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Conductance and polarization in quantum junctions
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We revisit the expression for the conductance of a general nanostructure—such as a quantum point
contact—as obtained from the linear-response theory. We show that the conductance represents the strength of
the Drude singularity in the conductivity(k,k’;iw— 0). Using the equation of continuity for electric charge
we obtain a formula for conductance in terms of polarization of the system. This identification can be used for
direct calculation of the conductance for systems of interest even abthgtio level. In particular, we show
that one can evaluate the conductance from calculations for a finite system without the need for special
“transport” boundary conditions.
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I. INTRODUCTION the two-point conductanc@ that is required, in which case

The conductance gives the current as a linear response fgrmula (1) is frequently used for conductance calculations
an applied voltage for a given finite sample, specified by itg€-9., for nanowires and metal-molecule-metal junctions
atomic geometry. Typically, the sample of interest may be al'herefore, clarification of the relationship of this formula to
thin chain of metallic atoms or a single molecule attached téhe Kubo approach remains necessary, and may lead to prac-
metallic electrodes. The usual theory faiv initio prediction  tical advances foab initio calculations.
of conductances for these nanoscale devices is based on theMuch of the confusion arising from the “boundary and

Landauer formula bulk contribution to the conductivity” introduced by the ideal
leads has been clearly resolved by $elbo emphasized the
2¢? : ; : :
G= TT(GF)' (1)  importance of global charge conservation and its relation to

gauge transformations. In that paper, however, only the result

which identifies the conductance with the transmission prob(l) was derived and discussed and the induced charge-
ability for an electron at the Fermi levdl(er) to penetrate density oscillations were ignored.
the sample. The fundamental understanding of conductance as
Given the impressive success of the Landauer-BiittikeAuantum-mechanical transmission relies on the picture of
equation$ in many mesoscopic phenomena, many authorglistinct electrochemical potentials for the two electrodes.
tried to relate it to basic principles. Since we are concernedhese dictate the occupation of states in the nonequilibrium
with linear response, the general Kubo linear-responssample. An alternative point of viegequally valid but much
formalisn® is well suited to this purpose. Among the first to closer to the Kubo formalispis that of electrons accelerated
do so were Economou and Soukotiligho presented a deri- in the applied external field. The ability of the field to accel-
vation for noninteracting electrons. This was subsequentlgrate electrons in extended or bulk materials has been used
vigorously discusset,’ since perfect transmissioR=1 re- by Kohn' to distinguish between conductors and insulators
sults in a finite conductance, not infinite as might be ex-where conductors are characterized by Jirg Im{o(w,q
pected. Eventually the debate was reconciled with the reakg)} ~A/w,A#0, and the casé&=0 characterizes insula-
ization that formula(l) gives the conductance between tors This point of view, but applied to conductance of finite
reservoirs and kz/h I’epl’esentS an UnaV0|dab|e minimum Samp|es or mesoscopic Conductorsl has been considered by
contact resistance if such macroscopic electrodes are Cofentoi! who strictly differentiated between a localized ex-
nected through a quasi-one-dimensioid) contact. How-  ternal field leading—through acceleration of electrons over a
ever, there are no such electrodes in the Kubo-like derivasinjte distance—to a finite conductance and yielding the Lan-
tions, as has been pointed out by Landdieend so the result gauer formula, and a homogeneous field giving a response
remained somewhat puzzling. The argument in favor of &haracteristic of the bulk material with™* singularity. An
Kubo-like derivation was an introduction of an auxiliary ex- approach based on coupled self-consistent equations for the
ternal field acting in the leads that compensates exactly theyrrent density, electron density, and induced field, implicitly
charge-density oscillations produced by the homogeneougiso representing the “conductance based on acceleration”
field in the sample, resulting in the “four-point” conductancepoint of view, was set out in detail by Kamenev and Kéfn.
formula®® They focus on the four-point conductance, which they define
o 2% T(ep) as the current divi_ded bynduced potgntial drpp, thereby
T 1-T(e (2 completely neglecting the electrostatic drop in the external
-T(ep) . e . X . .
potential. This is appropriate in some cases, since a finite
that relates the current to the local drop in total electrostaticonstant external field over infinitely long leads contributes
potential. However, in many experiments and situations it is1egligibly to the total potential drop around the sample. It is
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important to note that their self-consistent field is obtained
from the 1D Poisson equation, i.e., a system resembling par- 1(x,1) =J dx'1,(x,x" ;) Ex(Xx'), ©)
allel planes of charge moving along their normal rather
then electrons confined to a 1D wire. The former systems has ‘
far stronger screening behavior then the latter. More detailed 1, (%X ;1) :J dt’ J ds-&(r,r';t) -ds’. (6)
calculations by Sablikov and Shchamkhald¥ayho also o
used the Kubo formalism, show that the effective interaction . . .
between electrons in an 1D wire is not strong enough tc}; the steady state we are interested in the limit= so that
screen the charge and a uniform current coexists with afP" the steady-state current we have
induced dipole moment of the electron density in the wire. * .

In this paper we derive a formula for the steady-state con- 1,(%x") = lim f dt'e™ o(x,x';t") = o(x,X' ;0 =i0"),
ductance in terms of the irreducible polarization of the sys- a0 -
tem of interest. Our starting point is application of an exter- (7)
nal field and following the time evolution for large times. We
will show that only theq=0 Fourier component of the field
influences the steady-state current because the nonlocal ¢
ductivity is a sharply peaked function of eventually be-
coming a Diracs function. The weight of thisS function has
directly the meaning of conductancst the same time, this
singular behavior also corresponds to the Drude singularity
Im{o(w)} ~ o™ if we setq=0 and then take the limito
—0. It is interesting to note that from this point of view we n . . X ; )
can identify the conductance with the Drude weight, a con-¢ 0"+ [ldentical expressions are obtained assuming adia-
nection encountered in somewhat different circumstances iRatic switching on of the external fiel(x,t) =E(x)e”" ast
the conductive properties of extended systéfris. addition ~ @PProaches 0 from below, and measuring the currerit at
to providing an interpretation of the conductance, our for-=0 » Which is the more conventional point of vigw.
mula is suitable for practicalb initio calculations. Using the We are prlnCIpaIIy Concgrned with the toltal currerand.
continuity equation we circumvent the need for matrix ele-not th_e current density. Similarly, we would like to work_W|th
ments of current operator, which are in general difficult tothe bias voltage/=Jdr-E(r)=[dxEXx) rather than the field

evaluate numerically, and express the conductance in termielf. To achieve this we Fourier transform with respect to
of the irreducible polarization at small imaginary dq’

frequency—a quantity that can be evaluated efficiently even 1(a) =f ——o(0,9)EQ’), (8
using ab initio methods that describe electronic 2om

correlationt>16

where we have introduced the effective one-dimensional
Sfenductivity o(X,x";w)=[dS-a(r,r’;w)-dS’. The positive
infinitesimal « plays an important role for systems without
dissipation, where application of a field for an infinitely long
time results in the system being heated. This is avoided by
introducing an effective finit¢but largg measurement time

~ a1 In this way we avoid the heating problem because
we first let E(x) — 0 (linear responseand only afterwards

o(9,q') = J e7Ha'X’ (X" dxdX . 9)
Il. CONDUCTANCE IN IMAGINARY FREQUENCY . .
Q First, the steady-state current needs to be independent of
Consider a system, infinitely long along thledirection  1(x)=I, as a consequence of the equation of continuity, so
and finite, infinite or periodic along the other two perpen-that 1(q)=2#l18(q) and therefore directly alsas(q,q’)
dicular directions. Along the< _axis we apply an infinitesi- ~ §(g). Second, as a direct consequéhogthe linearity of
mally weak external electric field. The response of the systhe theory, the steady-state current is uniquely given by the
tem will be in general nonlocal in time and space, andpiasV=E(q=0) only. This means that for two external fields
guantitatively described by the Kubo linear-response théory:E(q) and E’(q) whose long-range parts are eq(i&(q=0)
t =E’(q=0)], but otherwise are arbitrary, one has to obtain
j(r,t):f a(r,r’t=t) -E(r',t")d3’dt’, (3) identical steady-state currents. We therefore conclude that
- o(q,9')~ (') in the limit «a—0", i.e., it is a sharply
' peaked function of’ so that, based on E), it is only the
o 18 o ) values ofE(q) or E’(q) atg=0 that affect the steady current.
o(r,r';H) =ie() . drTr{ped (r',t+ Dj(r,0)},  (4) Using these observations in E@) we obtain
wherej(r,t) is the current density(r,t) external electric G:I—:f Ma’(q,q')’ (10)
field, &(r,r’;t) nonlocal tensor of conductivity®(t)=1 for \ 4
t>0 and®(t)=0 otherwise, angq the equilibrium density  or ysing the fact thair(q,q’) ~ 8(q)8(q’) we can also write
matrix.
We take the form of the field aE(r,t)=E(x)0(t),E, lim o(0,q";ia) = 47°Ga(Q)3(q"). (11)
=E,=0. Introducing the current(x,t)=/dS:j(r,t) (where a=0
we integrate over the surface perpendiculakx@nd utiliz-  This is one of the central results of this paper and directly
ing our particular choice of external field we obtain shows that conductance is the strength or weight of the
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Drude singularity. Formulgl0) can be used for extrapolative R

evaluation of the conductance from the conductivity at small E'(0,G) = f dqg’ |:X5(3,05(q -q')

imaginary frequencies, and since it is peaked function in

g,q’, the conductivity needs to be evaluated for small values gx+G 47 . ,

of these variables only. We will demonstrate this approach + q R+ |G|2X(an,q ,0) |E(d'). (16)

numerically in Sec. V.
If we multiply the latter equation by the unit vect&rand

subsequently invert it fo6=0, we obtain the relation be-

tween the external fiel&(q) and the total field along av-
Evaluation of the conductance using E&0) requires cal- eraged over the cross-sectional a&@l, G =0). Substituting

culation of the Fourier transform of the conductivity. The this relation into Eq(8) we obtain, after some algeb(aee

latter is, in a real-space representation, given by @&g. first section of the Appendjx

which itself is difficult to evaluate for all necessaryr’. On

IIl. CONDUCTIVITY AND POLARIZATION

t ra;
the other hand, substantial experience has been accumulated G= lim = X(q,q,,la)dqdq, 17)
in calculations of the polarizatiog(r,r’;t), defined by>16 woot4m? qq
, ) on(r,t) where we introduce thetfansport part of the polarizatiofi
x(rr';t=t )=m, (12 \Yg.q’;ia), related to the irreducible polarization

x°(q,G;q’,G") through an equation of Dyson type
where on(r,t) is a change in density due to infinitesimally
weak extgrnal potenltla!_(r t) To relate these two we utlllge ¥(0,G:9,G") = x%(q,G:q',G') +f dkz ¥(@,G:k,K)
the equation of continuity integrated over the cross-sectional K#0

area
47

A106t) = ANG1). (13 xk2+|K\2X0(k'K;q,’G,)' (18

From the definition of the polarization we haveé(x,t) The corrections entering through# 0 terms in Eq(18) are
:fgdt’fdx’)((x,x’ ;t=t")V(x,t"), where our y(x,x";t) is known as local-field effects in the context of evaluation of
now, similarly to o(x,x’;t), integrated across the cross- the macroscopic dielectric functidh.Here, however, it is
sectional are@dS anddS’ integrals in Eq(6)]. Substituting  not quite the same sinde=0,K +0 part is included intgy!

the linear-response formulas for curre® and density whereas for the macroscopic dielectric function the sum is
N(x,t), Fourier transforming intay,q’ variables and using restricted tok#0,K #0. The omission of theK =0 term

the fact that the external potential is arbitrary, we immedi-involving 4/k? in Eq. (18) stems directly from the fact that
ately obtain it is precisely this term that converts the drop in external field

into drop in the total field, as can be seen from @d) when
taking into account that the drop in total field is given by
AV!=E'Y(q=0,G=0). Correct evaluation of the conductance
in 3D therefore requires inclusion of these “perpendicular”
We note that the singular characterdsdfy,q’) for smallq,q’ local-field effects, included withiry! but not in x°, into ac-
as given in Eq(11) does not arise fundamentally from the count. Essentiallyy' describes the response of the density to
1/qq’ prefactor, sincex(q,q’;w)=~qq f(q,q’;w) where the effective potential, except that long-range screening of
f(0,0) # 0. This property is a consequence of conservation othe potential in thex direction is specifically excluded, al-
total number of particlefn(q=0)=N] or the absence of re- lowing the conductance to address the applied voltage rather
sponse in density if we change the potential everywhere by §1an the local potential drop.
constanty’ =0. ~ For systems translationally invariant along the perpen-
Expressing the conductance through the polarization iglicular directionsx*(q,0;k,G) ~ & and the last term in
particularly suited to a correct treatment of a system of in-Ed. (18) becomes identically zero. It follows that in this par-
teracting electrons. In the first place, it is crucial to define thdicular casex'=x° and the conductance of noninteracting
conductance not as a coefficient for current dependence diectrons, defined with respect to drop in theernalfield, is
the external but on the total electric fielH!(r)=E(r) identical to the conductance of interacting electrons, treated

+Ei(r). The induced fielcE/(r) can be obtained from Pois- Within the random-phase approximatitRPA), defined with

o(Q,q i — i0%) = |im+i,x(q,q';ia). (14)

a—0

son equation respect to drop in theotal field.
i(gk+G) -E'(q,G:)=-4mon(q,Git), (15 IV. LANDAUER FORMULA
whereX is a unit vector in thex direction andG is a 2D In this section we present simple, analytically tractable

reciprocal lattice vector corresponding to the perpendiculatases that illustrate the theory of the preceding sections.
coordinates. Using the linear-response resultdaig,G;t)  Consider first the case of noninteracting electrons in a quan-
in terms of x(r ,t) [see Eq.(12)] we arrive at the relation tum wire with only one subband. It is well known that the
between the total and external field polarization function has the forrh
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o” = (02 —keQ)?
w® = (072 +keQ)?

} X 2mdq-1q'),
(19

where the factor 25(q—q’) arises trivially from the transla-
tional invariance of the system along tReaxis. Using this
expression in Eq(14) immediately giveso(q,q’;ia—i0%)
=2m48(q’)8(q) and therefore through Eqll) G=1/2m, the
quantum of conductancg.e., €/h in Sl unit9. Using Eq.
(17) without application of the limit, and Eq19), it is also

1
! . — I
x(0,9"; w) Py n{
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T

FIG. 1. Semiclassical interpretation of a finite-field potential
V(x) applied to a wire. The local Fermi spheres are depicted as for
2D gas for clarity. The filled area on top of the equilibrium spheres
indicates accelerated electrons, while the empty area inside the

possible to obtain the analytical dependence of conductancguilibrium spheres represents states emptied by the deccelerating

G on imaginary frequency=-iw for this system,
1
V2m(1 + V1 +[alec D)2

Gla)= (20)
This functional form will be extremely useful for numerical
calculation of G(0") based on extrapolation to zero fre-
quency, described in Sec. V.

It is also instructive to explore the behavior Igit — )

directly [see Eq(6)]. The latter can be calculated, e.g., using

Fourier transform of Eq(19)

t
Ig(q,q’;t):J dt'o(q,q";t’)
0

)

(@) ,
:%xzwa(q—qx

,dvx(9.9'5t)

dt ,
qq

(21)

where we have used the expressi@#) in the real-time do-
main. The result is

2
)®(t) X 2méq-q'),

(22)
which for t— < evidently approaches the for(il) with G

b 2 _(q
l,(0,9";t) = Esm(kmt)sm(;t

=1/2. The lesson from these analytical examples is that the
well-known formulas for polarization can be used for evalu-
ation of the conductance of the system, and that the limit

iw— 0" clearly corresponds to the steady-state litnitc.
Because the conductivity is sharply peaked arogiwO,
only theq=0 component of the applied field has an effect

effect of the uphill field.

the external field is applied,, while decreasing the intensity
of the fieldE in such a way as to keep the drup- EL finite
and small.

A simple qualitative demonstration of this argument can
be made semiclassically. Consider a finite drop over finite
region of a 1D wire as shown in Fig. 1. The current can be
obtained from the local Fermi distribution on the far right.
Electrons that are occupying states above the equilibrium
distribution have travelled to the right from the region with
an accelerating field. These, during their flight through the
region, gained energ@dV so that they represent curreht
=1/LX ke where we sum over states with accelerated elec-
trons, i.e. k:e e (ez,er+AV). This obviously leads to the
quantum of conductand®=1/27. While formally we have
striking similarity with the usual “two chemical potentials”
picture, it should be noted that the microscopic interpretation
of these expressions is different. As can be seen from Fig. 1,
the local charge neutrality is clearly violated in the constant
potential regions on the right and left while in the center it is
locally charge neutral where the distribution corresponds to
the shifted Fermi sphere. The infinite limit, discussed in
previous paragraph, resolves this problem by sending the re-
gions with unbalanced local charge away into infinities.

When we insert a localized scattering potential character-
ized by the transmission matrix

) [r(k) T(k)]
(k) T(k)
into 1D gas of electrons, the Landauer formula is obtained.

We obtain the desired demonstration of the sharply peaked
character or(q,q’ ;i) by analytically continuing Kamenev

T(k) (23

case, a homogeneous field. For a system with a constant field

applied over length., the field itself must be-1/L so that
we have a sufficiently small finite drog=/, Edx~1. The

physical meaning of the finite conductance of a scattering-
free segment of a metallic wire is clearly a manifestation of

the free acceleration of electrons over the distdnceéhis is
in agreement with the point of view advocated by Ferifon.
However, there is no need to kekstrictly finite; in fact the

2k|:a’

CRREE e
TGNV =50 e+ o
2k,:a 2k,:a

- |r(eF)|2k|2:q2+ o2 kﬁq’z + az} (24)

— 2mlt(er)[Po(q) &) (25)

2wo(q-q')

limiting caselL — oo can be still characterized by a finite over- Alternatively, we can arrive at the same result using &a@),
all conductance by taking careful limits and using propertiesvhich explicitly shows the utility of reformulation of trans-
of the Dirac 6 function, as mentioned above for the case ofport through the polarization function in imaginary fre-

the free-electron gafollowing Eq. (22)]. In simple terms,

guency. A detailed derivation is given in the second section

this represents the limit of increasing the length over whichof the Appendix.
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We stress that this result for theo-point conductancél) 0.16 . . . P

of noninteracting electrons also applies to interacting elec- 0.15F 481024 -6
trons if the conductance is defined with respect to the total 0.14} 48-2048—:—
field at the RPA level of approximation. The four-point con- 013k s ggiégig:,i}'_’_
ductancg2) may be formulated in a similar fashion, which, 0.12H s 'AA.A_A 96-4096 —=— |
if combined with the approximate effective electron-electron 5 1 |47 ¥ A'A-A-A.A_AA_AA_AfzaCt i
interactionv2(q) ~ 1/g?, would be equivalent to the treat- Sl By |
ment of Kamenev and Koht¥.(In their calculation the four- 000k "E'T'nglg‘?;v@vv.v ]
point conductance is defined &"=1/V/, whereV is the ' S T MR
self-consistent induced drop only. The reason for neglecting 008 <8010
the drop in external field is due to the above mentioned lim- 00T

iting procedure; sinc& X L is finite whileL — o, EX L' will 0.06§ T 5 3 T 5
be negligible for any finitd.". Since the four-point measure- a

ment is meant across a finite distarice the contribution to
the total drop on finite distance comes solely from the in-
duced field)

FIG. 2. The dependence of conductance of free-electron 1D gas
on imaginary frequency. Black line corresponds to the analytical
result(20) and the numerical data labels-N" represent system of
lengthL a.u. withN discretization points in real space. Apart from
V. FEASIBILITY FOR NUMERICAL CALCULATIONS the low-energy drop to zero, which is characteristic of a finite sys-

. . tem, the functions converge to the exact result for the infinite sys-
The expression for the conductan€kr), together with  yem This opens the possibility of calculating the dc conductance by
some experience gained from the evaluatiorGofor lead-  exirapolation from moderate values of

scattering-lead system in the Appendix, motivates the fol-

lowing suggestion: can the correct conductance of an inﬁnit%eeds to be converaed with respect to the svstemLsimed

system be calculated using a finite system with some arbi- g pect ysten X

g - o with respect td\, and extrapolated with respect to imaginary

trary boundary conditions, determining the polarization as aenergya

. . - .

function of , and then gxtrapolat|r!g—>0. . Before we discuss results for nonzero barrier height, let us
For the purpose of this exploration we have considered a

square-barrier potential in 1D, for which the results fortrans-IrSt consider the case of zero barrier height, i.e., the free-
qua 'p ’ : electron gas. In this case we know exactly the whole depen-
mission coefficients are well-known analytically. We calcu-

late the polarization function using the Green’s function Ofdence ofG(a), given by Eq.(20). We have fixed the Fermi

o . . wave vector toke=7/3 a.u., corresponding ter~0.5 a.u.
the equilibrium system given by equation In Fig. 2 we show numerical results obtained using ).

[e- Q(X)]g(x,xl;e) = 5(x-X), (26) T_he Iapel; I‘_-N”_repr_esent system of Iengﬂn a.u. withN
discretization points in real space, or equivalently, the num-
supplemented by the chosen boundary conditions. For sinber of K points in the discrete Fourier transform. We obtain
plicity and for the purpose of illustration, we take the ex- our chosen Fermi energy for lengtihs=48 and 96 when
treme case of “zero-boundary” conditions on the waveoccupying 16 and 32 states, respectively.

functions!® In this case, it is clear th&@(a) —0 asa—0. In From Fig. 2 we see that the numerical results converge to
terms of the Green'’s function we can easily express the pahe analytical expression for energies er. The lower limit
larization as of this range can be brought closerép by increasing the

length of the system. However, for a longer system the con-
L S N vergence with respect td becomes more demanding, with
x(xx'jie) = zl“ [GxX"8 +ia) hi(x) 4 (x) the error growing with energy. This behavior can be traced to
_ . the cusp in the polarizatiog(x,x’) atx=x’. It can be easily
+G(X'\x;8 —ia)$i(x); (X)], (27)  found from Eq.(27) that the size of this cusp is

where we sum over occupied states only, ahdre eigen- oce

states ofH from Eq. (26). The Green’s function at given X X )yt = X 6X Vymgr- =42, & () i(X). (29)
energy is found by direct integration of E(®6) and eigen- [

states are easily found by matching plane waves with the

chosen boundary conditions. Finally we use a discrete Foulhis expression could be used to remove the cusp from nu-
rier transform,y(x,x’) — x(K,K'), to obtain the estimate of merical Fourier transforms and substantially decrease the

occ

conductance needed number df points. In the present paper, since our
system is computationally undemanding, we have instead
KK ;ia i i i i
Gla)=3 aX( )_ (29) S|mply increasedN until satisfactory convergence was
KK’ KK’ achieved.

Next we include a square barrier into our system. In
The discrete Fourier transform introduces a convergence pdig. 3 we show results of calculation with barrier with width
rameter: the real-space step sia@ or, equivalently, the a=2 a.u. and heighé:. In this case the transmission prob-
number of discretization pointd. Altogether, the calculation ability is approximately 50% which is indicated in the upper
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e 016 Tl
o

= 0.12
= |
I 0.04}
B

o
G(a)= - , (30)
V2m(1+1 +[2a,a]?)*?

whereay and a; are fitting parameters, representing linear
scaling of the conductance and energy axes. As we see from
Fig. 3 the fit is very good over the crucial middle range of
frequencies. Fore>3 it becomes worse but we already

Gl ' ' 31.96.4096 @ know that this difference can be attributed to convergence

0.09| T ao = 0.085,a; = 2.0 — problems with number oK points due to the cusp in
o 32-96-4096 © x(X,x"). When looking ata— 0 limit of our fitted expres-

0.081 exact result ap = 0.066,a; = 1.4 — . . . A
- g —mooom oo i sions(coefficientsa in Fig. 3) we see the values bracket the
0.07 7 exact value with an relative error of roughly 10%. Averaging

3 0.06R the result for even and odd states gives a smaller and more
2 B convergent errof0.5%).

’ This calculation is intended to be illustrative, yet it shows
0.04 that the formula(17) can, in principle, lead to the correct
0.03 answer even when applied to system with zero-boundary

. conditions. We particularly believe that the use of periodic
0029 i 2 3 7} 5 boundary conditions will significantly improve the perfor-
o mance of this approach for the main problem of the zero-

FIG. 3. The dependence of conductance, given by Landaue?Oundary and'tlon is clearly the_ one-way transf_er_ of charge
formula, on the Fermi energgke=/3 in our calculationsfor a rom one side to the other, which introduces finite-system
square barier of heighe- and width\s/3 (upper graphand the ~ €/TOrs after a relatively ;hort time, and thergfore SpGila) _
dependence of the numerically calculated conductance on th@€tweenx=0 and a relatively large value. This gross effect is
imaginary energylower graph. G(a) approaches the exact result NOt present for a periodic system.

of infinite system before it turns rapidly towards zero.

graph with arrows. In the lower graph we show the depen- VI. CONCLUSIONS
dence of conductivity on the imaginary frequenay The s . _
two sets of numerical data correspond to odd and even Ve have developed a unifying point of view of the polar-
numbers of occupied states, converged with respedi to 1zation, the nonlocal conductivity and the conductance which
within the considered range ef. The convergence of data SUPPlies a steady-state transport characteristics of any sys-
with respect toL is first fast but eventually becomes rather tem. We have shown that the weight of the Drude singularity
slow. In fact, it is not our aim to get the conductanceat zero frequency of the nonlocal conductivity, when consid-
of an “almost infinite” system, but rather to be able to extractered in reciprocal space, directly corresponds to the conduc-
the conductance of an infinite system from a calculatiortance of the system to which we apply a field with a nonzero
for a sufficiently large but finite system. The shown lengthoverall drop in potential. We have identified a simple relation
L=96 a.u. is to be compared with the Fermi wavelengthbetween conductivity and polarization for the case of a sys-
Ap=6. tem under unidirectional external field that eventually led us
A striking difference between odd and even numberto a simple formula for conductance, expressed through the
of occupied states comes from the fact that placing the bampolarization of the system at small imaginary frequency. Ex-
rier of lengtha=2 in the center affects the symmetric and pressed in terms of polarization, it turned out to be possible
antisymmetric stateat the Fermi energy differently.  to address the self-consistent field that contributes to the drop
Clearly, the former have a much larger amplitude at the scatin total potential used for definition of conductance. We have
tering potential than the lattéwhich are zero in the center of shown that the formula for its evaluation remains formally
the system and therefore the symmetric states will be intact but instead of the polarization function we need to
more affected. This is in agreement with the conductance fosupply a “transport part” of the polarization. The latter is
32 occupied states being below that for 31 occupied state&entical to the irreducible polarization in 1D, but differs
For L—« these two states become degenerate and thiom it in general 2D or 3D systems except where perfect
difference between odd and even cease to exist. By bracketranslational invariance exists perpendicular to the flow of
ing the exact conductance in this way, we cancurrent.
obtain acceptable convergence even with the crude “zero” Finally we have demonstrated that our expression for con-
boundary conditions. ductance in terms of polarization can be used for the conve-
When calculating conductance we need to be able to exaient numerical evaluation of the conductance for systems
trapolate our data to zero energy. As we have pointed ouvithout imposing specific boundary conditions in the form of
above, the small-energy turnaround®@farises from the fi- scattering states. This formulation is directly suitable for in-
nite size of the system and we should not take that intalusion of many-body or inelastic effects, since it is based on
account. To fit the data we have used a scaled version of the polarization function for which approximations that in-
functional form obtained for the free gas, clude these complications are very well developed.
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Note added in proofWe are thankful to M. Bittiker for The last fraction in Eq(A7) is not state but energy depen-
drawing our attention to his early account on the role ofdent and its real part, which is only needed, is given by
polarization in the treatment of conductance and total field in
a model quantum junctiot?. @ dn(e)
(&-g)+a® de

We have already used the fact that in the limit of our interest

_The authors gratefully acknowledge useful discussiong,, . ) the first factor will be sharply peaked and therefore
with Angel Rubio. This work was supported by the RTN we can use linear Taylor expansionmg;) arounds,. How-

programme of the European Union NANOPHAREoNtract ever, the expression will be nonzero only if the facter

No. HPRN-CT-2000-00167 -e))? will be compensated by the energy dependence of the
APPENDIX matrix elements, which we will confirm in following para-
. graphs.
1. Derivation of Eq. (17) In the next step we interchange the order of integrations in
Let g(g,q’) be the inverse operator to the right-hand sideEq. (A7) so that we directly evaluate
in Eq. (16) for G=0.

(e-e) (A8)
ACKNOWLEDGMENTS

dq €%
A J ——— =-i0(-x)e%, (A9)
fdkg(q’k)(a(k‘q’) - k_qx(k'Q’)) =8a-q), 2mg+ie
where we interpret the singularity to begt —ie. This is in
(A1) fact arbitrary since, as we have pointed out in Sec. Il
so thatE(qg) = fdkg(q, K)E'(k). According to Eq(5) we have  X(d.d";@)=qq’f(q,q’). An equally valid choice of singular-
q @) ity at q=+ie leads to identical results.
_ dq’ ax(a,9' r Lyt We can now finally turn to evaluation of the matrix ele-
(@)= f dkf 27 qq 9(@" WEK), (A2) ments. The asymptotic character of the wave functions has

. . . the well-known form
which motivates us to define

X(@.K) =] ETne x<0
AN ’ ’ X) = — -
x'(a.9)=q J dkTg(k,q ) (A3) er V2 |t x> 0.
Multiplying Eg. (A1) with q’x(q",q)/q from left and in- 1 [T X <0

i X)=— ) ) All

tegrating overg we have L (X) T2 | e a, g x> 0. (A11)
t ”,k
X'(d",9") —47Tf dk= D (Ez )X(k,q’) =x(".q"), (A4) The final integrals we need to do have the form
0

comparing term by term this Dyson-like equation with the (k,RILIK',RIL) :f efx‘ﬁ;WL(X)(ﬁk' L)X, (A12)
Dyson equation for the reducible polarizatigiiq,q’) we — ' ’

arrive at Eq.(18) which omits theK =0 term from the sum.
Substitution of Eq(A3) into Eq. (A2) give immediately the
result(17) which concludes the stated results in Sec. Ill.

and of there we need to keep only those that are singular
~1/k-k’ since in Eq.(A8) we need to compensate the fac-
tor (ek—ek,)Z:%(k+k’)2(k—k’)2. Foreseeing thes function
2. Derivation of Eq. (25) using formula (17) character with respect te,—e,, ande,—er appearing in Eq.
The polarization of noninteracting electrons is given by(A8) We can directly usé=to =t and re=ri=ry, the
expressiofP transmission and reflection probability amplitudes at the
Fermi energy, respectively. It is now easy to see that the

. A PR S I N —n; i
x(@,q'5ia) = 2 Gile M)l i) — 5 (A9 singular terms are
ij ] , , 1 |t|2
whereli) are eigenstates of the electronic Hamiltonian with (kRIKk",R) == (k L|K',L) = Zrk— k"’ (A13)
eigenenergye, n; is its occupation factor and
. . .1t
(ile™™(j) = f dxi[x)e™ (x]j). (AB) (k,RIK',L) = (k,LIK',R) T o=k (A14)
Using formula(10) we therefore have Using these forms, together with H#\8) and the form zero-
» - temperature limit thatin(e)/de=8(e—er) we directly get
dogdq < ,. €% . €% an-n)
G= | == 2 il li): . (A7) e
22T q q ia—g+e

1 t
G=—(t* +[eArH =2, (A15)
a a
The first two matrix elements are, after integrations, complex
conjugate to each other and therefore their product is reathe celebrated Landauer formula.
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