the techniques may be used in combination in order to ensure the safety of

the developed system.

Problem Statement 3 As part of any such process, it is necessary that safety requirements

may be generated in a way that supports the OO paradigm.

It would be possible to specify the DSRs arising from the analysis in any number of ways.

Chapter 4 identified contracts as an ideal way of capturing requirements for OO systems, since

166

7.6. CONCLUSIONS

they provide excellent support for key features of OO systems such as inheritance. The analysis

process described in this thesis has been specifically developed to facilitate the representation

of DSRs in the form of safety contracts between objects.

Problem Statement 4 There exists little guidance on how a defensible safety argument may

be produced for an OO system based on the use of a combination of techniques.

This thesis has demonstrated how it is possible to structure a defensible safety argument for

an OO software system. This does not mean that the method proposed in this thesis provides

a proof of the safety of the resulting system, nor was it the intention of this thesis to do so.

As with existing approaches to software safety, this method proposes an argument structure to

be developed which argues only the acceptability of the software. Acceptability is a judgement

which is made based upon the rigour of the evidence provided about the safety of the system,

and the level of risk associated with the system hazards. The safety argument patterns which

have been developed identify how the evidence generated throughout the process described in

the thesis can be used to support the safety argument claims.

Problem Statement 5 It is essential that safety process can be successfully integrated with

existing development processes.

In chapter 2, it was identified as being crucial to the success of a safety process that it is

integrated with the development process, rather than being seen as a separate activity. In

order to achieve this, the process must be able to be integrated with the existing development

processes used for the software. The approach developed in this thesis has achieved this aim in

two ways.

Firstly, through focusing the analysis on design artifacts, rather than on particular steps in the

design process. This enables the safety process to fit within an existing development process

rather than imposing any particular process. Secondly, the approach is not specifically depen-

dent upon any particular design methodology. Although the example design artifacts used in

the thesis are generally in UML (being by far the most common notation), the use of UML is

not required, and the same approach is applicable whatever notation is used.

7.6 Conclusions

The thesis proposition stated that it was possible through the use of safety contracts to establish

an effective process to identify the properties required of software objects to adequately address

167

CHAPTER 7. EVALUATION

their contribution to system-level hazards. In this chapter the extent to which this thesis

addresses the proposition has been evaluated. Firstly, the approach was shown to satisfy the

criteria for an effective process which were set out in the thesis proposition. It was also shown

how the thesis addressed the problem statements identified from the literature survey. This

suggests that the approach developed in this thesis is an effective one, however it is only through

the extended practical application of the approach to real projects that a full evaluation of the

approach’s effectiveness can be made.

168

Chapter 8

Conclusions

8.1 Concluding Remarks

This thesis has developed a systematic, thorough and scalable process to identify the properties

required of software objects to adequately address their contribution to system-level hazards.

Specifically, the contribution of the work presented in this thesis lies in the following three areas:

• Definition of a coherent hazard-driven process for the rigorous analysis of OO software

designs.

• Use of the safety contract concept to elicit safety requirements in a manner which supports

OO features.

• Development of safety argument patterns for making defensible claims about the safety

of the resulting software system.

In the remaining sections, some conclusions are drawn from each of these areas of research, and

finally in section 8.2 some areas worthy of further work are proposed.

8.1.1 Conclusions on the analysis process contribution

The key contribution made by the safety analysis process described in chapter 3 is to provide a

structured approach to the analysis of OO software designs. The process largely makes use of

existing analysis techniques, however crucially provides a framework in which each technique

makes a specific and clear contribution to the overall objectives of the process. As well as

identifying potential contributions to hazardous failure modes, these objectives also include the

169

CHAPTER 8. CONCLUSIONS

derivation of safety requirements in safety contract form. Through focussing on interactions

between objects, the analysis process facilitates the development of safety contracts.

The analysis process has been argued to be systematic, thorough and scalable in chapter 7,

and its applicability to an industrially sized design has been demonstrated in the case study

presented in chapter 6.

8.1.2 Conclusions on the use of safety contracts

The use of safety contracts provides an important contribution in a number of ways. Firstly the

use of contracts has been shown to help support maintainability, inheritance and reuse within

OO designs. The use of safety contracts therefore helps to ensure that the safety activities do

not overly detract from the potential benefits of using an OO approach.

Just as importantly, however, safety contracts provide a link between the analysis process and

the safety argument. The safety argument structure proposed in chapter 5 is structured in a

modular fashion, with separate modules of argument for the interactions which occur between

classes, and each of the classes themselves. This structure brings many advantages, which were

discussed in detail in chapter 5. It is the use of safety contracts which allow such a modular

argument structure to be used, by enabling the claims to be modularised in this manner.

Through developing the safety contracts, the analysis process therefore identifies the evidence

which is required by the safety argument.

It has been shown how the properties required for safety contracts can be represented using

OCL notation, which provides a formal and side-effect free expression language. Using OCL

the safety contracts can be integrated as part of the design, facilitating their implementation.

8.1.3 Conclusions on the safety argument patterns

The contribution provided by the development of the safety argument patterns is that they show

explicitly how a defensible argument for an OO software system may be structured. No such

guidance exists elsewhere. The case study in chapter 6 illustrated how a safety argument can

be constructed through appealing to specific evidence generated through following the process

described in this thesis.

As discussed previously, the modular structure of the argument has been chosen such that it

may minimise the effect of changes to the design, and maximises the amount of argument that

may be reused.

170

8.2. FURTHER WORK AREAS

8.2 Further work areas

Whilst carrying out the research for this thesis a number of areas were identified which are

worthy of further investigation. The following sections briefly introduce some of these areas of

research.

8.2.1 Verification Evidence

One important aspect of demonstrating the safety of an OO software system which has not

been investigated as part of this thesis is verification methods. The literature survey in chapter

2 explored some of the available verification techniques in order to ensure the process was

amendable to verification. It was however outside of the scope of this thesis to determine the

most effective verification approach. One beneficial area of future work would therefore be to

investigate different verification strategies for OO software to determine which strategy was the

most effective at providing the evidence required to support the safety argument. This work

could include the development of an argument pattern relating to verification which could be

incorporated as part of the Class Argument Module Pattern.

8.2.2 Safety Contract Enforcement

It is ultimately through demonstrating that the obligations in the safety contracts are met by the

implemented software that the software system is shown to be acceptably safe. One interesting

area of future work would be to investigate ways in which the defined safety contracts could

be enforced. This could potentially be achieved, for example, through run-time checks made

by the software that the contractual obligations are met each time an operation call is made.

Another approach may be to enforce the contracts during implementation. This would be

particularly useful in situations where code was being automatically generated from the design.

By integrating the contractual obligations into the design, it may then be possible to guarantee

that these constraints are met by the implementation. There are many potential problems with

both of these approaches, however they would be interesting avenues of further research.

8.2.3 System Implementation

This thesis has described a process for developing safe OO systems. A case study has been used

to demonstrate how this process can be used to derive safety requirements in the form of safety

171

CHAPTER 8. CONCLUSIONS

contracts upon the design of the system, and how these contracts can then be used in creating a

safety argument for the resulting software. One area that was not considered as part of this case

study was the implementation of the developed software design. Implementation was explicitly

outside of the scope of the thesis, however there are many very interesting issues (particularly

relating to object-oriented programming languages) which are worthy of further investigation.

There is much existing research in the area of OO programming, however there is almost

certainly scope for investigating further the challenges associated with the implementation of

designs containing safety contracts.

8.3 Overall conclusions

This thesis did not set out to champion the use of the OO paradigm for safety critical systems,

or to suggest that its use could in any way lead to safer systems. The starting point was very

much with an assumption that the desire to use an OO approach already existed. Given this, the

thesis set out to identify what problems presented themselves when attempting to use OO for

safety critical systems. A number of problems were identified which this thesis has addressed.

In doing so, the author hopes that the work presented in this thesis may enable those otherwise

deterred from pursuing an OO approach when developing safety critical systems to do so.

172

Appendix A

Software System Argument

Module Pattern

173

APPENDIX A. SOFTWARE SYSTEM ARGUMENT MODULE PATTERN

Software System Level Argument Module
Author Richard Hawkins
Created 21/03/06 Last Modified 21/03/06

Intent The intent of this pattern is to create top level arguments for an OO software system

Also Known
As

Motivation It has been shown that a modular argument structure is advantageous for OO
software. This argument module provides the top level argument for the software
system as a whole, which appeals to the arguments made in the modules for the
interactions and the individual classes.

Structure

174

Structure Overall Modular structure

Patterns are also available for the Interactions Argument Module and the Class {x}
Argument Module.

Participants G1_Sys The top level goal is to ensure the software sub-system is acceptably
safe by controlling the system hazards.

 C1_Sys This context should be instantiated to refer to a description of the
overall system of which the software is a part.

 C5_Sys This context should define the criteria to be used for “acceptably safe”.

 St1_Sys The strategy to be taken is to make a claim about each of the identified
hazards.

 C6_Sys The context for the strategy is the hazard log which contains details of
all the identified system hazards.

 A2_Sys There is an assumption that all the hazards for the system have been
correctly identified in the hazard log

 G2_Sys The goal is to show that the way the software behaves does not
contribute to any of the identified system hazards, or that it’s
contribution is acceptable.

 A1_Sys The argument only applies to an OO software system.

 C3_Sys The context is the system level hazards which are identified in the
hazard log.

 C2_Sys This context should be instantiated to refer to a description of the
software sub-system. This may for example be a software design
description document.

 C4_Sys The term Hazardous Software Failure Mode (HSFM) is used to refer to
the contributions that the software makes to system level hazards due to
its failure.

 St2_Sys The strategy adopted to show that the software doesn’t contribute to
hazards is to identify a complete set of HSFMs relating to each hazard,
and then show that the HSFMs are prevented from occurring.

 G3_Sys This goal claims that the process which is used to identify the HSFMs
relating to each system hazard is sufficiently rigorous to ensure that all

175

APPENDIX A. SOFTWARE SYSTEM ARGUMENT MODULE PATTERN

HSFMs are correctly identified.
 G4_Sys This claims that none of the HSFMs which have been identified for the

software cannot occur, or if they can, their effects are suitably mitigated.
 St3_Sys In order to show that the HSFMs do not occur, the strategy adopted is to

argue about the safety the safety of the behaviour of the objects of each
of the classes in the software design, and of the interactions which occur
between those objects. It is also necessary to show that there are no
unintended interactions between the objects.

 G7_Sys This goal claims that unintended interactions between objects will not
occur.

 G1_Int This is a claim about the safety of the interactions between the objects
and forms part of the Interactions Argument Module.

 G1_Class This is a claim about the contribution of the individual classes to the
HSFMs. One such goal is required for each of the classes in the
software design. Each of the goals forms part of a separate Class
Argument Module.

Collaborations This pattern provides one module of argument in a modular safety argument. The
argument requires support from a number of other argument modules (Interactions
Argument Module and one Class Argument Module for each class in the software
design).

Applicability This pattern is only applicable to OO software systems which have been developed
using a safety contract approach. Such an approach is required to make the
necessary claims about the objects and their interactions.

Consequences After instantiating the pattern , a number of unresolved goals will remain:
• G3_Sys – To support this claim evidence about the process which is used to

identify the HSFMs must be presented.
• G7_Sys – Verification evidence must be provided to support the claim that only

interactions considered during the analysis can occur between the objects in the
system. This evidence could for example be generated through testing.

Implementation Possible Pitfalls
• Attempting to apply the pattern to a software system which is not OO.
• Attempting to apply the pattern without sufficient design information (static class

structure) available.
• Having incomplete or out of date details on system hazards or HSFMs.

Examples See Software system level argument for the ACS case study.
Known Uses See example above
Related
Patterns

Interactions Argument Module Pattern and the Class Argument Module Pattern both
provide support for this pattern.

176

Appendix B

Interactions Argument Module

Pattern

177

APPENDIX B. INTERACTIONS ARGUMENT MODULE PATTERN

Interactions Argument Module
Author Richard Hawkins
Created 21/03/06 Last Modified 21/03/06

Intent The intent of this pattern is to create an argument regarding the safety of the

interactions between objects in an OO software system.

Also Known
As

Motivation It has been shown that a modular argument structure is advantageous for OO
software. This argument module provides the argument that the interactions are
acceptably safe.

Structure

178

Structure Overall Modular structure

Patterns are also available for the Software System Level Argument Module and the
Class {x} Argument Module.

Participants G1_Int The top level goal is to ensure the interactions of classes of objects are
acceptably safe.

 G2_Int This goal claims that the safety contracts that have been defined upon
the interactions have all been correctly identified.

 G2_Class This is a claim that each class satisfies the safety obligations which are
derived from the safety contracts. This goal is supported for each class
in a separate Class Argument Module.

 St1_Int The strategy for ensuring a complete set of safety contracts is defined is
to consider each of the HSFMs.

 G3_Sys The strategy relies on the fact that all the HSFMs have been identified.
This context is provided by a claim made in the Software System Level
Argument Module.

 G4_Int This is a claim that for each of the HSFMs the relevant interactions
which could lead to that HSFM have been identified, and the constraints
necessary for preventing the occurrence of the HSFM have been
identified for each of the identified interactions.

 G5_Int This goal claims that all the interactions which could lead to the HSFM
have been correctly identified.

 C3_Int This context should be instantiated with the interactions identified as
potentially contributing to the HSFM.

 A1_Int There is an assumption that complete information on the interactions
which occur between objects is contained within the software design.

 G6_Int This is a claim that for each of the interactions which could lead to a
HSFM, DSRs have been identified which are sufficient to prevent the
occurrence of the HSFM.

 St3_Int The strategy adopted is to consider each of the identified interactions in
turn.

 G7_Int This is a claim that DSRs, in the form of a safety contract, have been
defined for each interaction which ensure that the contribution of that
interaction to the HSFM is acceptable.

179

APPENDIX B. INTERACTIONS ARGUMENT MODULE PATTERN

 C4_Int This context should be instantiated with the safety contract defined for
each interaction.

 S1_Int This solution provides evidence gained from fault tree based analysis in
support of goals G5_Int and G7_Int.

 S2_Int This solution provides evidence gained from interactions diagram
timing analysis in support of goals G5_Int and G7_Int.

 S3_Int This solution can be used to provide evidence gained from statechart
analysis in support of goals G7_Int. This solution is optional.

 S4_Int This solution provides evidence gained from SHARD-stylet analysis in
support of goals G7_Int.

Collaborations • G2_Int and G2_Class work together. One claims that the contracts are correct, the
other claims that the contracts are satisfied.

• G5_Int and G6_Int work together. One claims that all the interactions which could
lead to a HSFM have been correctly identified, the other claims that DSRs have
been identified for each of those interactions in order to prevent the occurrence of
the HSFM.

• This pattern provides one module of argument in a modular safety argument. The
argument requires support from a number of other argument modules (Software
System Level Argument Module and one Class Argument Module for each class
in the software design).

Applicability This pattern is only applicable to OO software systems which have been developed
using a safety contract approach, and the analysis process described in this thesis.

Consequences
Implementation Possible Pitfalls

• Attempting to apply the pattern to a software system which is not OO.
• Attempting to apply the pattern without complete design information of the

interactions (e.g. interaction diagrams) available.
• Having incomplete or out of date details on system hazards or HSFMs.
• Not using the analysis process described in this thesis.

Examples See Interactions argument for the ACS case study.
Known Uses See example above
Related
Patterns

Software System Level Argument Module Pattern and the Class Argument Module
Pattern both provide support for this pattern.

180

Appendix C

Class Argument Module Pattern

181

APPENDIX C. CLASS ARGUMENT MODULE PATTERN

Class Argument Module
Author Richard Hawkins
Created 21/03/06 Last Modified 21/03/06

Intent The intent of this pattern is to create an argument regarding the safety of a class in

an OO software system.

Also Known
As

Motivation It has been shown that a modular argument structure is advantageous for OO
software. This argument module provides the argument that a classes is acceptably
safe. An argument should be created for each class in the software design for which
safety obligations are identified.

Structure

182

Structure Overall Modular structure

Patterns are also available for the Software System Level Argument Module and the
Interactions Argument Module.

Participants G1_Class The top level goal is to ensure that the contribution of the class to any
of the HSFMs is acceptable.

 C1_Class This context should be instantiated with the HSFMs to which objects of
the class may contribute.

 St2_Class The strategy taken is to make a claim about each of the instances
(objects) of the class.

 G6_Class The goal is to ensure that the contribution of the object to any of the
HSFMs is acceptable.

 St1_Class The strategy adopted is to show that the safety obligations arising upon
the object from the safety contracts are satisfied, and that the object
does not introduce any additional hazardous failures.

 G2_Class This goal claims that the safety obligations arising upon the object from
the safety contracts have been satisfied.

 C4_Int This context identifies the safety contracts which have been defined
upon the interactions. This context is provided by the Interactions
Argument Module.

 G3_Class This goal claims that the object does not introduce any additional
hazardous failures.

 G4_Class This goal claims that the safety obligations upon the object have been
correctly identified from the safety contracts.

 C2_Class This context identifies all the interactions in which the object
participates either as a client or supplier.

 G5_Class This goal claims that the object has satisfied all of its safety obligations.

 C3_Class This context should be instantiated with the safety obligations identified
for the object.

 S1_Class This solution provides verification evidence, for example from testing
or static analysis.

Collaborations • G4_Class and G5_Class work together. One claims that the safety obligations for
the object have been correctly identified, the other claims that these safety
obligations have been satisfied.

183

APPENDIX C. CLASS ARGUMENT MODULE PATTERN

• This pattern provides one module of argument in a modular safety argument. The
argument requires support from a number of other argument modules (Software
System Level Argument Module and Interactions Argument Module).

Applicability This pattern is only applicable to OO software systems which have been developed
using a safety contract approach.

Consequences After instantiating the pattern, the following unresolved goal remains:
• G3_Class – To support this claim evidence must be provided about the absence of

other failures such as subtle value failures.
Implementation Possible Pitfalls

• Attempting to apply the pattern to a software system which is not OO.
• Attempting to apply the pattern without having defined safety contracts upon

interactions.
• Having incomplete or out of date details on system hazards or HSFMs.

Examples See Navigator class argument for the ACS case study.
Known Uses See example above
Related
Patterns

Software System Level Argument Module Pattern and the Interactions Argument
Module Pattern both provide support for this pattern.

184

Appendix D

ACS Case Study Reference

Material

Mission Management

Navigation

Avionics Control System

Radio Navigation Sensor Navigation Sensor

Navigation Sensors BUS

Control BUS

Autopilot

Sensor data

Autopilot
commands

D
is

pl
ay

 B
us

VDU

Control Panel

Cockpit

Display data

Control Panel
Signals

Pilot

Cues and
Status

Commands

Figure D.1: System architecture diagram for the ACS

185

APPENDIX D. ACS CASE STUDY REFERENCE MATERIAL

<<Safety Related>>
UC11 Maintain Minimum

Height

Pilot

Autopilot

MMR

INS

RADALT

DMG

*

The pilot uses the control panel to set the minimum safe height and enable the
TF mode. The system monitors the aircraft height (using the sensor
configuration for TF navigation mode) and sends a TF radar cue to the pilot
via the VDU. In addition the autopilot vertical command is updated and sent
to the autopilot.

Pre Condition:
None

Flow:
•The pilot enables the TF mode via the control panel
•The pilot selects the minimum height via the control panel
•The minimum height is displayed on the VDU for the pilot
•The system monitors the navigation sensors in order to determine the aircraft
height
•The system computes the pilot TF cue
•The TF radar cue is displayed on the VDU for the pilot
•The system computes the autopilot TF commands
•The autopilot vertical command is updated and sent to the autopilot

Figure D.2: Use case diagram: Maintain minimum height

186

D
M

G
R

A
D

A
LT

IN
S

N
avigator

Flight D
irector

Flight P
lans

M
M

R
A

ircraft
A

utopilot
S

tatus_D
isplay

C
ontrol_P

anel
V

D
U

C
ontrol

panel
A

utopilot
Pilot

Select TF m
ode

R
ead TF m

ode

TF_M
ode_Enabled(True)

Select m
inim

um
 height

R
ead m

inim
um

 height

M
inim

um
_H

eight

D
isplay_M

inim
um

_H
eight

D
isplay m

inim
um

 height

G
et_H

eight

G
et_Position

G
round_Level

G
et_H

eight

U
pdate_H

eight

H
eight

D
isplay_TF_R

adar_C
ue

D
isplay TF radar cue

O
utput vertical com

m
and

1. Pilot selects TF m
ode via

the control panel
1.1 P

ilot selects TF m
ode

1.2 S
ystem

 reads TF m
ode sw

itch

1.3 System
 decodes TF m

ode
sw

itch
2. Pilot selects m

inim
um

 height
via the control panel

2.1 P
ilot alters m

inim
um

 height
selection

2.2 System
 reads m

inim
um

 height
selection

2.3 System
 decodes m

inim
um

height selection

2.4 The m
inim

um
 height is

displayed on the V
D

U
 for the pilot

2.5 M
inim

um
 height sent to V

D
U

3. System
 m

onitors the navigation
sensors to determ

ine aircraft’s height

3.1 G
et height from

 IN
S

3.2 G
et position from

 IN
S

3.3 G
et ground elevation from

 D
M

G

3.4 G
et height from

 R
A

D
ALT

3.5 D
eterm

ine aircraft height A
G

L

3.6 C
heck aircraft’s current height

4. System
 com

putes pilot TF cue and
autopilot vertical com

m
and

4.1 S
ystem

 com
putes the pilot TF

cue

4.2 TF radar cue is displayed on the
V

D
U

 for the pilot

4.3 TF radar cue is sent to VD
U

4.3 Vertical com
m

and is updated
and sent to autopilot

Figure D.3: Sequence diagram: Maintain minimum height - TF enabled

187

APPENDIX D. ACS CASE STUDY REFERENCE MATERIAL

ACS fails to warn
pilot when

aircraft altitude falls
below minimum safe

altitude

System fails to
warn pilot

Minimum
height

selection
incorrect

Current height
updated
incorrect

TF cue to
pilot incorrect

Failure of
Flight_Director

to decode
minimum height

Incorrect
minimum height

value received by
Flight_Director

Failure of
Minimum_Height()

Minimum_Height
value held is

incorrect

Failure of Read
minimum height

signal

Pilot selects
wrong minimum
height value via

control panel

Failure of
Navigator to

calculate current
height correctly

Incorrect data
received from

sensors

Failure of
Update_Height()

Failure of
Sensor

interactions

Failure of
Sensors

Failure of
Flight_Director to
calculate radar
cue correctly

Radar cue
displayed to pilot

incorrectly

Failure of
Display_TF_Radar_Cue()

to display

Failure of Display
TF radar cue
signal to VDU

TF Mode
enabled

Aircraft below
minimum safe

height

Figure D.4: Fault tree for ACS fails to warn pilot when aircraft altitude falls below minimum
safe altitude

NoN/AN/A1.3 Min_Height () call made
when not required

COMMISION

YesHeight_In_Feet value incorrectFailure of supplier1.4 Returned Height_In_Feet
value is incorrect

VALUE

YesHeight_In_Feet value not updatedFailure of supplier to return a
value

1.2 Height_In_Feet value not
returned

YesHeight_In_Feet value not updatedFailure of client to send call1.1 Min_Height () call not madeOMISSION

Contribute
to HSFM?

EffectCauseDeviation

Interaction 1 – Min_Height () : Height_In_Feet

Client – Flight Director

Supplier – Control Panel

Figure D.5: SHARD analysis of interaction 1

188

YesResults in wrong Minimum
height value (however must be
valid spurious signal)

Not known2.2 Spurious signal sent by
client

COMMISION

YesMinimum height value incorrectFailure of Control panel H/W2.3 Signal sent represents
incorrect minimum height

VALUE

YesMinimum height value not
obtained

Failure of communications,
or Control panel H/W

2.1 No signal is sentOMISSION

Contribute
to HSFM?

EffectCauseDeviation

Interaction 2 – Read minimum height signal

Client – Control Panel H/W

Supplier – Control Panel S/W

Figure D.6: SHARD analysis of interaction 2

NoN/AN/A3.3 Get_x () call made when
not required

COMMISION

YesSensor value incorrectFailure of supplier3.4 Returned sensor value is
incorrect

VALUE

YesCurrent value not updatedFailure of supplier to return a
value

3.2 Sensor value not returned

YesCurrent value not updatedFailure of client to make call3.1 Get_x () call not madeOMISSION

Contribute
to HSFM?

EffectCauseDeviation

Interaction 3 – Sensor Interactions : Get_Height() : Height_In_Feet – INS, RADALT

Get_Position() : Position – INS

Ground_Level() : Ground_Level - DMG

Client – Navigator

Supplier – Listed above

Figure D.7: SHARD analysis of interaction 3

NoN/AN/A4.3 Update_Height () call made
when not required

COMMISION

YesHeight value updated incorrectlyFailure of client4.4 Parameter incorrectVALUE

YesUnknownFailure of client to supply
parameter

4.2 Height_In_Feet parameter
missing

YesHeight not updatedFailure of client to make call4.1 Update_Height () call not
made

OMISSION

Contribute
to HSFM?

EffectCauseDeviation

Interaction 4 – Update_Height (in Height_In_Feet) : void

Client – Navigator

Supplier – Aircraft

Figure D.8: SHARD analysis of interaction 4

189

APPENDIX D. ACS CASE STUDY REFERENCE MATERIAL

NoN/AN/A5.3 TF_Radar_Cue() call made
when not required

COMMISION

YesRadar cue displayed incorrectlyFailure of client5.4 Parameter incorrectVALUE

YesUnknownFailure of client to provide
parameter

5.2 TF_Radar_Cue parameter
missing

YesRadar cue not displayedFailure of client to make call5.1 Display_TF_Radar_Cue()
call not made

OMISSION

Contribute
to HSFM?

EffectCauseDeviation

Interaction 5 – Display_TF-Radar_Cue (in TF_Radar_Cue) : void

Client – Flight director

Supplier – Status Display

Figure D.9: SHARD analysis of interaction 5

YesResults in incorrect radar cue
being displayed (however must
be valid spurious signal)

Not known6.2 Spurious signal sent by
client

COMMISION

YesRadar cue incorrectFailure of client6.3 Signal sent represents
incorrect radar cue

VALUE

YesRadar cue not displayed to pilotFailure of communications,
or client S/W

6.1 No signal is sentOMISSION

Contribute
to HSFM?

EffectCauseDeviation

Interaction 6 – Display TF radar cue signal

Client – Status Display

Supplier – VDU

Figure D.10: SHARD analysis of interaction 6

190

Configuring
nav. mode

Initialising
nav. mode

Navigation
mode

selected
Reading
sensors

Updating
height

initialise

[initialised] /
display nav mode

configure

[t=Time] / get
sensor readings

All sensors read

/ t=0

Figure D.11: Statechart model for the Navigator class

191

APPENDIX D. ACS CASE STUDY REFERENCE MATERIAL

Navigation Mode Selected Reading Sensors

A. [t=Time] /
Get sensor readings

A3. [t != Time] /
Get sensor readings

A4. [t=Time]

A5. [t=Time] /
Update height

A1. [t=Time]

Updating Height

B.
 [A

ll
se

ns
or

s
re

ad
] /

U
pd

at
e

he
ig

ht

B
3.

 [S
en

so
rs

 n
ot

 re
ad

] /
U

pd
at

e
he

ig
ht

B3
. [

Al
l s

en
so

rs
 re

ad
]

B
. [

A
ll

se
ns

or
s

re
ad

] /
G

et
 s

en
so

r r
ea

di
ng

s

B1. [All sensors read]

C. [Height updated] /

t=0
C3. [Height not updated] /

t=0
C4. [Height updated]

C5. [Height updated] /

Get sensor readings

C1. [Height updated]

Figure D.12: Mutated statechart for the Navigator class

192

Not hazardous – It is desirable that the current height is updated as quickly as possibleQuick3

Hazardous – A delay in determining current height will delay TF cue to pilotSlow

Not hazardous – It is desirable that there is no delay in obtaining current aircraft heightEarly

Hazardous – The current height must be updated regularly to ensure TF cue remains accurateLate

Not hazardous – It is desirable that the TF cue is displayed as quickly as possibleQuick4

Hazardous – A delay in the TF cue to the pilot is hazardousSlow

Not hazardous – It is desirable that there is no delay in calculating a new radar cueEarly

Not hazardous – The minimum height should be processed as quickly as possibleQuick2

Hazardous – Delay in changing the minimum height could hazardousSlow

Not hazardous – No requirement to wait before altering the minimum heightEarly

No applicable deviations. If TF mode is not enabled, hazard does not exist1

Not hazardous – Minimum height will only be altered as required by the pilotLate

Hazardous – The TF cue must be updated regularlyLate

EffectDeviationTask

Figure D.13: Applying timing deviations to tasks

Select minimum
height

Determine
current height

Select minimum
height

Compute TF
cue

Determine
current height

Compute TF
cue

Select minimum
height

Determine
current height

Select minimum
height

Normal Scenario Alternative
Scenario 1

Alternative
Scenario 2

Compute TF
cue

Compute TF
cue

Figure D.14: Alternative scenarios

193

APPENDIX D. ACS CASE STUDY REFERENCE MATERIAL

Height_In_FeetTransformerUpdate_Height()

TransformerCalculate_TF_Radar_Cue()

Height_In_FeetTransformerGet_Height()

TF_Radar_Cue

Minimum_Height

Parameter

TransformerDisplay_TF_Radar_Cue()

TransformerDisplay_Minimum_Height()

Minimum_HeightTransformerMinimum_Height()

ReturnDeviationManipulator

Figure D.15: Manipulators of critical data

Param1=100previousDisplay.at+1000>=Time.now
and
Param1=((Flight_Director.Minimum_Hei
ght-
Flight_Director.Height_in_Feet)/Flight_D
irector.Minimum_Height)*100
and
-100<=param1<=100

Display_TF_Radar_Cue
(TF_Radar_Cue)

Pilot will alter
minimum height
when necessary

NoneMinimum_Height()

Client
Interactions

None

AssumptionsOtherwiseSafety ObligationsSupplier
Interactions

Class: Flight Director

System: Avionics Control System

Figure D.16: Safety obligations for the Flight Director class

Param1>0Update_Height(Height
_in_Feet)

Self.status=invalidpreviousGet_Height.at+1000>=Time.nowGet_Height()

Client
Interactions

None

AssumptionsOtherwiseSafety ObligationsSupplier
Interactions

Class: Navigator

System: Avionics Control System

Figure D.17: Safety obligations for the Flight Director class

194

None

Client
Interactions

Self.status=invalidpreviousGet_Height.result-result<=8000
and
Time.now<=Time.now@pre+50

Get_Height()

AssumptionsOtherwiseSafety ObligationsSupplier
Interactions

Class: INS

System: Avionics Control System

Figure D.18: Safety obligations for the Navigator class

None

Client
Interactions

Result=500Result=voltage_input*200
and
0<result<=1000
and
Time.now<=Time.now@pre+100

Minimum_Height()

AssumptionsOtherwiseSafety ObligationsSupplier
Interactions

Class: Control Panel

System: Avionics Control System

Figure D.19: Safety obligations for the INS class

195

APPENDIX D. ACS CASE STUDY REFERENCE MATERIAL

None

Client
Interactions

Time.now<=Time.now@pre+50Update_Height()

AssumptionsOtherwiseSafety ObligationsSupplier
Interactions

Class: Aircraft

System: Avionics Control System

Figure D.20: Safety obligations for the Control Panel class

None

Client
Interactions

Time.now<=Time.now@pre+100Display_TF_Radar_
Cue(TF_Radar_Cue)

AssumptionsOtherwiseSafety ObligationsSupplier
Interactions

Class: Status Display

System: Avionics Control System

Figure D.21: Safety obligations for the Aircraft class

196

Module Name:
Description:

Prepared By:
Company:

Software Level Argument View Name: View 1
The Description module 1 Description: Description View 1

rhawkins File Name: H:\OOHSA\phd\thesis\navArg.vdx
University of York Last Modified: 04/08/2005 11:28:56

G1_Sys

Avionics Control System
(ACS) acceptably safe from
a hazard control perspective

C1_Sys

System Description
given in System
overview

C2_Sys

Software described
in ACS SDD

G2_Sys

Software Contribution to
system level hazard is
acceptable

C4_Sys

Identified contributions of
software to system level
hazards = Hazardous
Software Failure Mode
(HSFM)

St2_Sys
Argument over
completeness of HSFMs
relating to hazard and their
satisfaction

G3_Sys

HSFM identification
process is sufficiently
rigorous

G4_Sys

HSFMs do not occur or
are mitigated

St3_Sys

Argument over interactions
and safe behaviour of
individual classes

C5_Sys

Acceptably safe is all
hazards reduced
ALARP

G7_Sys

Unintended interactions
between classes will not
occur

St1_Sys

Argument over
identified hazard

C6_Sys

Hazard in section
6.3.1.1

G1_Int_Interactions Argument

Interactions of classes are
acceptably safe

Interactions Argument

G1_Class_Flight Director Arg

Contribution of Flight Director
class to HSFM is acceptable

Flight Director Arg

G1_Class_Navigator Argument

Contribution of Navigator class to
HSFM is acceptable

Navigator Argument

G1_Class_INS Arg

Contribution of INS class to
HSFM is acceptable

INS Arg

G1_Class_Control Panel Arg

Contribution of Control Panel
class to HSFM is acceptable

Control Panel Arg

G1_Class_Aircraft Arg

Contribution of Aircraft class to
HSFM is acceptable

Aircraft Arg

G1_Class_Status Display Arg

Contribution of Status Display
class to HSFM is acceptable

Status Display Arg

Figure D.22: Software system level argument for the ACS

197

APPENDIX D. ACS CASE STUDY REFERENCE MATERIAL

Module Name:
Description:

Prepared By:
Company:

Interactions Argument View Name: View
Description Interactions Argument Description: Description View

rhawkins File Name: H:\OOHSA\phd\thesis\navArg.vdx
University of York Last Modified: 04/08/2005 17:03:23

G2_Int

Contracts have been
correctly identified

G1_Int

Interactions of classes
are acceptably safe

St1_Int

Argument over
HSFMs

G6_Int

For HSFMs 1 and 2 DSRs have
been identified for all relevant
interactions

St3_Int

Argument over
interactions

G7_Int

DSRs have been indentified in a
safety contract for all relevant
interactions such that its
contributions to HSFMs 1 and 2 are
acceptable

C3_Int

Interactioins identified
in sequence diagram
figure 7.2

G5_Int

All relevant interactions for
HSFMs 1 and 2 have been
identified

S1_Int

Fault Tree
Analysis in
figure 7.3

S2_Int

Timing
Analysis in
figure 7.10

G4_Int

For HSFMs 1 and 2 relevant
interactions and their
contraints have been
identified

G3_Sys_Software Level Argument

HSFM identification process is
sufficiently rigorous

Software Level Argument

A

A1_Int

Sequence diagram figure
7.2 contains complete
information on all
interactions

C4_Int

Safety contracts
defined in section
6.4

S4_Int

SHARD-style
analysis in

figures 7.4 to
7.9

G2_Class_Flight Director Arg

Safety obligations derived from safety
contracts have been satisified

Flight Director Arg

G2_Class_Navigator Argument

Safety obligations derived from safety
contracts have been satisified

Navigator Argument

G2_Class_INS Arg

Safety obligations derived from
safety contracts have been
satisified

INS Arg

G2_Class_Control Panel Arg

Safety obligations derived from safety
contracts have been satisified

Control Panel Arg

G2_Class_Aircraft Arg

Safety obligations derived from
safety contracts have been
satisified

Aircraft Arg

G2_Class_Status Display Arg

Safety obligations derived from safety
contracts have been satisified

Status Display Arg

Figure D.23: Interactions argument for the ACS

198

Module Name:
Description:

Prepared By:
Company:

Navigator Argument View Name: View
Description Navigator Argument Description: Description View

rhawkins File Name: H:\OOHSA\phd\thesis\navArg.vdx
University of York Last Modified: 04/08/2005 17:03:23

G3_Class

:Navigator object
individual contribution to
HSFM is acceptable

G2_Class

Safety obligations derived
from safety contracts have
been satisified

G1_Class

Contribution of Navigator
class to HSFM is
acceptable

St1_Class
Argue over satisfaction of
safety obligations from
contracts and absence of
other hazardous failures

C1_Class

HSFMs 1 and 2

S1_Class

Evidence from
testing, static
analysis etc

G4_Class

All safety obligations from
interactions in which :Navigator
object is involved have been
identified

C2_Class

Interactions in which
:Navigator object
participates (client or
supplier)

G5_Class

Safety obligations for
:Navigator object have been
satisified

C3_Class
Safety obligations
for :Navigator
object

St2_Class

Argue over each
instance of the class

G6_Class

:Navigator object
contribution to HSFM is
acceptable

C4_Int_Interactions
Argument

Safety contracts defined in
section 6.4

Interactions Argument

S2_Class

Safety obligation
table for

Navigator class in
figure 7.15

Figure D.24: Navigator class argument for the ACS

199

List of References

[1] K Allenby and T Kelly. Deriving safety requirements using scenarios. In 5th IEEE Inter-

national Symposium on Requirements Engineering(RE’01). IEEE Computer Society Press,

2001.

[2] Federal Aviaition Authority. Handbook for Object-Oriented Technology in Aviation. Federal

Aviaition Authority, 2004.

[3] Stephane Barbey and Alfred Strohmeier. The problematics of testing object-oriented soft-

ware. In SQM ’94 Second Conference on Software Quality Management, volume 2, pages

411–426, July 26-28 1994.

[4] Imran Bashir and Amrit L. Goel. Testing Object-Oriented Software - Life Cycle Solutions.

Springer, 2000.

[5] Antoine Beugnard, Jean-Marc Jezequel, Noel Plouzeau, and Damien Watkins. Making

components contract aware. Computer, June, 1999:38–45, 1999.

[6] A. Bondavalli and L. Simoncini. Failure classification with respect to detection. In First

Year Report, Task B: Specification and Design for Dependability. ESPRIT BRA Project

3092 Predictably Dependable Computing Systems, May 1990.

[7] Grady Booch. Object-Oriented Analysis and Design with Applications. Benjammin-

Cummings, 1994.

[8] Maria Cengarle and Alexander Knapp. Towards ocl/rt. Lecture Notes in Computer Science,

2391:390–409, 2002.

[9] CISHEC. A guide to hazard and operability studies. The chemical industry safety and

health council of the chemical industries association Ltd., 1977.

[10] Peter Coad and Edward Yourdon. Object-Oriented Design. Prentice-Hall, 1990.

200

LIST OF REFERENCES

[11] Derek Coleman. Object-oriented development: the fusion method. Prentice Hall, 1994.

[12] David Crocker. Safe object-oriented software: The verified design-by-contract paradigm.

In Felix Redmill and Tom Anderson, editors, Practical Elements of Safety - Proceedings of

the Twelfth Safety-critical Systems Symposium, February 2004.

[13] Bruce Powell Douglass. Real-Time UML - Developing Efficient Objects for Embedded Sys-

tems. Addison-Wesley, 1998.

[14] Bruce Powell Douglass. Doing Hard Time - Developing Real-Time Systems with UML,

Objects, Frameworks, And Patterns. Addison-Wesley, 1999.

[15] Andy Evans, Robert France, Kevin Lano, and Bernhard Rumpe. The UML as a formal

modeling notation. Computer Standards and Interfaces, 19:325–334, 1998.

[16] P.D. Ezhilchelvan and S.K. Shrivastava. A characterization of faults in systems. Technical

Report CS-TR: 206, University of Newcastle upon Tyne, 1989.

[17] Janusz Gorski and Bartosz Nowicki. Object oriented approach to safety analysis. Proc.

ENCRESS ’95, pages 338–350, 1995.

[18] Janusz Gorski and Bartosz Nowicki. Safety analysis based on object-oriented modelling of

critical systems. Proc. SAFECOMP ’96, pages 46 – 60, 1996.

[19] M.J. Harrold, J.D. McGregor, and K.J. Fitzpatrick. Incremental testing of object-oriented

class structure. In 14th International Conference on Software Engineering, 1992.

[20] Richard Hawkins, Ian Toyn, and Iain Bate. An approach to designing safety critical sys-

tems using the unified modelling language. In Critical Systems Development with UML -

Proceedings of the UML’03 Workshop. TUM, 2003.

[21] Richard Helm, Ian Holland, and Dipayan Gangopadhyay. Contracts: Specifying be-

havioural compositions in object-oriented systems. In Object-Oriented Programming Sys-

tems, Languages and Applications Conference, Special Issue of SIGPLAN Notices, pages

169–180. ACM Press, 1990.

[22] HMSO. Health and Safety at Work etc. Act, 1974.

[23] IEC. 61508 - Functional Safety of Electrical / Electronic / Programmable Electronic Safety-

Related Systems. International Electrotechnical Commision, 1998.

[24] Ivar Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object Oriented Software

Engineering - A Use Case Driven Approach. Addison-Wesley, 1992.

201

LIST OF REFERENCES

[25] Jean-Marc Jezequel and Bertrand Meyer. Design by contract: The lessons of Ariane.

Computer, pages pp. 129–130, 1997.

[26] JIMCOM. The official handbook of Mascot version 3.1. Joint IECCA and MUF committee

on Mascot, 1987.

[27] Per Johannessen, Christian Grante, Anders Alminger, Ulrik Eklund, and Jan Torin. Hazard

analysis in object oriented design of dependable systems. In 2001 International Conference

on Dependable Systems and Networks (DSN 2001). IEEE Computer Society, 2001.

[28] J. Jürjens. Developing safety-critical systems with UML. In Proc. UML 2003 - The Unified

Modelling Language 6th International Conference, pages 360–372, 2003.

[29] Tim Kelly. Arguing Safety - A Systematic Approach to Managing Safety Cases. PhD thesis,

Department of Computer Science, The University of York, 1998.

[30] Tim Kelly. Concepts and principles of compositional safety case construction. Technical

Report COMSA/2001/1/1, The University of York, 2001.

[31] Tim Kelly. Managing complex safety cases. In 11th Safety Critical Systems Symposium

(SSS’03). Springer-Verlag, February 2003.

[32] Sun-Woo Kim. Assessing the Adequacy of Test Data for Object-Oriented Programs Using

the Mutation Method. PhD thesis, Department of Computer Science, The University of

York, 2001.

[33] Chenho Kung. The object-oriented paradigm. Encyclopedia of Microcomputers, November

1991.

[34] D. Kung, N. Suchak, P. Hsia, Y. Toyoshima, and C. Chen. On object state testing. In

Proc. of COMPSAC’94. IEEE Computer Society Press, 1994.

[35] David Kung, Jerry Gao, and Pei Hsia. A test strategy for object-oriented programs. In

Proceedings of 19th Annual International Computer Software and Applications Conference

(COMPSAC ’95), pages 239–244, Dallas, TX, USA, August 1995.

[36] Jet Propulsion Laboratory. Software failure modes and effects analysis. Software product

assurance handbook, 1995.

[37] Kevin Lano, David Clark, and Kelly Androutsopoulos. Safety and security analysis of

object oriented models. Lecture Notes in Computer Science, 2434:82 – 93, 2002.

202

LIST OF REFERENCES

[38] N. G. Leveson and P.R. Harvey. Software fault tree analysis. Journal of Systems and

Software, pages 173–181, 1983.

[39] N. G. Leveson and T. J. Shimeall. Safety verification of Ada programs using software fault

trees. IEEE Software, 8:48–59, 1991.

[40] Nancy Leveson. Safeware - System Safety and Computers. Addison-Wesley, 1995.

[41] Jacques-Louis Lions. Ariane 5 flight 501 failure report by the inquiry board. Technical

report, ESA, July 1996.

[42] Barbara Liskov and Jeanette Wing. A behavioural notion of subtyping. ACM Transactions

on Programming Languages and Systems, 16:1811–1841, 1994.

[43] Robyn R. Lutz and Robert M. Woodhouse. Experience report: Contributions of SFMEA

to requirements analysis. ICRE ’96, 1996.

[44] James Martin and James Odell. Object-Oriented analysis and design. Prentice-Hall, En-

glewood Cliffs, New Jersey, 1992.

[45] John McDermid. Software safety: Where’s the evidence? In Australian Workshop on

Industrial Experience with Safety Critical Systems and Software, 2001.

[46] Bertrand Meyer. Applying ”design by contract”. Computer, Oct. 1992:40–51, October

1992 1992.

[47] Bertrand Meyer. Eiffel: The Language. Prentice Hall, 1992.

[48] Richard Mitchell and Jim McKim. Design by Contract. Addison-Wesley, 2002.

[49] MoD. Defence Standard 00-56 Issue 2: Safety Management Requirements for Defence

Systems. HMSO, 1996.

[50] MoD. Defence Standard 00-58: HAZOP Studies on Systems Containing Programmable

Electronics. HMSO, 1996.

[51] MoD. Defence Standard 00-55 Issue 2: Requirements for Safety Related Software in Defence

Equipment. HMSO, 1997.

[52] MoD. Interim Defence Standard 00-56 Issue 3: Safety Management Requirements for

Defence Systems. HMSO, 2004.

[53] Gail C. Murphy, Paul Townsend, and Pok Sze Wong. Experiments with cluster and class.

Communications of the ACM, 37(9), 1994.

203

LIST OF REFERENCES

[54] Bartosz Nowicki and Janusz Gorski. Object oriented safety analysis of an extra high voltage

substation bay. Lecture Notes in Computer Science, 1516:306–315, 1998.

[55] Society of Automotive Engineers Inc. Aerospace Recommended Practice (ARP) 4754:

Certification considerations for highly-integrated or complex aircraft systems, November

1996.

[56] Society of Automotive Engineers Inc. Aerospace Recommended Practice (ARP) 4761:

Guidelines and methods for conducting the safety assessment process on civil airborne

systems and equipment, December 1996.

[57] United States Department of Defense. MIL-STD-882C: System Safety Program Require-

ments. US Department of Defense, 1993.

[58] Office of Nuclear Regulatory Research. Fault tree handbook. U.S. Nuclear Regulatory

Commission, January 1981.

[59] OMG. Unified Modelling Language Specification version 1.4. Object Management Group,

2001.

[60] OMG. UML 2.0 OCL specification. Technical Report ptc-03-10-14, Object Management

Group, 2003.

[61] OMG. Unified modeling language: Superstructure, version 2.0. OMG, August 2005.

[62] Dewayne E. Perry and Gail E. Kaiser. Object-oriented programs and testing. The Journal

of Object Oriented Programming, 1990.

[63] R. J. Pooley. An Introduction to Programming in SIMULA. Blackwell Scientific Publica-

tions, Oxford, 1987.

[64] David Pumfrey. The Principled Design of Computer System Safety Analyses. PhD thesis,

Department of Computer Science, The University of York, 1999.

[65] D. J. Reifer. Software failure modes and effects analysis. IEEE Transactions on reliability,

28(3), 1979.

[66] RTCA. DO-178B - Software Considerations in Airborne Systems and Equipment Certifi-

cation. Radio and Technical Commission for Aeronautics, 1992.

[67] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object Oriented

Modelling and Design. Prentice Hall, 1991.

204

LIST OF REFERENCES

[68] James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modelling Language

Reference Manual. Addison-Wesley, 1999.

[69] Chris Sampson. Evidence gathering using static code analysis. In Felix Redmill and Tom

Anderson, editors, Practical Elements of Safety - Proceedings of the Twelfth Safety-critical

Systems Symposium. Springer-Verlag, February 2004.

[70] Sally Shlaer and Stephen Mellor. Object-oriented systems analysis: modelling the world in

data. Yourdon press, 1988.

[71] Anthony Simons and Ian Graham. 30 things that can go wrong in object modelling with

UML 1.3. In H Kilov, B Rumpe, and I Simmonds, editors, Behavioural Specifications of

Businesses and Systems, pages 237–257. Kluwer Academic Publishers, 1999.

[72] John Simpson and Edmund Weiner, editors. Oxford English Dictionary. Oxford University

Press, second edition edition, 1989.

[73] Patrick Steyaert, Carine Lucas, Kim Mens, and Theo D’Hondt. Reuse contracts: Managing

the evolution of reusable assets. Proceedings of OOPSLA ’96, 31(10):268–285, 1996.

[74] Neil Storey. Safety-Critical Computer Systems. Addison-Wesley, 1996.

[75] Francis Thom. Safety in the loop: An overview of system safety issues throughout the

product development lifecycle. Technical report, ARTiSAN Software Tools, 2002.

[76] Phil Thornton. Software Design Description (SDD) for the avionics control system. Tech-

nical Report BAE-WSC-SD-GEN-PRD-0108, BAE Systems, 2003.

[77] Phil Thornton. Software Requuirements Specification (SRS) for the avionics control system.

Technical Report BAE-WCSC-SR-GEN-PRD-0107, BAE Systems, 2003.

[78] Tatsuhiro Tsuchiya, Hirofumi Terada, Shinji Kusumoto, Tohru Kikuno, and Eun Mi Kim.

Derivation of safety requirements for safety analysis fo object-oriented design documents.

In 21st International Computer Software and Applications Conference (COMPSAC ’97).

IEEE Computer Society, 1997.

[79] C.D. Turner and D.J. Robson. State-based testing and inheritance. Technical Report 1/93,

University of Durham, 1993.

[80] Department of Computer Science University of York. CAS: Computers and software and

ISA. Course Notes of MSc in Safety Critical Systems Engineering, April 2004.

205

LIST OF REFERENCES

[81] Alain Villemeur. Reliability, availability, maintainability, and safety assessment, volume 1.

John Wiley and Sons, 1992.

[82] Jos Warmer and Jos Kleppe. The Object Constraint Language - Precise Modelling with

UML. Addison-Wesley, 1999.

[83] R. Weaver, J. McDermid, and T. Kelly. Software safety arguments: Towards a systematic

categorisation of evidence. In 20th International System Safety Conference, 2002.

[84] R. A. Weaver. The safety of Software - Constructing and Assuring Arguments. PhD thesis,

Department of Computer Science, The University of York, 2003.

[85] Elaine J. Weyuker. Axiomatizing software test data adequacy. IEEE Transactions on

Software Engineering, 12(12):1128–1138, December 1986.

[86] S.A. Whitford. Software safety code analysis of an embedded C++ application. In 20th

International System Safety Conference, 2002.

[87] Ken Wong. Deriving design criteria for safety-critical object-oriented software systems. In

Proceedings of the 21st International System Safety Conference, 2003.

206

