
Richard Paige
paige@cs.york.ac.uk

Department of Computer Science
University of York

Traceability in Model-Driven Engineering of 
Safety-Critical Systems

A (Grand?) Challenge?



Overview

 The message.

 Safety-critical systems engineering.

 Why certification is (largely) a traceability 
problem.

 Using MDE to build safety critical systems.

 What do we need?

 Conclusions.



The Message

 There is substantial interest in applying MDE 
(and not only modelling) in the safety-critical 
systems engineering field.

 However, certification is paramount.

 Traceability is one of the (if not the) key 
notions underpinning certification.

This community can make a real contribution to 
enabling MDE for safety-critical systems. 



Traceability

Identification Representation / 
Description

Maintenance Usage



Safety-Critical Systems Engineering

 Usually long-lived (embedded) 
systems.

 Often developed over long periods of 
time (20-30 years, in some cases).

 Traditionally developed following 
accepted docu-heavy processes.
 Emphasis on verification and validation.

 Majority of such systems must be 
certified prior to their deployment.



Certification

 Development is overseen and assessed by an 
independent body.

 e.g., the CAA or an independent safety auditor.

 Developers must present evidence that 
completed system meets its requirements.

 Numerous standards and guidance exist.

 e.g., DO-178B for avionics software.

 Process include systems engineering as well 
as a safety lifecycle.



Safety Lifecycle

1. Identify potential system hazards.

2. Risk assessment.

3. Derive safety requirements.

4. Identify potential designs and refine safety 
requirements.

5. Develop system.

6. Produce evidence that implementation adheres 
to design, and safety requirements have been 
met.

 Evidence often in form of safety case.



Traceability and Safety?

 So what’s the connection?

 Most safety standards require traceability:

 between process phases, design artefacts, 
implementation artefacts, and safety evidence.

 Traceability exists to enable certification.

 Consider DO-178B.

 Software Considerations in Airborne Systems and 
Equipment Certification.

 Consists of a number of process objectives & 
guidelines.



DO-178B Table A-3



Summary

 DO-178B objectives explicitly or implicitly 
require trace-links to be established.

 Between artefacts, process phases, evidence.

 Of different kinds:

 Coverage

 Conformance

 Satisfaction

 Implementation

 Strategic



Using MDE to build SCS

 Should we even try?

 Is MDE fundamentally at-odds with, e.g, DO-178B?

 What might MDE contribute?

 M2M transformations can be used to satisfy some 
A-3 objectives.

 M2T transformations can deliver evidence to 
satisfy some A-5 objectives.

 However, all of these operations must be able 
to expose traceability info explicitly.



A Challenge: Table A-10

“Communicating understanding to the 
certifying authority.”

 Basically, we need to convince an ISA that 
safety requirements are met.

 Our evidence is trace-links!

 How is our evidence represented?

 What guarantees do we have that our tools don’t 
introduce errors?



What do we need?

 Standard modelling approaches.

 UML, profiles… (a baby step to DSLs)

 Not because they are ideal, but because they are 
more likely to be understood by an ISA.

 Standard ways of representing evidence in a 
form acceptable to an ISA.

 Partly depends on who your ISA is.

 Partly depends on reviewing approaches.



Standardised Evidence

 The OMG Software Assurance Evidence 
metamodel (SAEM) is a first step towards 
this.

 It is used to represent facts about software 
artefacts, developers, process and 
compliance controls.

 Contributes to an overall assurance case, 
which could be presented to an ISA.



Properties

 A key part of the Evidence Metamodel is 
properties:

 These effectively encode trace-links!

 Provenance (who created, who approved, 
who owns)

 Custody (where)

 Timing (when)



EvidenceEvent Diagram



Challenge:Evidence Metamodel

 Tools are needed that produce evidence that 
conforms to it.

 Existing Traceability tools could help to support 
this.

 Evidence models need to be connected to an 
Assurance Case for delivery to an ISA.

 Transformations from existing languages 
used for safety/assurance cases (e.g., GSN) 
need to be built, targetting this.



What else is needed?

 Moving forwards…

 Traceability and transformation tools must be 
qualified.

 Ultimately, a substitution argument for 
relevant safety standards is needed.

 i.e., that the evidence produced by applying MDE 
is at least as convincing as the typical processes 
followed for building safety critical systems.

 We have done this for formal methods, but not yet 
for MDE.



Additionally…

 We need flexibility in how trace-links are 
established.

 A top-down (req -> design -> code) process 
isn’t always followed.

 Especially as more iterative and incremental 
approaches become used.

 Trace establishment through applying model 
management operations and through manual 
instantiation.

 And at arbitrary times, e.g., post-facto.



Conclusions

 MDE is applicable to safety-critical systems 
engineering.

 But is it acceptable?

 Engineers need standards and well supported 
tools.

 The end-goal is to produce a system that is 
certifiable.

 The tools and standards must reflect this goal, and 
must provide evidence in acceptable forms.



What next?

 There is an opportunity for the MDE traceability 
community to address this problem.

 Trace-links are evidence that enables certification.

 Explore how to make this evidence standards-
compliant, and how it can be connected to 
certification arguments.

 Qualify your tools.

 Deploy them in safety-critical engineering 
projects.



?


