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We revisit the expression for the conductance of a general nanostructure—such as a quantum point
contact—as obtained from the linear-response theory. We show that the conductance represents the strength of
the Drude singularity in the conductivityssk,k8 ; iv→0d. Using the equation of continuity for electric charge
we obtain a formula for conductance in terms of polarization of the system. This identification can be used for
direct calculation of the conductance for systems of interest even at theab initio level. In particular, we show
that one can evaluate the conductance from calculations for a finite system without the need for special
“transport” boundary conditions.
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I. INTRODUCTION

The conductance gives the current as a linear response to
an applied voltage for a given finite sample, specified by its
atomic geometry. Typically, the sample of interest may be a
thin chain of metallic atoms or a single molecule attached to
metallic electrodes. The usual theory forab initio prediction
of conductances for these nanoscale devices is based on the
Landauer formula1

G =
2e2

h
TseFd, s1d

which identifies the conductance with the transmission prob-
ability for an electron at the Fermi levelTseFd to penetrate
the sample.

Given the impressive success of the Landauer-Büttiker
equations2 in many mesoscopic phenomena, many authors
tried to relate it to basic principles. Since we are concerned
with linear response, the general Kubo linear-response
formalism3 is well suited to this purpose. Among the first to
do so were Economou and Soukoulis4 who presented a deri-
vation for noninteracting electrons. This was subsequently
vigorously discussed,5–7 since perfect transmissionT=1 re-
sults in a finite conductance, not infinite as might be ex-
pected. Eventually the debate was reconciled with the real-
ization that formula (1) gives the conductance between
reservoirs and 2e2/h represents an unavoidable minimum
contact resistance if such macroscopic electrodes are con-
nected through a quasi-one-dimensional(1D) contact. How-
ever, there are no such electrodes in the Kubo-like deriva-
tions, as has been pointed out by Landauer,8 and so the result
remained somewhat puzzling. The argument in favor of a
Kubo-like derivation was an introduction of an auxiliary ex-
ternal field acting in the leads that compensates exactly the
charge-density oscillations produced by the homogeneous
field in the sample, resulting in the “four-point” conductance
formula5,6

G4P =
2e2

h

TseFd
1 − TseFd

s2d

that relates the current to the local drop in total electrostatic
potential. However, in many experiments and situations it is

the two-point conductanceG that is required, in which case
formula (1) is frequently used for conductance calculations
(e.g., for nanowires and metal-molecule-metal junctions).
Therefore, clarification of the relationship of this formula to
the Kubo approach remains necessary, and may lead to prac-
tical advances forab initio calculations.

Much of the confusion arising from the “boundary and
bulk contribution to the conductivity” introduced by the ideal
leads has been clearly resolved by Sols9 who emphasized the
importance of global charge conservation and its relation to
gauge transformations. In that paper, however, only the result
(1) was derived and discussed and the induced charge-
density oscillations were ignored.

The fundamental understanding of conductance as
quantum-mechanical transmission relies on the picture of
distinct electrochemical potentials for the two electrodes.
These dictate the occupation of states in the nonequilibrium
sample. An alternative point of view(equally valid but much
closer to the Kubo formalism) is that of electrons accelerated
in the applied external field. The ability of the field to accel-
erate electrons in extended or bulk materials has been used
by Kohn10 to distinguish between conductors and insulators
where conductors are characterized by limv→0 Imhssv ,q
=0dj,A/v ,AÞ0, and the caseA=0 characterizes insula-
tors. This point of view, but applied to conductance of finite
samples or mesoscopic conductors, has been considered by
Fenton11 who strictly differentiated between a localized ex-
ternal field leading—through acceleration of electrons over a
finite distance—to a finite conductance and yielding the Lan-
dauer formula, and a homogeneous field giving a response
characteristic of the bulk material withv−1 singularity. An
approach based on coupled self-consistent equations for the
current density, electron density, and induced field, implicitly
also representing the “conductance based on acceleration”
point of view, was set out in detail by Kamenev and Kohn.12

They focus on the four-point conductance, which they define
as the current divided byinduced potential drop, thereby
completely neglecting the electrostatic drop in the external
potential. This is appropriate in some cases, since a finite
constant external field over infinitely long leads contributes
negligibly to the total potential drop around the sample. It is
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important to note that their self-consistent field is obtained
from the 1D Poisson equation, i.e., a system resembling par-
allel planes of chargee moving along their normal rather
then electrons confined to a 1D wire. The former systems has
far stronger screening behavior then the latter. More detailed
calculations by Sablikov and Shchamkhalova,13 who also
used the Kubo formalism, show that the effective interaction
between electrons in an 1D wire is not strong enough to
screen the charge and a uniform current coexists with an
induced dipole moment of the electron density in the wire.

In this paper we derive a formula for the steady-state con-
ductance in terms of the irreducible polarization of the sys-
tem of interest. Our starting point is application of an exter-
nal field and following the time evolution for large times. We
will show that only theq=0 Fourier component of the field
influences the steady-state current because the nonlocal con-
ductivity is a sharply peaked function ofq, eventually be-
coming a Diracd function.The weight of thisd function has
directly the meaning of conductance. At the same time, this
singular behavior also corresponds to the Drude singularity
Imhssvdj,v−1 if we set q=0 and then take the limitv
→0. It is interesting to note that from this point of view we
can identify the conductance with the Drude weight, a con-
nection encountered in somewhat different circumstances in
the conductive properties of extended systems.14 In addition
to providing an interpretation of the conductance, our for-
mula is suitable for practicalab initio calculations. Using the
continuity equation we circumvent the need for matrix ele-
ments of current operator, which are in general difficult to
evaluate numerically, and express the conductance in terms
of the irreducible polarization at small imaginary
frequency—a quantity that can be evaluated efficiently even
using ab initio methods that describe electronic
correlation.15,16

II. CONDUCTANCE IN IMAGINARY FREQUENCY

Consider a system, infinitely long along thex direction
and finite, infinite or periodic along the other two perpen-
dicular directions. Along thex axis we apply an infinitesi-
mally weak external electric field. The response of the sys-
tem will be in general nonlocal in time and space, and
quantitatively described by the Kubo linear-response theory:3

j sr ,td =E
−`

t

sJsr ,r 8;t − t8d ·Esr 8,t8dd3r8dt8, s3d

sJsr ,r 8;td = iQstdE
0

−ib

dtTrhreqj sr 8,t + tdj sr ,0dj, s4d

where j sr ,td is the current density,Esr ,td external electric
field, sJsr ,r 8 ; td nonlocal tensor of conductivity,Qstd=1 for
t.0 andQstd=0 otherwise, andreq the equilibrium density
matrix.

We take the form of the field asExsr ,td=EsxdQstd ,Ey

=Ez=0. Introducing the currentIsx,td=edS·j sr ,td (where
we integrate over the surface perpendicular tox) and utiliz-
ing our particular choice of external field we obtain

Isx,td =E dx8Issx,x8;tdExsx8d, s5d

Issx,x8;td =E
−`

t

dt8E dS · sJsr ,r 8;t8d ·dS8. s6d

In the steady state we are interested in the limitt→` so that
for the steady-state current we have

Issx,x8d = lim
a→0+

E
−`

`

dt8e−at8ssx,x8;t8d = ssx,x8;v = i0+d,

s7d

where we have introduced the effective one-dimensional
conductivity ssx,x8 ;vd=edS·sJsr ,r 8 ;vd ·dS8. The positive
infinitesimal a plays an important role for systems without
dissipation, where application of a field for an infinitely long
time results in the system being heated. This is avoided by
introducing an effective finite(but large) measurement time
T,a−1. In this way we avoid the heating problem because
we first let Esxd→0 (linear response) and only afterwards
a→0+. [Identical expressions are obtained assuming adia-
batic switching on of the external fieldEsx,td=Esxdeat as t
approaches 0 from below, and measuring the current att
=0−, which is the more conventional point of view.]

We are principally concerned with the total currentI and
not the current density. Similarly, we would like to work with
the bias voltageV=edr ·Esr d=edxEsxd rather than the field
itself. To achieve this we Fourier transform with respect tox

Isqd =E dq8

2p
ssq,q8dEsq8d, s8d

ssq,q8d =E e−iqx+iq8x8ssx,x8ddxdx8. s9d

First, the steady-state current needs to be independent ofx,
Isxd= I, as a consequence of the equation of continuity, so
that Isqd=2pIdsqd and therefore directly alsossq,q8d
,dsqd. Second, as a direct consequence9 of the linearity of
the theory, the steady-state current is uniquely given by the
biasV=Esq=0d only. This means that for two external fields
Esqd and E8sqd whose long-range parts are equalfEsq=0d
=E8sq=0dg, but otherwise are arbitrary, one has to obtain
identical steady-state currents. We therefore conclude that
ssq,q8d,dsq8d in the limit a→0+, i.e., it is a sharply
peaked function ofq8 so that, based on Eq.(8), it is only the
values ofEsqd or E8sqd at q=0 that affect the steady current.
Using these observations in Eq.(8) we obtain

G =
I

V
=E dqdq8

4p2 ssq,q8d, s10d

or using the fact thatssq,q8d,dsqddsq8d we can also write

lim
a→0+

ssq,q8; iad = 4p2Gdsqddsq8d. s11d

This is one of the central results of this paper and directly
shows that conductance is the strength or weight of the
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Drude singularity. Formula(10) can be used for extrapolative
evaluation of the conductance from the conductivity at small
imaginary frequencies, and since it is peaked function in
q,q8, the conductivity needs to be evaluated for small values
of these variables only. We will demonstrate this approach
numerically in Sec. V.

III. CONDUCTIVITY AND POLARIZATION

Evaluation of the conductance using Eq.(10) requires cal-
culation of the Fourier transform of the conductivity. The
latter is, in a real-space representation, given by Eq.(4)
which itself is difficult to evaluate for all necessaryr ,r 8. On
the other hand, substantial experience has been accumulated
in calculations of the polarizationxsr ,r 8 ; td, defined by15,16

xsr ,r 8;t − t8d =
dnsr ,td

dVsr 8,t8d
, s12d

wherednsr ,td is a change in density due to infinitesimally
weak external potentialVsr ,td. To relate these two we utilize
the equation of continuity integrated over the cross-sectional
area

]xIsx,td = ]tNsx,td. s13d

From the definition of the polarization we haveNsx,td
=e0

t dt8edx8xsx,x8 ; t− t8dVsx,t8d, where our xsx,x8 ; td is
now, similarly to ssx,x8 ; td, integrated across the cross-
sectional area[dS anddS8 integrals in Eq.(6)]. Substituting
the linear-response formulas for current(5) and density
Nsx,td, Fourier transforming intoq,q8 variables and using
the fact that the external potential is arbitrary, we immedi-
ately obtain

ssq,q8; ia → i0+d = lim
a→0+

a

qq8
xsq,q8; iad. s14d

We note that the singular character ofssq,q8d for smallq,q8
as given in Eq.(11) does not arise fundamentally from the
1/qq8 prefactor, sincexsq,q8 ;vd<qq8fsq,q8 ;vd where
fs0,0dÞ0. This property is a consequence of conservation of
total number of particlesfnsq=0d=Ng or the absence of re-
sponse in density if we change the potential everywhere by a
constantq8=0.

Expressing the conductance through the polarization is
particularly suited to a correct treatment of a system of in-
teracting electrons. In the first place, it is crucial to define the
conductance not as a coefficient for current dependence on
the external but on the total electric fieldEtsr d=Esr d
+Eisr d. The induced fieldEisr d can be obtained from Pois-
son equation

isqx̂ + Gd ·Eisq,G;td = − 4pdnsq,G;td, s15d

where x̂ is a unit vector in thex direction andG is a 2D
reciprocal lattice vector corresponding to the perpendicular
coordinates. Using the linear-response result fordnsq,G ; td
in terms of xsr ,td [see Eq.(12)] we arrive at the relation
between the total and external field

Etsq,Gd =E dq8Fx̂dG,0dsq − q8d

+
qx̂ + G

q8

4p

q2 + uGu2
xsq,G;q8,0dGEsq8d. s16d

If we multiply the latter equation by the unit vectorx̂ and
subsequently invert it forG=0, we obtain the relation be-
tween the external fieldEsqd and the total field alongx̂ av-
eraged over the cross-sectional areaEtsq,G=0d. Substituting
this relation into Eq.(8) we obtain, after some algebra(see
first section of the Appendix),

G = lim
a→0+

a

4p2 E xtsq,q8; iad
qq8

dqdq8, s17d

where we introduce the “transport part of the polarization,”
xtsq,q8 ; iad, related to the irreducible polarization
x0sq,G ;q8 ,G8d through an equation of Dyson type

xtsq,G;q8,G8d = x0sq,G;q8,G8d +E dko
KÞ0

xtsq,G;k,K d

3
4p

k2 + uK u2
x0sk,K ;q8,G8d. s18d

The corrections entering throughK Þ0 terms in Eq.(18) are
known as local-field effects in the context of evaluation of
the macroscopic dielectric function.16 Here, however, it is
not quite the same sincek=0,K Þ0 part is included intoxt

whereas for the macroscopic dielectric function the sum is
restricted tokÞ0,K Þ0. The omission of theK =0 term
involving 4p /k2 in Eq. (18) stems directly from the fact that
it is precisely this term that converts the drop in external field
into drop in the total field, as can be seen from Eq.(16) when
taking into account that the drop in total field is given by
DVt=Etsq=0,G=0d. Correct evaluation of the conductance
in 3D therefore requires inclusion of these “perpendicular”
local-field effects, included withinxt but not inx0, into ac-
count. Essentially,xt describes the response of the density to
the effective potential, except that long-range screening of
the potential in thex direction is specifically excluded, al-
lowing the conductance to address the applied voltage rather
than the local potential drop.

For systems translationally invariant along the perpen-
dicular directions,x0sq,0;k,Gd,d0,G and the last term in
Eq. (18) becomes identically zero. It follows that in this par-
ticular casext=x0 and the conductance of noninteracting
electrons, defined with respect to drop in theexternalfield, is
identical to the conductance of interacting electrons, treated
within the random-phase approximation(RPA), defined with
respect to drop in thetotal field.

IV. LANDAUER FORMULA

In this section we present simple, analytically tractable
cases that illustrate the theory of the preceding sections.
Consider first the case of noninteracting electrons in a quan-
tum wire with only one subband. It is well known that the
polarization function has the form17
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xsq,q8;vd =
1

2pq
lnFv2 − sq2/2 − kFqd2

v2 − sq2/2 + kFqd2G 3 2pdsq − q8d,

s19d

where the factor 2pdsq−q8d arises trivially from the transla-
tional invariance of the system along thex axis. Using this
expression in Eq.(14) immediately givesssq,q8 ; ia→ i0+d
=2pdsq8ddsqd and therefore through Eq.(11) G=1/2p, the
quantum of conductance(i.e., e2/h in SI units). Using Eq.
(17) without application of the limit, and Eq.(19), it is also
possible to obtain the analytical dependence of conductance
G on imaginary frequencya=−iv for this system,

Gsad =
1

Î2ps1 +Î1 + fa/eFg2d1/2
. s20d

This functional form will be extremely useful for numerical
calculation of Gs0+d based on extrapolation to zero fre-
quency, described in Sec. V.

It is also instructive to explore the behavior ofIsst→`d
directly [see Eq.(6)]. The latter can be calculated, e.g., using
Fourier transform of Eq.(19)

Issq,q8;td =E
0

t

dt8ssq,q8;t8d

=E
0

t

dt8
]t8xsq,q8;t8d

qq8

=
xsq,td

q2 3 2pdsq − q8d, s21d

where we have used the expression(14) in the real-time do-
main. The result is

Issq,q8;td =
2

pq3t
sinskfqtdsinSq2

2
tDQstd 3 2pdsq − q8d,

s22d

which for t→` evidently approaches the form(11) with G
=1/2p. The lesson from these analytical examples is that the
well-known formulas for polarization can be used for evalu-
ation of the conductance of the system, and that the limit
iv→0+ clearly corresponds to the steady-state limitt→`.

Because the conductivity is sharply peaked aroundq8=0,
only theq=0 component of the applied fieldE has an effect
on the total current. This allows us to include, as a limiting
case, a homogeneous field. For a system with a constant field
applied over lengthL, the field itself must be,1/L so that
we have a sufficiently small finite dropV=eLEdx,1. The
physical meaning of the finite conductance of a scattering-
free segment of a metallic wire is clearly a manifestation of
the free acceleration of electrons over the distanceL. This is
in agreement with the point of view advocated by Fenton.11

However, there is no need to keepL strictly finite; in fact the
limiting caseL→` can be still characterized by a finite over-
all conductance by taking careful limits and using properties
of the Diracd function, as mentioned above for the case of
the free-electron gas[following Eq. (22)]. In simple terms,
this represents the limit of increasing the length over which

the external field is applied,L, while decreasing the intensity
of the fieldE in such a way as to keep the dropV,EL finite
and small.

A simple qualitative demonstration of this argument can
be made semiclassically. Consider a finite drop over finite
region of a 1D wire as shown in Fig. 1. The current can be
obtained from the local Fermi distribution on the far right.
Electrons that are occupying states above the equilibrium
distribution have travelled to the right from the region with
an accelerating field. These, during their flight through the
region, gained energyDV so that they represent currentI
=1/LokkF where we sum over states with accelerated elec-
trons, i.e.,k:ekP seF ,eF+DVd. This obviously leads to the
quantum of conductanceG=1/2p. While formally we have
striking similarity with the usual “two chemical potentials”
picture, it should be noted that the microscopic interpretation
of these expressions is different. As can be seen from Fig. 1,
the local charge neutrality is clearly violated in the constant
potential regions on the right and left while in the center it is
locally charge neutral where the distribution corresponds to
the shifted Fermi sphere. The infiniteL limit, discussed in
previous paragraph, resolves this problem by sending the re-
gions with unbalanced local charge away into infinities.

When we insert a localized scattering potential character-
ized by the transmission matrix

Tskd = Frskd t̃skd
tskd r̃skd

G s23d

into 1D gas of electrons, the Landauer formula is obtained.
We obtain the desired demonstration of the sharply peaked
character ofssq,q8 ; iad by analytically continuing Kamenev
and Kohn’s expression12 onto the imaginary frequency axis,

ssq,q8; iad =
1

2p
H 2kFa

kF
2q2 + a22pdsq − q8d

− urseFdu2
2kFa

kF
2q2 + a2

2kFa

kF
2q82 + a2J s24d

→2putseFdu2dsqddsq8d. s25d

Alternatively, we can arrive at the same result using Eq.(17),
which explicitly shows the utility of reformulation of trans-
port through the polarization function in imaginary fre-
quency. A detailed derivation is given in the second section
of the Appendix.

FIG. 1. Semiclassical interpretation of a finite-field potential
Vsxd applied to a wire. The local Fermi spheres are depicted as for
2D gas for clarity. The filled area on top of the equilibrium spheres
indicates accelerated electrons, while the empty area inside the
equilibrium spheres represents states emptied by the deccelerating
effect of the uphill field.
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We stress that this result for thetwo-point conductance(1)
of noninteracting electrons also applies to interacting elec-
trons if the conductance is defined with respect to the total
field at the RPA level of approximation. The four-point con-
ductance(2) may be formulated in a similar fashion, which,
if combined with the approximate effective electron-electron
interactionvee

1Dsqd,1/q2, would be equivalent to the treat-
ment of Kamenev and Kohn.12 (In their calculation the four-
point conductance is defined asG4P= I /Vi, whereVi is the
self-consistent induced drop only. The reason for neglecting
the drop in external field is due to the above mentioned lim-
iting procedure; sinceE3L is finite whileL→`, E3L8 will
be negligible for any finiteL8. Since the four-point measure-
ment is meant across a finite distanceL8, the contribution to
the total drop on finite distance comes solely from the in-
duced field.)

V. FEASIBILITY FOR NUMERICAL CALCULATIONS

The expression for the conductance(17), together with
some experience gained from the evaluation ofG for lead-
scattering-lead system in the Appendix, motivates the fol-
lowing suggestion: can the correct conductance of an infinite
system be calculated using a finite system with some arbi-
trary boundary conditions, determining the polarization as a
function of a, and then extrapolatinga→0?

For the purpose of this exploration we have considered a
square-barrier potential in 1D, for which the results for trans-
mission coefficients are well-known analytically. We calcu-
late the polarization function using the Green’s function of
the equilibrium system given by equation

fe− ĤsxdgGsx,x8;ed = dsx − x8d, s26d

supplemented by the chosen boundary conditions. For sim-
plicity and for the purpose of illustration, we take the ex-
treme case of “zero-boundary” conditions on the wave
functions.18 In this case, it is clear thatGsad→0 asa→0. In
terms of the Green’s function we can easily express the po-
larization as

xsx,x8; iad = o
i

occ

fGsx,x8;ei + iadfisx8dfi
*sxd

+ Gsx8,x;ei − iadfisxdfi
*sx8dg, s27d

where we sum over occupied states only, andfi are eigen-

states ofĤ from Eq. (26). The Green’s function at given
energy is found by direct integration of Eq.(26) and eigen-
states are easily found by matching plane waves with the
chosen boundary conditions. Finally we use a discrete Fou-
rier transform,xsx,x8d→xsK ,K8d, to obtain the estimate of
conductance

Gsad = o
K,K8

a
xsK,K8; iad

KK8
. s28d

The discrete Fourier transform introduces a convergence pa-
rameter: the real-space step sizeDx or, equivalently, the
number of discretization pointsN. Altogether, the calculation

needs to be converged with respect to the system sizeL and
with respect toN, and extrapolated with respect to imaginary
energya.

Before we discuss results for nonzero barrier height, let us
first consider the case of zero barrier height, i.e., the free-
electron gas. In this case we know exactly the whole depen-
dence ofGsad, given by Eq.(20). We have fixed the Fermi
wave vector tokF=p /3 a.u., corresponding toeF<0.5 a.u.
In Fig. 2 we show numerical results obtained using Eq.(28).
The labels “L-N” represent system of lengthL a.u. with N
discretization points in real space, or equivalently, the num-
ber of K points in the discrete Fourier transform. We obtain
our chosen Fermi energy for lengthsL=48 and 96 when
occupying 16 and 32 states, respectively.

From Fig. 2 we see that the numerical results converge to
the analytical expression for energiesa@eF. The lower limit
of this range can be brought closer toeF by increasing the
length of the system. However, for a longer system the con-
vergence with respect toN becomes more demanding, with
the error growing with energy. This behavior can be traced to
the cusp in the polarizationxsx,x8d at x=x8. It can be easily
found from Eq.(27) that the size of this cusp is

x8sx,x8dx=x8+ − x8sx,x8dx=x8− = 4o
i

occ

fi
*sxdfisxd. s29d

This expression could be used to remove the cusp from nu-
merical Fourier transforms and substantially decrease the
needed number ofK points. In the present paper, since our
system is computationally undemanding, we have instead
simply increasedN until satisfactory convergence was
achieved.

Next we include a square barrier into our system. In
Fig. 3 we show results of calculation with barrier with width
a=2 a.u. and heighteF. In this case the transmission prob-
ability is approximately 50% which is indicated in the upper

FIG. 2. The dependence of conductance of free-electron 1D gas
on imaginary frequency. Black line corresponds to the analytical
result(20) and the numerical data labels “L-N” represent system of
lengthL a.u. withN discretization points in real space. Apart from
the low-energy drop to zero, which is characteristic of a finite sys-
tem, the functions converge to the exact result for the infinite sys-
tem. This opens the possibility of calculating the dc conductance by
extrapolation from moderate values ofa.
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graph with arrows. In the lower graph we show the depen-
dence of conductivity on the imaginary frequencya. The
two sets of numerical data correspond to odd and even
numbers of occupied states, converged with respect toN
within the considered range ofa. The convergence of data
with respect toL is first fast but eventually becomes rather
slow. In fact, it is not our aim to get the conductance
of an “almost infinite” system, but rather to be able to extract
the conductance of an infinite system from a calculation
for a sufficiently large but finite system. The shown length
L=96 a.u. is to be compared with the Fermi wavelength
lF<6.

A striking difference between odd and even number
of occupied states comes from the fact that placing the bar-
rier of lengtha=2 in the center affects the symmetric and
antisymmetric states(at the Fermi energy) differently.
Clearly, the former have a much larger amplitude at the scat-
tering potential than the latter(which are zero in the center of
the system) and therefore the symmetric states will be
more affected. This is in agreement with the conductance for
32 occupied states being below that for 31 occupied states.
For L→` these two states become degenerate and the
difference between odd and even cease to exist. By bracket-
ing the exact conductance in this way, we can
obtain acceptable convergence even with the crude “zero”
boundary conditions.

When calculating conductance we need to be able to ex-
trapolate our data to zero energy. As we have pointed out
above, the small-energy turnaround ofG arises from the fi-
nite size of the system and we should not take that into
account. To fit the data we have used a scaled version of the
functional form obtained for the free gas,

Gsad =
a0

Î2ps1 +Î1 + f2a1ag2d1/2
, s30d

where a0 and a1 are fitting parameters, representing linear
scaling of the conductance and energy axes. As we see from
Fig. 3 the fit is very good over the crucial middle range of
frequencies. Fora.3 it becomes worse but we already
know that this difference can be attributed to convergence
problems with number ofK points due to the cusp in
xsx,x8d. When looking ata→0 limit of our fitted expres-
sions(coefficientsa0 in Fig. 3) we see the values bracket the
exact value with an relative error of roughly 10%. Averaging
the result for even and odd states gives a smaller and more
convergent errors0.5%d.

This calculation is intended to be illustrative, yet it shows
that the formula(17) can, in principle, lead to the correct
answer even when applied to system with zero-boundary
conditions. We particularly believe that the use of periodic
boundary conditions will significantly improve the perfor-
mance of this approach for the main problem of the zero-
boundary condition is clearly the one-way transfer of charge
from one side to the other, which introduces finite-system
errors after a relatively short time, and therefore spoilsGsad
betweena=0 and a relatively large value. This gross effect is
not present for a periodic system.

VI. CONCLUSIONS

We have developed a unifying point of view of the polar-
ization, the nonlocal conductivity and the conductance which
supplies a steady-state transport characteristics of any sys-
tem. We have shown that the weight of the Drude singularity
at zero frequency of the nonlocal conductivity, when consid-
ered in reciprocal space, directly corresponds to the conduc-
tance of the system to which we apply a field with a nonzero
overall drop in potential. We have identified a simple relation
between conductivity and polarization for the case of a sys-
tem under unidirectional external field that eventually led us
to a simple formula for conductance, expressed through the
polarization of the system at small imaginary frequency. Ex-
pressed in terms of polarization, it turned out to be possible
to address the self-consistent field that contributes to the drop
in total potential used for definition of conductance. We have
shown that the formula for its evaluation remains formally
intact but instead of the polarization function we need to
supply a “transport part” of the polarization. The latter is
identical to the irreducible polarization in 1D, but differs
from it in general 2D or 3D systems except where perfect
translational invariance exists perpendicular to the flow of
current.

Finally we have demonstrated that our expression for con-
ductance in terms of polarization can be used for the conve-
nient numerical evaluation of the conductance for systems
without imposing specific boundary conditions in the form of
scattering states. This formulation is directly suitable for in-
clusion of many-body or inelastic effects, since it is based on
the polarization function for which approximations that in-
clude these complications are very well developed.

FIG. 3. The dependence of conductance, given by Landauer
formula, on the Fermi energy(kF=p /3 in our calculations) for a
square barrier of heighteF and widthlF /3 (upper graph) and the
dependence of the numerically calculated conductance on the
imaginary energy(lower graph). Gsad approaches the exact result
of infinite system before it turns rapidly towards zero.
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Note added in proof.We are thankful to M. Büttiker for
drawing our attention to his early account on the role of
polarization in the treatment of conductance and total field in
a model quantum junction.19
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APPENDIX

1. Derivation of Eq. (17)

Let gsq,q8d be the inverse operator to the right-hand side
in Eq. (16) for G=0.

E dkgsq,kdSdsk − q8d −
4p

kq8
xsk,q8dD = dsq − q8d,

sA1d

so thatEsqd=edkgsq,kdEtskd. According to Eq.(5) we have

Isqd =E dkE dq8

2p

axsq,q8d
qq8

gsq8,kdEtskd, sA2d

which motivates us to define

xtsq,q8d = q8E dk
xsq,kd

k
gsk,q8d. sA3d

Multiplying Eq. (A1) with q8xsq9 ,qd /q from left and in-
tegrating overq we have

xtsq9,q8d − 4pE dk
xtsq9,kd

k2 xsk,q8d = xsq9,q8d, sA4d

comparing term by term this Dyson-like equation with the
Dyson equation for the reducible polarizationxsq,q8d we
arrive at Eq.(18) which omits theK =0 term from the sum.
Substitution of Eq.(A3) into Eq. (A2) give immediately the
result (17) which concludes the stated results in Sec. III.

2. Derivation of Eq. (25) using formula (17)

The polarization of noninteracting electrons is given by
expression15

xsq,q8; iad = o
i j

ki ue−iqxu jlk j ueiq8xuil
ni − nj

ia − ej + ei
, sA5d

where uil are eigenstates of the electronic Hamiltonian with
eigenenergyei, ni is its occupation factor and

ki ue−iqxu jl =E dxki uxle−iqxkxu jl. sA6d

Using formula(10) we therefore have

G =E dq

2p

dq8

2p
o
i j

ki u
e−iqx

q
u jlk j u

eiq8x

q8
uil

asni − njd
ia − ej + ei

. sA7d

The first two matrix elements are, after integrations, complex
conjugate to each other and therefore their product is real.

The last fraction in Eq.(A7) is not state but energy depen-
dent and its real part, which is only needed, is given by

a

sei − ejd2 + a2

dnseid
dei

sei − ejd2. sA8d

We have already used the fact that in the limit of our interest
sa→0d the first factor will be sharply peaked and therefore
we can use linear Taylor expansion ofnsejd aroundei. How-
ever, the expression will be nonzero only if the factorsei

−ejd2 will be compensated by the energy dependence of the
matrix elements, which we will confirm in following para-
graphs.

In the next step we interchange the order of integrations in
Eq. (A7) so that we directly evaluate

E dq

2p

eiqx

q + ie
= − iQs− xdeex, sA9d

where we interpret the singularity to be atq=−ie. This is in
fact arbitrary since, as we have pointed out in Sec. III,
xsq,q8 ;vd=qq8fsq,q8d. An equally valid choice of singular-
ity at q= + ie leads to identical results.

We can now finally turn to evaluation of the matrix ele-
ments. The asymptotic character of the wave functions has
the well-known form

fk,Rsxd =
1

Î2p
Heikx + rke

−ikx x ! 0

tke
ikx x @ 0.

sA10d

fk,Lsxd =
1

Î2p
H t̃ke

−ikx x ! 0

e−ikx + r̃ke
ikx x @ 0.

sA11d

The final integrals we need to do have the form

sk,R/Luk8,R/Ld =E
−`

0

eexfk,R/L
* sxdfk8,R/Lsxddx, sA12d

and of there we need to keep only those that are singular
,1/k−k8 since in Eq.(A8) we need to compensate the fac-
tor sek−ek8d

2= 1
2sk+k8d2sk−k8d2. Foreseeing thed function

character with respect toek−ek8 andek−eF appearing in Eq.
(A8) we can directly usetk= tk8= tkF

and rk=rk8=rkF
, the

transmission and reflection probability amplitudes at the
Fermi energy, respectively. It is now easy to see that the
singular terms are

sk,Ruk8,Rd = − sk,Luk8,Ld =
1

2p

utu2

k − k8
, sA13d

sk,Ruk8,Ld = sk,Luk8,Rd* =
1

2p

r* t̃

k8 − k
. sA14d

Using these forms, together with Eq.(A8) and the form zero-
temperature limit thatdnsed /de=dse−eFd we directly get

G =
1

2p
sutu4 + utu2ur u2d =

utu2

2p
, sA15d

the celebrated Landauer formula.
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