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Expanding the Scope of
Electronic-Structure Theory
An efficient new approachmakes density-functional simulations feasible
over larger length scales.

By Rex Godby

D ensity-functional theory (DFT) has, since
the 1970s, had a huge impact on our understanding
of condensed-matter physics through its ability to

describe the effect of the electrons’ mutual interaction on the
electronic structure of matter. However, in solids in which
successive crystal unit cells are no longer exact repetitions of
one another, the usual approach for implementing DFT can run
out of steam. Now, Tristan Müller at the Max Planck Institute of
Microstructure Physics, Germany, and colleagues have devised
an efficient new way to implement DFT in the presence of such
a long-wavelength variation [1]. Their technique potentially
extends the scope of DFT to encompass phenomena of
technological interest, such as skyrmions andmagnetic domain
walls.

The key that unlocks a material’s electronic structure is an
almost magical result known as Bloch’s theorem, which greatly
assists the solution of Schrödinger’s equation [2]. Rather than
having to take account of arbitrary mixing of the atomic wave
functions of the solid’s infinite number of atoms, Bloch showed
that the atoms in each unit cell of the solid contribute equally to
any wave function. The contribution of each unit cell differs
from its neighbor’s only by a phase factor that is a fixed
characteristic of a given wave function. This phase factor is
normally described through a Bloch wave vector, the “k point.”
In essence, this idea means that solving Schrödinger’s equation
for electrons in a periodic solid is little costlier than solving it for
a single unit cell. The efficiency of this approach facilitated the
development of electronic-structure calculations for solids in
the early decades of quantummechanics [3].

The first such calculations did not take into account the effect of
the electrostatic repulsion between electrons on the material’s

electronic structure. Correcting this shortcoming is where DFT
comes in [4, 5]. In DFT, a Schrödinger equation is still solved for
each electron in turn, but with the periodic potential felt by the
electrons nowmodified by the periodic density of the electrons
themselves within each unit cell. Crucially, the power of Bloch’s
theorem is preserved. The combination of quantitative
accuracy and efficiency fueled the explosion in applications of
DFT to crystalline solids from the 1970s onwards [6].

What if the system under study is not a periodic solid but is
nevertheless infinite? Often, the concept of a “supercell” is
useful—a larger unit cell within which a periodic atomic
arrangement can still be assumed to a good approximation.
(The simplest example would be an antiferromagnetic material,
in which the alternating spins of neighboring atoms double the
periodicity.) The power of Bloch’s theorem is then regained,
albeit with increased computational cost reflecting the
presence of, perhaps, dozens of atoms in the new unit cell
rather than just one or two. The cost typically scales with the
cube of this number of atoms, so supercell calculations can be
very (even prohibitively) costly. If, for example, the supercell is
10 times larger than the basic unit cell in each direction, then
the reciprocal lattice becomes 10 times finer in each direction.
This expansion greatly increases the number of coefficients that
must be calculated for each electronic wave function and for
the corresponding DFT potentials.

Tackling this scaling problem is the purpose of the new work by
Müller and colleagues. To achieve their goal, the researchers
developed a flexible approach that is closely related to the
concept of “satellite” peaks in x-ray crystallography and
electron diffraction. There, the observed image is a series of
diffraction peaks that is essentially the Fourier transform of the
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Figure 1: The diffraction patterns on the right are the Fourier
transforms of the crystal structures on the left. (Top) A normal
periodic solid. (Bottom) A spatially modulated version of the solid:
each diffraction peak on the right becomes decorated with a small
number of “satellite” peaks that reflect the nature of the spatial
modulation. The newmethod effectively harnesses this concept of
satellite peaks to give an efficient way of calculating and storing the
electron wave functions, charge density, andmagnetization
density of a modulated solid, especially when the modulation is on
a long length scale.
Credit: R. Godby/University of York

structure of the solid under observation. If the solid is
“modulated” by acquiring a new, longer periodicity, then each
diffraction peak becomes surrounded by a finely spaced set of a
few satellite peaks (Fig. 1).

Away from each original peak position, the intensity of the
satellites falls off quickly, provided that the modulation has a
long wavelength. In the language of a supercell DFT calculation,
this behavior means that much information can be neglected to
a good approximation: only a few satellite coefficients need be
calculated in place of each original coefficient (that describe the
electronic wave function or charge or magnetization density for

the original periodic solid).

Müller and colleagues, then, address the situation of a periodic
solid upon which an additional spatial variation on a long
length scale is imposed—either an externally applied potential
or a spontaneous internal adjustment of the electrons
themselves, such as a charge-density wave. Their approach is
equivalent to a DFT supercell calculation plus certain
well-founded approximations arising from the retention of a
limited set of satellite coefficients, which is the key to the
efficiency. As is common in DFT, the local electronic structure is
represented using a compact set of functions within each unit
cell. Meanwhile, the satellite aspects of the wave functions and
densities are naturally described using long-wavelength plane
waves, which allows these parts of the calculation to benefit
from the numerical efficiency of fast Fourier transforms.

As a demonstration of their technique, Müller and colleagues
present three examples: the spin-spiral state of the γ phase of
Fe; coupled spin and charge-density waves in Cr; and LiF with
an externally applied potential. It is noteworthy that their
method need not start from any rigid assumption about the
modulation of the original solid, other than that it is on a length
scale of many unit cells. When the electronic ground state, as
given by DFT, is found, the nature of the modulation (spin spiral
or charge-density wave, for example) emerges naturally from
the calculation.

When the researchers compare their model’s results with full
supercell calculations, it is clear that the twomethods are not
yet in perfect alignment. However, given sufficient computer
power, this mismatch should narrow. Looking beyond
materials’ electronic ground states, Müller and colleagues
foresee the application of their approach to the time
dependence of suchmodulated solids, making use of
time-dependent DFT [7]. This ability should enable the ab initio
simulation of the dynamic coupling between the electronic
wave functions on an atomic scale with, say, electromagnetic
waves on a longer length scale in a plasmonic optoelectronic
device. For designers of such nanostructures, the
electromagnetic waveforms emitted in response to some
intense applied pulse could therefore take proper account of
the quantum-mechanical motion of the electrons, without the
limitations of perturbation theory.
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