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V iruses package their genetic material into protein con-
tainers that adopt polyhedral shapes. For over half a
century, such virus architectures have been classified in

terms of the Goldberg polyhedra and their dual triangulations
in the seminal Caspar–Klug theory (CKT). However, following
developments in our ability to image viral particles, it has be-
come apparent that many virus structures do not conform to these
blueprints.

The virus tilings described here simultaneously cover the
classical viral architectures and solve open problems in structural
virology. Introduction of a radial dimension into the models of
virus architecture via extension of the symmetry group provides
the basis for a graph theoretical approach describing the forma-
tion of viruses as a travelling salesman problem. This was instru-
mental in the discovery of virus assembly instructions – a virus
assembly code – embedded within the genetic message of many
viral pathogens.

Insights into viral geometry have thus played a key role in un-
derstanding how viruses form, evolve and infect their hosts, and
have opened up new avenues in anti-viral therapy.

Symmetry in virology

Symmetry is ubiquitous in the natural world. It occurs at all
scales, from particle physics to chemistry and cosmology. Math-
ematics describing symmetry in its various forms is therefore es-
sential for our understanding of nature. Virology is no exception.

The protein containers (capsids) encapsulating and protect-
ing the viral genomes resemble tiny footballs, which have the
same rotational symmetries as an icosahedron. The locations of a
5-fold, a 3-fold and two 2-fold symmetry axes of icosahedral sym-
metry are indicated for a virus with 60 identical capsid proteins
with respect to an icosahedral reference frame in Figure 1(a). The
reason for this is known as the principle of genetic economy [1].

By repeatedly synthesising capsid building blocks from the
same genomic segment, viruses minimise the portion of their
genomes required for coding of the capsid. As icosahedral sym-
metry corresponds to the largest rotational symmetry group in
three dimensions, it guarantees the largest possible number of
repeats of the basic capsid building block in the capsid, thus

Figure 1: Viruses and icosahedral symmetry. (a) The icosa-
hedral symmetry axes for a virus with 60 identical capsid pro-
teins. (b) The T = 4 capsid structure of Providence virus.

optimising container volume. This facilitates the packaging of
the genomic cargoes into their capsids, providing an explanation
for the prevalence of icosahedral symmetry in virology.

Viral geometry

Icosahedral viruses come in different shapes and sizes. Most of
them have capsids formed from more than 60 protein units, im-
plying that capsid protein positions cannot correspond to a single
orbit of the icosahedral group. Icosahedral symmetry by itself is
therefore not sufficient to fully characterise viral geometries, and
other mathematical approaches are required for a deeper under-
standing of virus architecture.

Caspar–Klug theory

In their seminal quasi-equivalence theory [2], Caspar and Klug
posit that the protein subunits of larger capsids must be located
in similar local environments, thus forming the same types of lo-
cal interactions with neighbouring protein subunits. They model
capsid architecture with reference to hexagonal surface lattices
with icosahedral symmetry known as Goldberg polyhedra. Apart
from hexagonal faces, these have 12 pentagonal faces as required
by Euler’s theorem in order to create a closed shell.

Icosahedral symmetry implies that there must be precisely
10(T − 1) hexagonal faces, where T = n2 + nk + k2 with n
and k positive integers (or zero in at most one case) is called the
T -number. The case T = 1 corresponds to the icosahedron it-
self, and larger values describe triangulations of the icosahedral
surface.

The insect-infecting Providence virus in Figure 1(b) is an
example of a virus that can be modelled as a T = 4 capsid
in CKT. Its Caspar–Klug surface lattice is shown superimposed
on the capsid formed from 240 capsid proteins, with symmetry-
equivalent capsid proteins shown in identical colours. Each tri-
angular face indicates the positions of three capsid proteins.

The T -number has a geometric interpretation in terms of the
dual triangulations called geodesic polyhedra. It indicates the
number of triangular faces that, by area, cover each icosahedral
face. Assigning a protein unit to every corner of these T trian-
gles per icosahedral face, and noting that there are 20 such faces
in an icosahedron, these polyhedral blueprints accommodate pre-
cisely 60T proteins. This means that the protein numbers in the
viral capsid models in CKT are quantised. This astonishing pre-
diction was long thought to be universally true. However, with
the development of refined imaging techniques, many outliers
to quasi-equivalence theory were discovered with protein num-
bers violating this restriction, instigating the development of new
mathematical approaches.

Viral tiling theory

Prominent examples of such viruses are the cancer-causing
polyoma- and papillomaviruses. Their capsids are formed from
72 pentamers (clusters of five proteins), rather than the character-
istic combination of 12 pentamers and otherwise hexamers (clus-
ters of six proteins) as in Caspar and Klug’s approach. As planar
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lattices formed from pentagons do not exist without gaps – a result
known as the crystallographic restriction – a simple adaptation of
the Caspar–Klug construction is not possible in these cases.

This is reminiscent of the mathematical challenges faced in
the modelling of quasicrystals, alloys exhibiting long-range or-
der but lacking periodicity, that were discovered in 1984 and won
Dan Shechtman the Nobel Prize in Chemistry in 2011.

Adapting techniques from tiling theory used in the modelling
of quasicrystals (in particular Penrose tilings), a tiling approach
for the modelling of virus architecture has been developed that
accounts for the surface structures of the polyoma- and papillo-
maviruses, see Figure 2(a). Symmetry equivalent proteins are
shown colour-coded, and are organised into 72 pentamers (clus-
ters of five) in Figure 2(a). This is the first example [3] of what is
now known as viral tiling theory (VTT).

In VTT, capsids are represented by icosahedral tilings in
which tiles have a dual role. As in CKT, individual tiles can
correspond to clusters of protein subunits. In these cases, tiles
represent capsid building blocks (capsomers) that form in solu-
tion, before multiple capsomers associate to assemble the capsid
in the next step. Such tiles can be identified with interactions
within capsomers.

In contrast to CKT, VTT also accommodates shapes other
than the pentagons and hexagons representing pentamers and
hexamers. For example, it includes rhomb tilings representing
dimers (clusters of two proteins), which better describe the sur-
face architectures of viruses such as bacteriophage MS2 (Fig-
ure 2(b)), a bacterial virus, which is formed from 90 protein
dimers. VTT thus distinguishes MS2’s architecture from the
Caspar–Klug capsid structures with the same numbers of protein
subunits. Hence, VTT also discriminates between different cap-
sid layouts with the same number of capsid proteins, which would
be represented by the same surface lattice in CKT.

Moreover, VTT also considers tilings in which tiles represent
interactions between capsomers, as in the tiling in Figure 2(a).
Here, different types of tiles correspond to different types of in-
teractions between proteins in neighbouring pentamers. Interac-
tions between pentamers occur in groups of two (dimer) and three
(trimer) interactions, and are represented by rhombs and kites, re-
spectively. Such tilings also cover capsid architectures with pro-
tein numbers excluded by CKT, such as the 360 proteins in Fig-
ure 2(a), which correspond to a forbidden T -number of 6.

VTT was designed to remedy the shortcomings of CKT, with
the primary goal of explaining capsid architectures assembled
from (nearly) identical protein subunits. However, increasing

numbers of larger viruses have been discovered that assemble
from a combination of different types of proteins, such as ma-
jor and minor capsid proteins. For such capsids, the assumption
of quasi-equivalence no longer holds, because only (nearly) iden-
tical protein subunits can be expected to occupy similar local en-
vironments, or, from a mathematical point of view, occupy posi-
tions in a lattice formed from a single type of building block.

A natural generalisation of quasi-equivalence is therefore to
assume that capsids are built from a combination of different
polygons, each of which are specific to a given type of capsid
protein building block and are such that their relative sizes reflect
their footprints on the capsid surface. The local rules according to
which different types of proteins interact with each other should
be universal across the capsid, and such capsid architectures can
therefore be modelled by uniform lattices, i.e. lattices with one
vertex type.

The planar uniform tilings were classified by Kepler in his
Harmonices Mundi in 1619, and are also known as Archimedean
lattices. As in the Caspar–Klug construction, we used these lat-
tices to construct infinite series of polyhedra as models of capsid
architecture, which contain the Caspar–Klug series of T -number
geometries as a special case. Together with their duals, the Laves
lattices, they provide blueprints for virus architectures that fall out
of CKT/ VTT, as in the case of herpes simplex virus (Figure 2(c))
that follows the architecture of one of the new lattice series. The
new polyhedral models of virus architecture thus have expanded
the repertoire of allowed capsid protein numbers and have solved
open problems in structural virology [4].

Applications of viral tiling theory

The tiling models of virus architecture are important for under-
standing the biophysical properties of viruses, such as their stabil-
ity. They also provide novel insights into viral evolution. For ex-
ample, an analysis of a wide range of capsids revealed that viruses
in the same family follow similar geometric layouts. Even viruses
from different families can exhibit similar capsid protein folds and
surface lattice types despite a lack of significant sequence similar-
ity, which is the usual measure of evolutionary relatedness. This
suggests that the limited spectrum of geometrically possible lat-
tice types may act as a driver of convergent evolution.

The tiling models also have many practical applications in
nanotechnology. For example, in an adaptation of VTT to
the modelling of self-assembling protein nanoparticles (SAPNs)
[5], edges represent the positions of the protein building

Figure 2: Viral tiling theory. (a) Kite-and-rhomb tiling encoding the surface of papilloma- and polyomaviruses. (b) Capsid of
bacteriophage MS2 is represented by a rhomb tiling in VTT. (c) Large viruses, like this herpes simplex virus, require tilings with
more than one type of polygon. (d) An adaptation of VTT to the modelling of SAPNs that are used to make malaria vaccines.
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blocks, which are a pair of fused helices that form contacts with
other copies in groups of five (green helices) and three (blue
helices). Such particles (Figure 2(d)) are used in the design of
malaria vaccines.

Symmetry is more than skin deep

CKT, VTT and its extensions described above, model virus archi-
tecture in terms of surface lattices that indicate protein positions,
protein cluster types and their relative orientations. Whilst this
can be used to address many fundamental structural questions in
virology, it cannot provide any insights into the organisation of
material at different radial levels in a virus. To obtain this, math-
ematical techniques are required that go beyond the description
of surface lattices.

One option is to view the surface lattices as subsets of 3D
tilings. Since icosahedral symmetry is non-crystallographic, such
tilings must be aperiodic as in the case of quasicrystals. Such ape-
riodic tilings can be constructed from periodic tilings (lattices) in
a higher dimensional space via projection onto an invariant sub-
space, akin to Plato’s ‘Allegory of the Cave’, where puppets are
only seen via their projections – shadows – on the wall of the cave.
Typically, the dimension of this higher dimensional lattice (the
minimal embedding dimension) is chosen such that: (i) the sym-
metry group is crystallographic in that dimension, and (ii) there
exists a 3D subspace that is invariant under the action of the sym-
metry group and can therefore serve as a space in which the ob-
jects of interests can be modelled.

Figure 3: Affine extensions of the non-crystallographic sym-
metry group in virology and carbon chemistry. (a) Point arrays
map around the material boundaries of viruses, here shown
for the Pariacoto virus and (b) model the atomic positions of
nested fullerene cages called carbon onions.

Modelling viruses with icosahedral symmetry in 3D requires
a minimal embedding dimension of 6. There are three 6D lat-
tices with icosahedral symmetry: the simple cubic (SC), the face-
centred cubic (FCC) and the body-centred cubic (BCC) lattice.
Working either with projections of orbits of their lattice groups
into the 3D invariant subspace, or using projections of their 6D
lattice bases in order to construct affine extensions of the icosahe-
dral group in 3D, we derived and classified 3D point arrays with
icosahedral symmetry. We demonstrated that elements of the re-
sulting library of point arrays map around material boundaries of
viral capsids, as shown for the Pariacoto virus in Figure 3(a) [6].

The multi-shell models also apply more widely to icosahe-
dral multi-shell structures in science, such as the atomic posi-
tions of nested carbon cage structures called carbon onions [7].
The atomic positions of one shell are shown as grey dots in Fig-
ure 3(b), with two 5- and 6-fold faces of the corresponding poly-
hedron indicated in red and green, respectively.

Viral geometry and code breaking

The deeper understanding of viral geometry enabled by VTT and
affine extended icosahedral symmetry has been a driver of dis-
covery in virology. For example, it has provided a novel way of
interrogating viral genomic RNAs for sequence/structure motifs
in contact with the capsid shell.

For this, the best-fitting point array is selected from the library
generated via affine extensions of the icosahedral group based on
the outermost features of a virus [7]. The point array for bacterio-
phage MS2 is shown superimposed on a cross-sectional view of
the capsid and packaged genome, obtained via cryo-electron mi-
croscopy (Figure 4(a)). There are points in the array at the bind-
ing sites between capsid protein and RNA, as shown in a mag-
nified view of the vertices in yellow and orange in Figure 4(b),
which mark the contact points between genomic RNA (bottom;
two RNA structures called stem-loops are shown in blue and or-
ange) and capsid protein (top; rendered as a cartoon showing pro-
tein sheets and helices). These points can be connected into a
polyhedron (Figure 4(c)).

In any given virus, each vertex can be occupied by at most
one stem-loop. Connecting vertices in the order in which they
are occupied by sites in the viral genome, from its 5′ to its 3′ end,
results in a Hamiltonian path (shown in yellow) on this polyhe-
dron (Figure 4(d)). This is a path where each vertex is visited
exactly once, similar to the travelling salesman problem.

Figure 4: Hamiltonian paths and code breaking. (a) The multi-shell model for bacteriophage MS2. (b) A magnified view of the
contact points between genomic RNA (bottom) and capsid protein (top). (c) Connecting points corresponding to neighbouring
contact sites at the inner capsid surface results in a polyhedral shell. (d) A Hamiltonian path (yellow) on this polyhedron indicates
the positions of the contact sites in the viral genome, a vital step in deciphering the PS-mediated assembly code.
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It provides a mathematical bookkeeping device for the po-
sitions of successive capsid protein contact sites along the vi-
ral genome [8]. It also encodes the geometries of the assembly
intermediates that occur during formation of the capsid, that is,
Hamiltonian paths are in a one-to-one correspondence with virus
assembly pathways.

Note, however, that Hamiltonian paths do not fully describe
the actual conformation of the genomic RNA within the capsid,
because portions of the genome extend into the capsid interior.
Using the Hamiltonian path concept in combination with bioin-
formatics, we discovered that there are multiple dispersed sites
within the genomic RNA with affinity for capsid protein mediated
by a shared consensus sequence/structure motif [9]. We termed
these motifs packaging signals (PSs) due to their roles in genome
packaging and capsid assembly.

We thus discovered an assembly code embedded within the
genetic code of a virus. Together with experimental collabora-
tors, we developed novel analysis strategies to identify this code
in a number of viruses, including major human pathogens, and
jointly hold patents exploiting this discovery for anti-viral ther-
apy and the design of virus-like particles [10].

Using geometry to understand viral life cycles

The Hamiltonian paths approach has provided a novel perspective
on a fundamental question in virology. How do viruses assemble
their capsids efficiently in light of the vast number of possible as-
sembly pathways? This search for the drivers of efficient capsid
assembly is akin to Levinthal’s paradox in protein folding – the
conundrum of how proteins achieve their biologically functional
(native) state swiftly via specific folding pathways, rather than a
random exploration of all possible pathways.

Teaming up stochastic simulations of capsid assembly based
on Gillespie-type algorithms with the geometric understanding of
capsid formation in terms of Hamiltonian paths, we were able to
uncover the mechanism by which viruses solve this paradox [11].
Varying the PS sequences around a consensus motif results in a
distribution of PSs along the genomic RNA with different affini-
ties for capsid protein. In regimes where capsid protein concen-
tration is small, as is the case at the start of an infection, differ-
ent affinity distributions result in distinct assembly scenarios, and
evolution has tuned the PS sequences akin to knobs on a radio to
optimise assembly efficiency via mutation and selection. This
explains why PS-mediated assembly can be observed only under
the condition of protein concentrations consistent with a gradual
build-up of capsid protein concentration, and would be obscured
in experiments of virus assembly in which the full aliquot of cap-
sid protein is added at the start of the assembly reaction, as is
typically the case.

The strong variation of PSs around a consensus motif, which
we now understand is an integral part of the mechanism of PS-
mediated assembly, is also the reason why PSs were so difficult
to detect without the insights from geometry.

The journey has just begun . . .

The discovery of PS-mediated assembly has overturned the exist-
ing paradigm in virus assembly, and has opened up novel routes
for anti-viral therapy that we have only just started to explore in

the context of viral infection dynamics at the intra- and intercel-
lular level [12]. First results show that drugs targeting this mech-
anism are less likely to elicit therapy resistance through mutation
than existing forms of therapy.

Many fascinating biological and mathematical questions are
still open. For example, a large number of viruses have asym-
metric components that distort the icosahedral lattice symmetry.
The analysis of their various functional roles, for example in cap-
sid assembly and disassembly, is still in its infancy. Moreover,
the fascinating implications of PS-mediated assembly for viral
evolution are shedding new light on the fundamental principles
underpinning viral evolution.

Finally, the discovery of PS-mediated assembly is an invita-
tion to turn the table on viruses, and abstract and optimise the
assembly code for applications in nanotechnology, for example
for the design of gene-delivery vehicles and vaccination.

For teachers:

Many of the mathematical concepts described here lend them-
selves for exploration in a classroom environment. Mate-
rial for this is available at: www-users.york.ac.uk/~rt507/
teaching_resources.html.
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