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Maximum-entropy theory of steady-state quantum transport

P. Bokes* and R. W. Godby
Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom

~Received 24 January 2003; published 24 September 2003!

We develop a theoretical framework for describing steady-state quantum transport phenomena, based on the
general maximum-entropy principle of nonequilibrium statistical mechanics. The general form of the many-
body density matrix is derived, which contains the invariant part of the current operator that guarantees the
nonequilibrium and steady-state character of the ensemble. Several examples of the theory are given, demon-
strating the relationship of the present treatment to the widely used scattering-state occupation schemes at the
level of the self-consistent single-particle approximation. The latter schemes are shown not to maximize the
entropy, except in certain limits.
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During the last few years manyab initio calculations have
addressed the electronic structure of systems with non
electrical current.1–3 We will refer to these as the occupatio
scheme approaches~OS! since in practice one occupies th
right- and left-going scattering states up to two differe
electrochemical potentials,mR andmL, respectively. The es
sential idea of the OS comes from Landauer’s treatmen
coherent transport in terms of the transmission matrix of
conductor.4 Later, Caroli et al.5 and independently
Feuchtwang6 developed a formal theory of tunneling bas
on the technique of Keldysh nonequilibrium Green
functions7 which could be extended to address coher
transport as well. Recently it has been shown8 that these two
approaches are indeed equivalent at the level of a sin
particle approximation in the spirit of Kohn-Sham densi
functional theory. However, the latter approximation is ve
hard to justify. It is not clear what effective potential on
should use; the use of the local density approximation
mere hope rather than a secure approximation. We also
lieve that a certain difficulty might lie in the formal searc
for steady-state nonequilibrium Green’s functions using
unitary~Hamiltonian-driven! evolution fort→` from an un-
disturbed system. For example, when we adiabatically t
on an external field, the Keldysh technique predicts
change in temperature, in contradiction with statistical th
modynamics. We therefore believe that any alternative p
of view is of great utility here.

We build such an alternative theory using the generali
maximum-entropy principle as established by Jaynes.9 Simi-
lar ideas were heavily exploited in the development of
projector techniques for nonequilibrium statistical mechan
by Mori,10,11 yet detailed application to concrete problems
not widespread. Of the few papers, let us mention those
Ng12 and Heinonen and Johnson,13 who consider current-
carrying ensembles, similar to ours. However, in these
pers, the essential steady-state character of the ensem
not considered. This results in certain problems when dea
with the matrix elements of current operator which are
present in our work. Our theory treats the stationarity of
nonequilibrium density matrix~DM! that involves constrain
on an operator~the current operator in our case! which does
not commute with the Hamiltonian. At the same time, t
theory can be straightforwardly implemented for practi
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calculations as is demonstrated in the second half of
paper. Our formalism does not depend on the complexity
the system, i.e., without restriction to noninteracting partic
or simple band-structure models.

The statistical DM, which represents an ensemble w
known or controlled averages of given operators^Ai&
5Tr@rÂi #, is obtained by maximizing the information en

tropy S@ r̂#52Tr@ r̂ log(r̂)#, subject to constraints on th
traces of the above-mentioned operators.9 In the case of
quantum transport, experiments suggest that for a given t
perature, composition and total current we obtain a w
defined thermodynamic state~or, in the case of N-shapedI-V
curves, a small number of states differing by applied b
voltage!. The maximum-entropy principle, together wit
these physical constraints, simply represent the search in
phase space~Hilbert space! for the most likely density ma-
trix.

Firstly, the total energy is conserved. This constraint
associated with the Lagrange multiplierb, corresponding to
inverse temperature for equilibrium or near-equilibrium sy
tems. Conservation of the total energy is not in contradict
with the dissipative character of the transport. The dissi
tion is realized through the increase in the energy flow
hind the nanocontact~constriction!. Similarly, the number of
electrons is conserved and on an average is given by the
positive charge in the background, i.e., atomic nuclei. The
fore, a constraint on the number of particles is used with
usual symbolm for the related Lagrange multiplier. The tota
current I should be the next thermodynamical parameter
the theory. On the contrary, the vast majority of present
proaches to quantum transport use the applied biasDV in-
stead. However,DV is not convenient for it is defined
uniquely only between two ideal reservoirs, each being
equilibrium. These could never be a part of a practical c
culation. In contrast, the current flowing through the syst
is represented by a simple operator and is well-defined e
in the strongly nonequilibrium regime. We use the symboA
for the Lagrange multiplier accompanying the current co
straint, and we later show thatA is universally related toDV.

Finally we impose the steady-state condition@ r̂,Ĥ#50.
For this to have a nontrivial solution, the system must
infinite along the direction of the current. Otherwise, the on
©2003 The American Physical Society14-1
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steady state would correspond to zero current. This is equ
present in the Keldysh formalism, where one has to fi
consider the limit of infinite size, and only afterwards can t
time evolution of the response to the turned-on trans
Hamiltonian go to infinity. We note that this condition is
nontrivial one here. In previous work, it has been either s
isfied automatically~equilibrium systems, nonequilibrium
but translationally invariant systems! or not considered at all
To implement the steady-state constraint, we write
steady-state condition in any complete set of sta

^E,au@ r̂,Ĥ#uE8,a8&50, for all E,E8,a, anda8. This par-
ticular notation stresses the fact that we work with a c
tinuum of eigenstates ofĤ, normalized to a delta function o
energy.16 The indexa runs over the discrete set of degene
ate states at energyE. Each of these equations must be no
guaranteed, with a separate Lagrange multiplierla,a8(E,E8)
and the expression in the functional to be maximized can
manipulated into

E dEdE8 (
a,a8

la8,a~E8,E!^E,au@ r̂,Ĥ#uE8,a8&

5Tr@ l̂ @ r̂,Ĥ##5Tr@ r̂ L̂#, ~1!

where we have introducedL̂5@Ĥ,l̂ #. This form is suitable
for the variation with respect to the DM.

Collecting all the above terms we obtain the variation
condition

d$2^ log~ r̂ !&1~V11!^1̂&2b^Ĥ&1bm^N̂&

1bA^ Î &2b^L̂&%50. ~2!

The term (V11)^1̂& guarantees the normalization of th
DM. We also note that we have deliberately introduced
parameterb in the definition of all the other multipliers s
that the limitb→` can be conveniently studied. As a resu
of variation we obtain the stationary nonequilibrium DMr̂
5exp$V2bK̂%, whereK̂5Ĥ2mN̂2AÎ1L̂. The practicality
of this expression relies on the knowledge of theL̂ operator.
We obtain its form from the solution of@ r̂,Ĥ#50, as an
equation forL̂. Expanding the DM in terms ofK̂, we see that
this is equivalent to@2AÎ1L̂,Ĥ#50. If we cast the last
expression in the representation of the eigenstates ofĤ, it is
seen that the role ofL̂ is to remove the off-diagonal elemen
of the current operator. We shall show below thatL̂ should
be of the form

La,a8~E,E8!5I a,a8~E,E8!~A2Ãd~E2E8!!, ~3!

whereÃ is a finite constant, related toA as Ã5peA, with
e;1/l an infinitely small energy inversely proportional
the length of the system. The result is a finite number, si
by inspection of Eq.~3! we deduce thatA; l due toI;1.

To prove Eq.~3! we setŶ52A@ Î ,Ĥ# and write in the
basis of$uE,a&% the equation forL̂ as:
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iYa,a8~E,E8!1 iL a,a8~E,E8!~E82E!50, ~4!

for EÞE8, we have

La,a8~E,E8!5
iYa,a8~E,E8!

i ~E2E8!
5AIa,a8~E,E8!. ~5!

SinceY(E,E8) is a result of a commutator, it is also propo
tional to E2E8. However, we needLa,a8(E,E8) to be zero
for E5E8 to keep the current at its given value and to sati
the fact thatL̂ is also the result of a commutator withĤ.
This is uniquely achieved by

La,a8~E,E8!5I a,a8~E,E8!~A2A lim
e→01

epde~E2E8!!,

~6!

where

de~E2E8!5
1

p

e

~E2E8!21e2
, ~7!

which manifestly satisfies both conditions, since forE
5E8, pede51. This is the stated result~3!. Equation~6!
can now be written in basis-independent form as

L̂5A~ Î 2 Î 0!, Î 05 lim
T→`

1

2TE2T

T

Î ~ t !dt, ~8!

where the operatorÎ 0 has the form ofthe invariant part of
the current operatorwith respect to the time evolution, in
troduced by Kubo in the linear response theory,11 where the
time dependence of the operatorÎ (t) is determined by the
HamiltonianĤ. If we insert the solution Eq.~8! for the L̂ in
the stationary DM obtained from Eq.~2!, we obtain the final
result for the statistical density matrix

r5exp$V2b~Ĥ2mN̂2AÎ0!%. ~9!

This is the general form, valid even for a fully interactin
system. It is an interesting observation, that a sole requ
ment of the constraint on the time average of current oper
is equivalent to the strong stationarity of the DM and t
constraint on the current operator. We note that ifĤ contains
the electron-electron interaction, that interaction enters
invariant current operator in Eq.~8!, so that interaction terms
appear in the nonequilibrium DM in a rather nontrivial wa

We will now deduce the meaning of the parameterA. We
consider two steady-state systems 1 and 2, with nonz
currents ~see Fig. 1! described by their respective DM’
r̂1(2) . The current is maintained with the parametersA1(2) ,
but we can equally well imagine that there are ideal res
voirs at far left and far right to which we apply biasDV1(2) ,
so thatA and DV is in correspondence. If we were to de
scribe a single compound system, comprising wea
coupled systems 1 and 2, with only the total current be
known, the DM would have had the formr1125exp$b@H1

1H22m(N11N2)2A(I1
01I2

0)#%. On the other hand, if we
weakly couple the originally disconnected system 1 and
4-2
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we haver̂1,25 r̂1r̂2. Clearly, the averages with respect
r112 and r1,2 will be the same ifb15b2 ,m15m2, andA1
5A2, i.e., no change of total current, as well as ofI 1 andI 2,
is introduced by coupling. Exactly This happens when
applied biasesDV1(2) are identical, so we conclude thatDV
should be an universal function ofA,m, andb. The univer-
sality comes from the fact that systems 1 and 2 are arbitr
The ‘DV-meter’ could be represented by a Landauer’s c
cept of infinitely large reservoirs adiabatically connect
through one-dimensional~1D! conducting channel.14 We
leave detailed analysis of this situation for a future paper
here infer theA2DV relation from specific results in th
following, giving DV52Ã, for small Ã. This is a very gen-
eral thermodynamical statement and removes the deta
considerations of near-equilibrium in reservoirs from the
tual transport problem of interest in the nanocontact.

We will now demonstrate several features of the gene
theory developed above, at the level of a self-consis
single-particle approximation. In the single-particle appro
mation, it is sufficient to know the single-particle dens
matrix for evaluation of any quantity, in our case the curre
and the electron density. These are well-defined for infin
system, unlike the total energy or total number of particl
Since we deal with a system that is genuinely infinite, i
there is a potential drop when comparing the right and
asymptotic regions, with uniform current flowing, we need
resort to Matsubara Green’s function techniques to obtain
density matrix unambiguously. The result is

n~x,x8!5E dE(
a

xE,a~x!xE,a* ~x8!

eb(E2ÃI a(E)2m)11
, ~10!

a Fermi-like distribution with the effective dispersionẼ(k)
5E2ÃI a(E). ThexE,a(x) diagonalize the effective Hamil
tonianK̂. I a(E)56ut(E)u(k/k)1/2 are the eigenvalues of th
invariant current operator, which in the basis of right- a
left-going energy normalized scattering states has the fo

2pI0~E!5F t* t
k

k
2r * t̃Ak

k

2r t̃ *Ak

k
2 t̃ * t̃

k

k
G . ~11!

FIG. 1. Compound system 112 ~see text! and related quantities
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The statesxE,a(x) are unitary transformation of the scatte
ing states given by the eigenvectors of the matrixI0(E) at
each energy levelE. t,r and t̃ , r̃ are the usual forward and
backward transmission and reflection coefficients resp
tively, and finally k5A2E and k5A2(E1Df) with Df
being the drop in electrostatic potential energy. Crucially,
scattering states appear here just as a convenient com
set of eigenstates of the Hamiltonian and it is the statesxE,a
which are actually being occupied according to Fermi-li
occupancies in Eq.~10!. In the limiting case ofur (E)u→0,
we obtain the original right- and left- going scattering stat
in agreement with the occupation scheme. On the other h
for ut(E)u→0 we get nearly their symmetric and antisym
metric combinations. We discuss the physical significance
these in later paragraphs.

Next we give our motivation for the identification ofÃ as
the applied bias throughDV52Ã. We look at the expecta
tion value of the current operator in a 1D perfect wire. In t
small Ã limit, we have

I 52 (
a50,1

E
0

` dE/2p

eb(E2ÃI a(E)2m)11
~21!aut~E!uAk

k

5
2e

h
2Ãut~EF!u2. ~12!

Since it is an experimentally well-established fact that
conductivity of a 1D channel is 2e2/h,15 we can directly
identify 2Ã with the bias applied between two equilibrium
reservoirs. Due to the general arguments above we know
this relation is universal~for smallÃ), so it needs to have the
same form for any system. Equation~12! is in complete
agreement with Landauer’s formula4 even though it comes
from rather different considerations.

In the following we will be concerned with the self
consistent determination of the drop in electrostatic poten
Df, and a detailed discussion of the difference betweenDf
and the applied biasDV. Specifically, let us suppose that ou
system consists of two identicalD-dimensional jellium-like
leads. Subtracting the conditions for local charge neutra
in the right and left asymptotic regions lead to the equat
(b→`):

E
0

mdE

2p
@n~x→2`!2n~x→`!#5E

2Df

0 dkD

~2p!D
. ~13!

This means that the charge appearing below the pote
drop, on the right, must be exactly compensated by
charge transfered to the left by means of the occupancie
Eq. ~10!. We can analytically evaluate the left-hand side f
small Ã, obtaining

Df52Ãutu2ur u25DVutu2ur u2, ~14!

independent of dimensionalityD. Through this we can relate
the 4-point conductanceG4P5I /Df to the 2-point conduc-
tanceG5I /DV. We immediately see, that the former gives
surprising result G4P5(2e2/h)(1/ur u2), approaching the
4-3
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quantum of conductance forutu→0. This counterintuitive re-
sult can be understood in terms of the occupation of ne
antisymmetric admixtures of right- and left-going scatteri
states, present inxE,1(x). While this comes out of our for-
malism, we can expect that these combinationsin the limit of
a weakly connected systemwill be destroyed by a finite life-
time of the single-particle states, arising from any weak sc
tering by phonons or other electrons. If we model this fact
canceling the off-diagonal terms in the invariant current m
trix Eq. ~11!, the resulting 2-point conductance turns out

be G̃5(2e2/h)utu4 and the 4-point conductanceG̃4P

5(2e2/h)(utu2/ur u2), while the relation in Eq.~14! remains

unchanged.G̃4P obtained without the off-diagonal terms
in complete agreement with the seminal work of Bu¨ttiker
et al.,4 while the two-point formula makes the conductan
smaller by factorutu2. We would also like to stress that th
off-diagonal elements may be expected to play a role
situations whenutu;1, leading to higher conductances th
those obtained from the Landauer formula.

In order to elaborate the relation between the maximu
entropy theory and OS, we observe that even though
work with only one parameter related to the number of p
ticles,m, from Eq. ~10! we see that we can define two au
iliary Fermi energiesm6 , up to which the statesa56 are
occupied fromm62ÃI 6(m6)5m ~see Fig. 2!. In the linear
response regime we getDm5m12m252Ãutu which to-
gether with Eq.~14! results in Df5Dmutuur u2. Similarly,
without the off-diagonal elements we haveDm52Ãutu2 and
Df5Dmur u2. The latter relations demonstrate most clea
the difference between the maximum entropy and O
Firstly, when ignoring the off-diagonals, the applied biasDV
in the OS is heuristically identified withDm while in our
treatment the thermodynamical arguments given in the
part of this paper suggest 2Ã5Dm/utu2. Second, it is admix-
tures of right- and left-going states that are occupied acc
ing to mR andmL, not the states themselves. We believe t
particularly for utu;1 this effect can be verified experimen
tally based on the differences between conductances com
from these two approaches. This comparison between
and maximum entropy shows that only forutu;1 does the
usual OS of scattering states approximately maximize
information entropy.

In conclusion, we have shown how the maximum-entro
formalism can be applied for nonequilibrium steady curren
We have derived the statistical density matrix introducing
L̂-operator that guarantees the steady-state character o
statistical ensemble and identified its resolution with Kub
invariant part of the current operator. A Lagrange multipl
2Ã, conjugate to the current operator, represents the app
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tem within this scheme seems rather arduous, the possib
of describing the nonequilibrium steady state through
maximum principle opens up new ways forward. One pr
pect is a theory in the spirit of the density-functional theo
that could permit the use of a rigorous single-particle a
proach to nonequilibrium calculations. In the second part
the paper we have demonstrated the theory on simple
amples, discussing in detail the character of the density
trix within the single-particle approximation. We have show
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agreement slowly breaks down as the transmission is
creased and the relevant states become coherent com
tions of right- and left- going states. We have derived
simple formula for the electrostatic potential drop and d
cussed its relation to the applied bias within the context
our theory.
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