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The performance of the adiabatic-connection fluctuation-dissipation theorem is discussed through the imple-
mentation of a non-local energy optimized exchange-correlation kernel to account for short-range correlation
effects. We evaluate the jellium surface energy, through a painstaking extrapolation of single slab calculations,
as well as the binding and interaction energies between two and three jellium slabs. Whtakakectron
correlation energies are rather sensitive to the details of the kernel, any physically well-motivated approxima-
tion within our framework describes binding energi@scluding surface energigsvithin the same level of
accuracy.
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I. INTRODUCTION paper unless otherwise specifiedy,(rq,r,;iu) is the

In recent years there has been an increasing interest in th@aginary-frequency density response of a fictitious system
use of the formally exact adiabatic-connection fluctuation-of electrons interacting through a scaled Coulomb potential
dissipation theorenfACFDT),! in the framework of time- AW(r)=A/r whose ground-state density equals the actual
dependent density functional theaqfiDDFT)?*to calculate  one, andyq(iu) is the density response function of the KS
electron ground-state correlation energig$ This approach, non-interacting system. The latter can be evaluated exactly
as well as formulations based on Green's functionas follows:
theory!*~18 has emerged as a promising alternative to the
widely used Kohn-SharKS) method® without the numeri- o (fro = fmo)
cal expense of statistical diffusion quantum Monte Carlo NCUNEHDEDID iU+ (en —2,)

(DQMC) or quantum-chemistry methods. In TDDFT and g mm mo e
Green’s function based methods, many of the electron corre- X q’;’,:ﬂ(r1)¢n,0(r2)q§myg(r1)¢;1’U(r2), (2)
lations effects are directly built in without resorting to any

mean-field-like approximation, like the widely used local With ¢, ,(r) ande, , the KS eigenfunctions and eigenener-
density approximatiorlLDA)?° or the generalized gradient gies with Fermi occupation numbefg,. In TDDFT, the
approximation(GGA)?! to the exchange-correlation energy. density responsg, (iu) is related to the non-interacting one
As a consequence, several shortcomings of the mean-fielsy a Dyson-like matrix equation

prescriptions, such as the lack of a proper treatment of long-

ranged dispersion forces, can be easily overcome with these Xo(iu) = (1—f(o(iu)[KW+?xc,x(iu)]))h(iu), (3
many-body approaches. Moreover, increasing computational

capacity opens the appealing possibility of a unified treatf, . (iu) being the exchange-correlatigkC) kernel of the

ment of complicated electron-electron correlations in a seamciitious system with the scaled interactioni. Since
less fashion for overlapped, intermediate or distant regimes,

even in systems like carbon compourigretched graphite, 'xca(iu) is unknown, practical applications of TDDFT re-
bundled nanotubgsr polymer crystals, where such disper- 9Uiré one to approximate such a XC kernel. _
sion forces are believed to be important. Further simplifica- 'f We do not consider any XC effect in the interacting
tions, which incorporate the many-body effects in an ap e€SPonse functiorii.e., we setfyc=0 thus neglecting the
proximate but more fundamental level than KS-LBA2S so—caII(_ad Io_cal—ﬂeld correctiopswe hav_e the random-phase
might be useful in the near future to tackle very complex@PProximation(RPA). The RPA treats important aspects of
phenomena. Iong-r_anged correlatlorjs exactly, although it gives a poor de-
According to the ACFDT, the correlation energy of an tslirslptcl:(r)LT d%f Sg]szré}napﬂ?optetrrzgeﬂgz-r:é]cgoeudntoﬁgrs%Iitgp?afrsion
electron systelis g|vlen exactly by forces absent in mean-field approximatiéisé2” and it
du seems to be a good approximation, usually better than KS-
Ecz_f—J AT 3, (iU) = Xo(iu)]), (1) LDA or KS-GGA, for calculating binding energié83
A 2m 5 Nonetheless, the absolute value of correlation energies is
systematically overestimated, tii& van der Waals coeffi-
where Tr is the spatial trace and the usual matrix operationsients for some atoms are quite inaccurdtand the good
are implied(we will use Hartree atomic units throughout the performance of the RPA when calculating surface energies is
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very likely due to a fortunate cancellation of errdfsThe  using the ACFDT, the currently available parametrizations of
use of simple schemes beyond RPA, like the adiabatic locahe HEG XC kernerQ%mmight be a promising starting point.
density approximatiofALDA ), or even more sophisticated As shown by Leiret al,’ the form developed by Richardson
approaches, such as the wave-function-dependent exchangeid Aschcroft® of the full dynamical HEG XC kernel leads
only kernel by Petersilka-Gossman-Grédpes not guaran- to a perfect fit with the “exact” DQMC correlation energies.
tee a systematic improvement upon the RPA when calculatdowever, the same authors also found that good accuracy
ing correlation energies and other related quantiiés. can be kept by using an adiabatic non-local parametrization
Due to the popularity of TDDFT, there is intense activity such as the one proposed by Corradinal 2° Therefore, the
to obtain and assess better approaches to the XC kernelynamical features of the XC kernel have less influence than
They range from functional forms that rely on known prop-the non-locality in the correlation energy. We have checked
erties of the homogeneous electron gaEG)**32to truly  that, as expected, this also holds for any other physically
ab initio schemes based on many-body technicdééin  well-motivated approximatiofi-3” to the static XC kernel. In
general, these efforts have been directed toward a better daeldition, we have to bear in mind that there are many spec-
scription of neutral excitations, aimed at circumventing thetral features that could be contained in the XC kernel of an
expensive numerical implementation of the many-bodyinhomogeneous system that cannot be inherited, by any
Bethe-Salpeter equatidn-iowever, focusing on the evalua- means, from the homogeneous limit. Finally, naive ways to
tion of correlation energies, it requires the entire knowledgenclude dynamical effects into the XC kernel can easily lead
of the XC kernel, including regions that are not interesting ato the violation of known constraing. Thus, in principle
all to obtain optical properties, Thus, the actual performancehere is no need to force the frequency dependence into ap-
of some of these new approaches to calculate total energiespsoximations based on functional forms of the XC kernel, if
still unknown, and their sophistication might lead to unaf-our aim is solely the evaluation of structural properties in an
fordable calculations when applied to real materials. efficient way. Therefore, following an idea proposed several
A completely different approach to this problem is thetimes in the literaturé-32we adopt the following functional
development ofenergy-optimizedXC kernels, as proposed approximation:
recently by Dobson and WarfgUsing this recipe, the XC L 5
kernel approximation is designed in such a way that the cor- () _to0( N
respondipn% ACFDT correlatign energy of a refeyrence system Prealrurzio) = fie\Mri) = )\fxc( )\3,)«12) @
(usually the HEG fits the exact values. The main drawback ) L ) -
of this approach is that one should not expect an overall gookiere, the effective densith is a function of the densities
description of excited-state properties. However, it will leadN(r1) andn(r,) (the arithmetical mean unless stated other-
to much better correlation energies than RPA with almost thavise) and ficA(n,r;,) a certain parametrization of the static
same computational cost. On the other hand, the use gfart of the XC kernel of the HEG. Of course, we recover the
simple energy-optimized kernels could also be useful to obALDA if we make a further approximation and neglect any
tain highly accurate XC potentials required, for instance, fomon-local contribution to the HEG kern@hat is, if we set
a better performance of TDDFT approximations in the cal—fi?():(n,rlz):xg‘f’cm(n)é(rlz), where;<§‘<°cr”(n):dz[nea;}"C n)]/dr?,
culation of excited state properties in localized systems.  £19™n) being the correlation energy per particle
In this paper we will present a simple non-local energy- The encouraging results obtained by Dobson and Wang
optimized XC kernel easy to implement in any RPA code.using an energy-optimized ALDA suggest the construction of
This generalizes the work of Dobson and Wé&nghich was  a simple non-local kernel that gives accurate HEG correla-
restricted to spatially local optimized XC kernels. Using thistion energies while preserving exact limits of the actual ker-
new ker.nel, we will calculate several structurallpropertles Ofel. In the HEG, the kerndﬁ?&(rs,q) expressed in reciprocal
jellium-like systems where the ACFDT calculations are easyspace, is related to the static local-field facte(n,q)
to carry out. More important, there is a realm of results ob- . (0) __ 2
tained >l/3y other methopds that provide a firm basis for a com.Ehrough the relatiorfyc(n, ) =~(4m/q)G(n,q). The model

parative study. In addition to this benchmark character, Wéntroduced by Hubbard

will be able to analyze physical aspects that are typical of b 1 P
confined systemgike dissociation energies or the presence G™(n,q) = - Pyt ©)
of van der Waals interactiondue to the electron localization a *

along thez direction, while keeping the free-electron-like \hereqy is the Fermi momentum of the HEG, improves the
properties of bulk metals. Finally, we do not need to considegescription of short-range correlation effects reducing, in the
other factors that are important fab initio studies of the |arge g limit, the Coulomb correlation between electrons of
properties of real materials, like the use of pseudopotentialsbara”d spin. This was accomplished by finding an approxi-
As a consequence, we can focus strictly on the actual perfofnate way to sum all the exchange diagrams of the ladder
mance of different approximations to the exact ACFDT-type that entered in the evaluation of the interacting response
TDDFT. function. This proposal inspired the elaboration of more so-
L. THEORY phisticated models along the ye&?syhich turned out to be
' rather similar to the original model. Thus, we propose an
Since our goal is the development of a functional approxi-energy-optimized Hubbard-likéOH) kernel whose expres-
mation to the XC kernel to calculate correlation energiession in reciprocal space is

205107-2



EFFECTS BEYOND THE RANDOM-PHASE. PHYSICAL REVIEW B 70, 205107(2004)

0 3.0 :
—&—RPA
. 25} _ o on
/..\ - 7~
= < 50} —8— Cor
S % —o0—DW
i < 15}
= -
2 w
ol g 1.0}
05
16} A A . ] 0.0 : . A
0 5 10 15 20 000 001 002 003 004 005
q/q (u_ /e’
F max F
FIG. 1. Several parametrizations of the static XC kefj@l(q) FIG. 3. The absolute convergence of the correlation energy per

of the HEG withrg=4. Thick solid line: energy optimized non-local electron of the HEGr¢=4) versus the reciprocal of frequency cut-
Hubbard-like kernel; thin solid line: energy optimized Dobson- off u,,,,in Eq. (1) for several ACFDT prescriptionge is the Fermi
Wang local kernel; dash-dotted line: ALDA; dashed line: parametri-energy of the HEG Aec denotes the error i relative to its

zation by Corradinkt al. converged value at,-.=0. The excellent convergence of the RPA
and OH approximations contrasts significantly with the numerical
ho problems arising from the use of a static HEG kernel with a non-
0) Kyc (re)
fxc(re@) = —————, (6) zero short wavelength term.
1+a(ry(a/ge)
wherer =[3/(4mn)]*3 is the Wigner radius and(ry) is the  in the low density limit arounds=15. However, we have to
empirical function remember that we do not intend to present an accurate pa-
rametrization of all aspects of the XC kernel, but just a
alr) = 8.26 +1 @) simple form suitable for accurate TDDFT total energy calcu-

100+ 5 lations. For instance, the proposed parametrization does not
S R reproduce the exact behavior fge-0 of the exact HEG XC
The HEG kerne(6), which is plotted fors=4 in Fig. 1, = a0 kerneB’ which is a feature whose inclusion would lead
keeps the exaad— 0 behavior(related to the fulfillment of

L to numerical problems. Indeed, any non-zero large wave vec-
the compressibility sum rujeand guarantees an excellent

: 4 r component in i rametrization of the kernel woul
reproduction of the DQMC correlation enerdiegas param- tor component in a static parametrization of the kemel would

etrized by Perdew and Waffy for a wide range of densities also be. kept in the Fiynarnlcé]u #0) contnpuhong to the
. . o ) . correlation energy, hindering us from reaching quick conver-
(see Fig. 2 For metallic densities the relative error is neg-

> . : L 0 gence to the final ACFDT energies with respect to the cutoff
ligible and the highest relative deviatigonly 3%) appears Uyay i the numerical frequency integration in Ed) (see

the top two curves in Fig.)3 This computational advantage

10 ALl')A'(xO'S) I of our kernel i_s not very important in. simple systems IiI.<e
p Ll ie ST those treated in this work. However, it might be critical in
- o S ] prospective applications to real materials, since a substantial
E Cor—. OH """"""""""" part of the computational effort might otherwise be required
A to calculate physically unimportant high-frequency contribu-
20 »—]/( tions that were unnecessary using both the RPA or the opti-
sl DW T mized kernel proposed here.
_.--="""RPA (x 0.5)
-1%.1 0f5 ’1' 2 5 1'0 2'0 3'0 4'0 50 lll. BINDING ENERGY OF THIN METAL FILMS
s As a first application of the OH kernel described in the

previous section, we have calculated the total correlation en-
ergies of thin jellium metal films for several metallic densi-
Mfes. In all the cases, the non-interacting respopgii) has
been obtained using the KS-LDA orbitals; our tests show that
the final numerical results only change marginally if we cal-
have been divided by two. The superior performance of the O ulate xo using 'functlon'al models that 'mpro".e upon the
kernel (thick solid ling is evident for the whole range of electron DA by re_coverlng the image-like —142) behaVIqr of the )
densities. Note that the Dobson-WaiBW) energy optimized XC potential?? In Table | we present such energies for thin

prescriptioff is constructed so as to give zero absolute etvesat ~ Metal films with a background width of &4 For the opti-
all rg values, if carried out exactly. However, the simple analytic Mized Hubbard kernels, we use both the arithmetiCaii1)

kernel given in Ref. 8 was a numerical it to a limited range of data@nd the geometricalOH2) mean of the local densities to
in the metallic range Z r,<5. A better fit to the exact DW kernel evaluate the two-point function(r,,r,) (of Eq. (4)). In ad-
could presumably be constructed for the range 2. dition, we also present the KS-LDA results, as well as the

FIG. 2. The absolute erraksc=enC P -£2?MC in the correla-
tion energy per electron of the homogeneous electron gas usi
different XC kernelss2°MC is taken from the accurate parametri-
zation by Perdew and War{gref. 20 of the DQMC data by Ceper-

ley and Alder(Ref. 41). Note that the errors of the ALDA and RPA
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TABLE |. Different contributions of energy per electrqin mhartre@ for one isolated jellium slab of thickneds=6.4r¢ using the
KS-LDA and the ACFDT schemes quoted in the text. Between parentheses we represent the different contributions to the binding energy per
electronD, for a system otwo slabs of thicknest =3.2 ¢ at zero separation. The KS-LDA correlation energies given are the differences
between the KS-LDA exchange-correlation energy and the exact exctiaky® energy, as explained in the text; the latter is also included
in the table for comparison, as well as the KS kin¢lig) and total classical electrostatiEL) energies. The numerical error bar of the RPA
and OH1/2 correlation energies is 0.01 mhartree. However, due to the reasons explained in Sec. Il, the uncertainties of the DW, Cor, and
ALDA methods are 0.2 mhartree for the total correlation energies and 0.05 mhartree for the binding correlation energies.

ACFDT
s KS-LDA RPA OH1 OH2 DW Cor ALDA EXX Ts EL
2.0 -42.23 -58.93  -41.90  -41.86 -426 -39.5 -28.8 -220.55 258.18 4.07
(2.35 (2.56) (2.39 (2.42 (240  (2.40 (2.45 (8.72 (-17.92 (3.99
3.0 -35.07 -50.62  -34.82  -34.79 -35.3 -31.9 -21.2 -148.86 117.45 1.21
(2.08 (2.24) (2.13 (2.17) (215  (2.15 (2.20 (3.32 (-4.96 (1.00
4.0 -30.44 -4516  -30.28  -30.25 -30.6 -27.1 -16.4 -112.44 67.13 0.55
(1.56) (1.72 (1.64 (1.68 (1.65  (1.65 (1.70 (1.83 (-1.90 (0.48
5.0 -27.09 -4116  -27.01  -26.97 -27.3 -23.7 -12.8 -90.40 43,52 0.35

(1.22 (1.37) (1.29 (1.33 (1.30  (1.30 (1.35 (1.08 (-0.71 0.29

RPA, ALDA, and optimized Dobson-Wan@W) prescrip-  discrepancy exists for the uniform gas where the energy op-
tions of the TDDFT-ACFDT. Finally, we have also included timized data are the most accurate, one suspects that the
the correlation energies given by E@) but using the pa- energy-optimized data are superior for the inhomogeneous
rametrization of the static HEG kernel by Corradati al.  situation as well.

(Cor); this calculation will allow us to assess the actual im-  Much more relevant is the interaction energy between two
portance of the details of the non-local parametrization usedetal films, since the usual KS functionals often fail to re-
to implement the local field corrections in our ACFDT cal- produce binding energies quantitatively. For two joined
culations. Details of the numerical procedures may be foundlabs, the binding energy per electron is given by

in the Appendix.

The KS-LDA itself is a good approximation to the com- Do=¢e.(*) —.(0), 9)
bined XC energy of this model system, following the usual ) .
trend of error cancellation between X and C energies even iWhere s.(a) is the energy per electron of two slabs with
situations where they predict values far from the exacthicknessl at a distance (note thate, (=) is the energy per
ones*®3 Therefore, we may assess the ACFDT correlation en€lectron of a single slab with width). The different contri-
ergies through a comparison with the difference between theutions toD, are shown in brackets in Table | using the
LDA-XC energy and the exact exchange one, calculated witiKS-LDA and ACFDT models for the correlation part. Note

the well-known expression: that the inclusion of local-field corrections is less relevant in
occ ,* this case.

12, B )l The close similarity of all the OH2 results to those of

Ex = —j drdr, 14 : (8)  OH1 indicates the insensivity to the density-averaging pro-

2 1 cedure, and in much of the rest of this paper we will not

We can observe that the three energy-optimi@@H1/2 and  consider OH2.

DW) approximations give very similar correlation energies For all the metallic densities, the corrections beyond the
(within 1 mhartree per electronregardless of the specific RPA (except those implemented through the ALPgystem-
details of the functional inclusion of the local field correc- atically lower the RPA correlation binding energy by about
tions. This demonstrates that the kernel optimization proce5%, thus approaching the KS-LDA value. These results fol-
dure is very robust even for these metal films, whose electrofow the trend anticipated by Yaet al** about the role of
density profiles are very far from the homogeneous limit.non-RPA effects in the interaction between thick metal films.
Moreover, the total XC energies are fairly close to the LDAHowever these same results seem to contradict the recent
values, thus giving further confidence about the reliability offindings by Pitarke and Perdéw,since these authors state
the optimization method. On the contrary, the non-optimizechat such effects have a marginal quantitative influence in the
implementations of the ACFDTRPA, Cor and ALDA  total surface energjwhich is related to the limit —o of
maintains the overall trend present for the HEG. AmongEd. (9)]. We will return to this issue in the next section.
these non-optimized approaches, the best approach is, as ex-In the limit of high densities the configuration of two
pected, that based on the Corradini kernel, although it overadjacent thin slabs is not stahlat is, Dy<0), which is a
estimates the correlation energy by a few mhartree per eleconcomitant consequence of the well-known instability of
tron compared to the energy-optimized data. Since a similathe jellium model for low values ofs4>46 Nonetheless, the
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FIG. 4. Interaction energy per electron for two interacting jel-
lium slabs of thicknesk =3a; and background density=1.25 as a
function of the distanca. The inset shows in more detail the bind-
ing curve around the mechanical equilibrium distance. Thick solid
line: OH1; thin solid line: RPA; dashed line: KS-LDA. We can see (2<r,<6) treated by Dobson and Wang, and constitutes a
how the KS-LDA underestimates the binding energy, whereas thgignificant failing of the LDA. As an illustrative fact, the
RPA predicts a smaller bond-length than the OH1 and KS-LDA. interaction energy curve is not binding when the non-local

exact exchange is combined together with the LDA correla-
two jellium interacting films will be at mechanical equilib- tion energy, suggesting that energy functionals with similar
rium at a distance, where the interaction energy curve Precision shpuld be used for _the ethange and _correlatlon
between the slabs_m(a):sL(a)—sL(OO) reaches a minimum. €nergies. Thl_s means tha_t the interaction energy given by the
To analyze the role played by the local-field corrections, we-DA correlation energy is far too small compared to the
will compare the equilibrium properties for two films with a Non-local results whereas the LDA exchange, which is more
background density;=1.25 and thicknesk=3a, using the blhdlng than the exact exchange, cannot compensate fqr this
RPA and the OH1. failure. While the LDA usually predicts overbinding in

For this model system, the binding energy per e|ectr0,{nolequle_é° it is remarkable to find th!s oppo_S|te_ behavior for
D:_S:_nt(aeq) given by the RPAsee Fig. 4 and Table)lls far the bln_dlng betw_een the ;Iabs. _Thls fact indicates that the
greater than the KS-LDA one, and slightly larger than that-DA wil be. spemglly unsuitable in regions where thg weak
obtained through the OH1 method. Hence, we have a Sim”apon—lpcal dispersion forces are more relevant than in usual
trend as in the case of two slabs at zero separatiod hence ~&t0Mmic or molecular systems. The GGA has also been shown
out of equilibrium), but now the differences between the KS- to be insufficient for describing Iayer-layer interaction ener-
LDA and the ACFDT methods are more important. Interest-91€S When long-ranged effects play an important f8le.
ingly, the KS-LDA and OH1 equilibrium distances are prac- The KS-LDA not gnly fa||s_ to describe the _bondm_g en-
tically the same, but the RPA underestimaggg by more ergy around th_e equilibrium distance, but also in the limit of
than 2%. That means that the absence of local field corredligher separations. B> ae the covalent bond between the
tions tends to reduce the bond length between the slabs, abs ceases to exist and van de_r Weatsh) dispersion
tendency already observed by Fuchs and Gonze for the B%orces play a promlnent role. In this case, t_he non-local_ef-
dimer?® Finally, there are significant differences in the elas- ects are manifest and the KS'LDA. behawqr clea}rly fails.
tic constant per particle, that we define @s=d2(a)/da? This gffegt can be seen very clearly in the talil qf Fig. 4, but
(at a=a,): the RPA value is about 10% larger than OH1, also in Fig. 5, where we reprgsent the interaction force per
whereas the KS-LDA is a similar amount smaller. The poorelectronf(a).: —de,(a)/da for this model system. I6<acq .
performance of the LDA for the binding energy here contin-Whe.re the films tend to repel each other, the three approxi-
ues a trend noted by Dobson and WAirigr the LDA layer- mations show'the same perforr_nance. Howevea Hfag, the
layer binding energy to be worse for lower values. The LDA underestimates the attractive force between the films. It

error is worse here than for the regular metallic densitiedS WOrth noting that, as before, the inclusion of a non-local
fyc partially compensates for the difference between the

. I . RPA and the KS-LDA.
TABLE II. Mechanical equilibrium propertieésee the textof . . .
two interacting jellium slabs of thickneds=3a, andr=1.25 ob- It is very likely that the general trends we have described

tained using the KS-LDA, the ACFDT-RPA, and the ACFDT-OH1 in this section will also be valid for real layered materials
, ) e ; 27
Note the coincidence between the KS-LDA and the OH1 equilib-(IIke BN or graphitg, as suggested by Dobscet al:

FIG. 5. As in Fig. 4, but representing the interaction force per
electron. Whereas the three models behave similardy<ifag, the
KS-LDA deviates from the ACFDT results &> ag

rium distance. through an estimation of the many-body corrections to the
interacting energy between layers in bulk graphite. Neverthe-
agq(bohn D (mhartreg  C, (mhartree/bolf less, it is importan't to point out thgt the RPA might overcor-
rect the local density results. In this respect, the sophisticated
KS-LDA 3.38 0.53 0.45 XC functional approximation by Rydbergt al.?® which is
RPA 3.32 0.79 0.55 constructed such that the long-distance vdW forces are incor-
OH1 3.38 0.75 0.49 porated in a seamless way, seems to underestimate the bind-

ing energy and the elastic constant of grapli@ensidering
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the experimental uncertaintiesn real layered systems there . 2F Ty

is a delicate combination of trends that results from the ex- £ ,/ \

istence of local atomic bonds and weak dispersion forces. = 1f

Then, it is very unlikely that a KS calculation, even with &

very elaborate functional approximations, would be able to S0

describe these situations properly, where several phenomena E;

characterized by different length scales co-exist. A full Al

many-body analysis of the structural properties of such real \;?::,

systems is a challenge for the immediate future. While the 2F . ‘ . ‘ ]
many-body methods incorporate more clearly the relevant 0 1 2 3 4 5
physical features the technical subtleties associated with 9, (auw.)

these calculations may be even more delicate than those of

the current approach. Total energy calculations based on FIG. 6. Local-field corrections to the-dependent distribution
many-body perturbation theory either in the GW approxima-yc(a) -8 A(qy) for a jellium slab of thicknest =12.52 (rs=2).
tion or derived from Luttinger-Ward functionals along with Solid line: OH1, dashed line: Cor.

their self-consistent conserving extensions open a promising

field for future research for describing real materials. +o0 +o0
IV. SURFACE ENERGIES oc(l)= J dzdz J doy exp(- g;z12)

In a series of important papetd®#® Pitarke and co- - 0
workers have given further insight into the long-standing oo q )
puzzle of the surface energy of simple metals. Their findings % f _“{” al AVIOYZ ) = Av(z:.Z
suggest that the deviations of the statistical DQf1@nd A XM 2) - Ax(zZ)
Fermi hypernetted chaif calculations from the KS-LDA 0
surface energies could be due to inconsistencies in the ex- oo oo
trapolation procedures required to infer the values associated B @)= | due(iv)
with a semi-infinite geometry from finite-size calculations, as = ) G4l = e
well as in the comparison between the energies of the inho- 0 0

mogeneous system and the HEG. As a consequence, the K
LDA jellium surface energies may be considered as a fairl
good approximation to thestill unknown exact values. The

ﬁ_ere,zlzE |z1-2,|, L is the thickness of a jellium slab with
ybackground density, andn(z) is the electron local density.
results presented in Sec. lll, as well as qualitative analysi%o simplify thde n.Ott""t'?hn’ .Wﬁ have not &u:;udeézl r;[he depen-
made, among others, by Ya al* indicate that such exact ¢€Nc€ Oru andg, into the inhomogeneousy) and homoge-

h . .
values would lie between the LDA and the RPA. Pitarke and'€0US(x"*") response functions, and we have defined the
Perdew® have recently shown that the RPA correlation sur-OP€rator

face energy exhibits a clear cancellation of errors between 1

low- and highg, contributions(q, is the component of the

momentum parallel to the surfaceStrikingly, by including Ax= J d\(xy — Xo)-
the local-field correction using the Corradini kernel, they 0

found that such cancellation is almost complete. Therefore,
their estimation of the surface energies is much closer to théh Figs. 6 and 7 we plot the differences between the RPA
RPA than to the LDA. Without questioning at all the physical distributions Y27 (g,) and {&°* (iu) and those correspond-
arguments reported by Pitarke and Perdew, we note thaimg to an ACFDT calculation using the OH1 and Cigy:
these conclusions, about the role played by the local-field

effects, do not follow the general trends presented in Table I. 10
However, as we mentioned in Sec. Il, the static Corradini
kernel has a physical finite short wavelength contribution
that dominates over the bare Coulomb potential &, lead-

ing to ACFDT calculations that are much harder to converge
than the conventional RPA ones. Since surface energies are

0.00

8

-

-0.02

L (i) - € 2" Giw) (arb. units)
»

very delicate quantities, a painstaking analysis of the results 2 0.04
is required. 0
The correlation contribution to the jellium surface energy S
can be written as B0 o5 1o 15 20 25 30
o= lim oo(L), (10) u (Ha)
L—o

FIG. 7. Local-field corrections to the frequency-dependent
with the finite-size correlation surface energy(L) given  distribution yc(iu)-y5-iu) for a jellium slab of thickness
by®t L=12.52 (r¢=2). Solid line: OH1, dashed line: Cor.
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4 6 8 10 12 14 18 inset in Fig. 7, due to the reasons explained in Sec. Il, the

function ggg‘“ (iu) decays very slowly. Whence, small nu-
merical uncertainties in the treatment of this highegion
might be the origin of a certain overestimation of the
ACFDT-Cor correlation surface energies.

To confirm this possibility, we have calculated the local-
field corrections to the exchange-correlation surface energy
through the OH1, OH2, and Cor functional approximations.
Note that we do not need to make a fully converged calcu-
lation of oyc for each case, but just of the difference

3500] /\ [\ RPA
. ./O\ .[o\\,//u\\,/ oxc—ohe 52 This can be done through a systematic elimi-
/ 3470

3400

3350 ¢

3300+

3450} nation of possible sources of error, as we may see in Fig. 8.
The finite-size approximation to the XC surface energy
oc(L) exhibits clearly defined regions limited by the onset of
, , the occupancy of a newsubband. A way to find the limit
3450 OH1] L — o of oyc(L) is the evaluation of the mean value in each
/\ [\ [\ ANAN A QX oscillation. An alternative is the Pitarke-Eguiluz extrapola-
5ol © *f°
4

3468

o, (L) (erg/cmz)

3400

ofo\ef o\ °R¥® tion proceduré, which makes use of values taken from two
consecutive oscillations. Both methods give the same results
3420 but, whereas they converge extremely fast under the KS-

1 LDA, the ACFDT finite-size energies reach the infinity limit
R T TR more slowly. Fortunately, as may be inferred from the data
Lir represented in Fig. 8, the differences between the RPA and
s the OH1 energies are very stable as a function of the slab
FIG. 8. The finite-size XC surface energy foy=2 using the  thickness.. As a consequence, by choosing only one suitable

KS-LDA, RPA, and OH1 approximations. The open circles repre-g80metry we can calculate the differenagc—o%c” with
sent the averages over each oscillation, whereas the closed circl¥§ry high precision. We take a slab whose KS-LDA finite-
are the estimations of the surface energy following the procedure b§iz€ XC surface energies equal the corresponding infinite
Pitarke and EguiluzRef. 5. In each panel, the hollow square limit and then we calculate the difference between the RPA
marks the single slab geomettk=12.52,) used to estimate the and the OH1 energies. Although they do not match the infi-
local field corrections to the RPA. nite width limits separately, the difference does. Presuming
that the same reads for the OH2 and Cor functional approxi-
functionals for a jellium slab withrg=2 and thickness mations, we can fairly predict the correction to the RPA en-
L=12.52,. At a first glance there are not qualitative differ- ergy. We have chosen a geometry with eight occupied
ences between both ways to include local-field correctionsz-subbands, which gives us a balance between size-
We may observe that the OHGy-distribution is slightly  convergence and numerical ease, since the wider the slab the
closer to the RPA than is the Cor one except in a regiormore difficult to converge the ACFDT calculation. Nonethe-
aroundg, = 3.5, but in both cases the cancellation of low andless, even with these precautions, the numerical uncertainty
intermediateq; local-field corrections is evident. The same of the ACFDT-Cor is many times greater than the OH1 and
holds for the decomposition in imaginary frequendiegg. OH2 ones.
7) since smallu-dependent local field corrections tend to  Our results are presented in Table IIl, where we also show
increase the surface energy, but this is compensated by cotie KS-LDA, KS-MGGA#* and our converged RPA XC en-
tributions from higheru. However, as we may see in the ergies, the latter being practically identical to that reported

3400

3350

TABLE Ill. The ACFDT and KS exchange-correlation contributiang to the jellium surface energy, in
erg/cn“?. An estimation of the numerical uncertainties of our ACFDT values is also shown, as well as the
width of the slab(between parentheses in unitsrgf used to evaluate the local field corrections to the RPA
energies. Note how such local field corrections systematically shift down the RPA surface energies, although
they do not reach the predictions from a mixed RPA+GGA calculation. The values corresponding to the
RPA+GGA (see the textand the KS—-MGGA have been extracted from Ref. 44. All the results have been
obtained from self-consistent LDA wave functions.

re G_)IE(S:—LDA U'QEA U)c()gl 0'%'2 a'%r O_EEA+GGA U)IE?:—MGGA
2.0(12.52 3355 34702 3422+2 3435+2 3440+20 3415 3402
2.3(12.65 2019 2099+1 2066+1 20751 2075+20 2061 2048
3.0(12.84 764.1 8031 788+1 793+1 795+10 783 779
4.0(13.0) 261.5 279.0+0.5 273.0£0.5 276.0+0.5 277+5 269 266
5.0(13.1) 1111 119.5+0.5 116.5+0.5 118.5+0.5 119+5 113 113
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to a correction of they,— 0 contributions to the correlation
energy. This is not the case, since in this limit the bare Cou-
lomb potential dominates, and the leading term of the

° s 18 shifts the binding curve up very slightly, making it closer to

10 15 the KS-LDA one. By using their energy optimized local

kernel® Dobson and Wang obtained the very same trend
FIG. 9. Correlation contribution to the interaction energy for which also appears _'n many-body GW calculations of the

two jellium slabs of thicknesk=12.8 a.u. and background density total energy of a similar model sy_stér‘h._ ]

r<=4, as a function of the distan@e Thick solid line: OH1; thin Besides these qualitative considerations, we can provide

solid line: RPA; dashed line: KS-LDA. The latter, obtained by sub- further insights about the long-distance energy interaction

tracting the exact exchange energy from the KS-LDA exchangebetween Conducting f||m5 ItS asymptOtIC fOI’m can be written

correlation one, goes very quickly to zero. The ACFDT results ex-aS

hibit a clear power-law decagthe fitted power isp=5/2) which

reflects the existence of long-distance vdW forces. We also plot the int

numerical fit(dashed-dotted linedescribed in the text of the OH1 SLYC(a) = (a+b)P’ 1)

results obtained from values betwear20 anda=25. The inset

shows the difference between the OH1 and RPA energies, whic{yith fitting constantsC, b, and p. Electron hydrodynamic
decays as """ theory, which properly takes into account the main geometri-
cal features of the problem, predicts a vape5/2 for thin
by Pitarke and collaboratoPs3 We have also included the metallic slabs angp=2 for semi-infinite metald’ In the limit
results obtained from the addition of a GGA functional to theof infinite separation, Sernelius and Bjork confirmed the
ACFDT-RPA#* We can see thatll the ways to include p=5/2power-law decay after a RPA calculation for a pair of
local-field corrections lower the RPA XC surface energy,perfectly 2D quantum well3® Hence, for our fully micro-
thus following the trend we found for thinner slabs. More- scopic calculations, we must expect thee5/2 decay as
over, the surface energies are rather insensitive to the detaiigell. To numerically obtain the values in the asymptotic
of the functional form offyc. However, the corrections based form (11), we have sampled energy values corresponding to
on the hybrid RPA+GGA prescription are greater than theseparation distances within the rarjg®, 25 bohr. However,
fully ACFDT ones, especially for lower densities. Thus, theany fixed value op between 2.0 and 2.5 guarantees a perfect
main conclusions reached by Pitarke and Perdew in Ref. 18t in this range. Nonetheless, only a value very close to 2.5
are confirmed: surface energies are closer to the RPA onedso yields an equally excellent fautside the mentioned
than previously expected and the accuracy of the RPA is dufitting region, including those corresponding to distances up
to a systematic cancellation of errors. The small, but in printo a=50 a.u. As a consequence, we have assumed the power
ciple relevant, differences between our Cor results and thosgecayp=>5/2, andthis is the asymptotic behavior plotted in
reported befor€ should be solely attributed to the difficul- Fig. 9. As expected, the RPA and OH1 interaction energies

% asymptotic behavior oé'L“fC(a) must be the same for all the
= ACFDT prescriptions. Indeed, as we may see in Fig. 9, the
é?’o differences between the RPA and OH1 approximations are
T i relevant only in the limit of short separatioalready dis-

i cussed in Sec. lJI In this limit, the local field corrections

o
(=]
(=}

a(au.)

ties of such an ACFDT calculation. share the same dominant behavior32.5+0.5 mhartree
X bohr’? for the considered geomet(iwo slabs of thickness

V. van der WAALS DISPERSION FORCES BETWEEN IT:12.8 a.u., and mean densrtgF4). The local field correc-
METAL FILMS tions only affect the constart, which takes the values 0.9

and 0.8 a.u., respectively. That is, within the numerical pre-

To close the analysis that we are presenting on the influeision of our calculations, beyond RPA effects yield a 10%
ence by local-field corrections on correlation energies, wehange over the second-order term of the long-distance in-
present in this section several results concerning the intera¢eraction between these metal films.
tion force between simple jellium films at large separation. Although not the main focus of this work, it is interesting
As has been stated before many tirfi€452’this limit shows  to close this section with a brief discussion on the non-linear
a genuine manifestation of long-ranged correlation effectserms appearing in three-body interactions. For complex sys-
through the appearance of van der Waals dispersion forceeems made up of several interacting systems, it has been
Then, when the electron densities of each film have an extraditional to calculate the long-ranged dispersion energy ap-

ponentially small overlap, the interaction eneﬂi'yc(a) still proximately as a sum of pairwise contributions retaining
takes a non-zero value. We have already shown this fact innly the leading term corresponding to a two-body system.
Fig. 4, and it can be seen in Fig. 9 as well. Thus, higher order non-additive terms of the interaction be-

Such long-distance behavior can be explained in terms dfveen more than two bodies are neglected. Although in a
the coupling between two-dimensiondRD) collective different context, a paradigmatic example for this non-
modes confined in each metal fifhTherefore, local-field additive behavior is the Axilrod-Teller-Mut6 triple-dipole
effects would be only important in the limit>0 if they led  dispersion interaction term in a system of three distant neu-
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0.05 ; ; result might have for simplified descriptions of the interac-
tion forces in complex layered systems.

-1} ] VI. CONCLUSIONS

() (mHa)

int3,

LC

In this paper we have presented a static functional ap-

(a) (mHa)

Ews,» proach to the XC kernel of arbitrary inhomogeneous systems
< based on a non-local parametrization of the HEG XC kernel
constructed via an energy optimization procedure. This way

-0.01 NI . to introduce local field corrections seems to be a very robust

0 a(au) 10 5 procedure, since the correlation energies obtained are very

similar regardless of the specific details of the functional
FIG. 10. The non-additive differencers"3(a)=&"%(a) construction. To test this_ prescription,_ we have calculated
-£"3%2(a) between the correlation contributions to the interaction ACFDT correlation energies for highly inhomogeneous sys-
energy per particle for three equally spaced sidbs12.8 a.u. and tems, interaction energies between metal films, simple metal
r<=4) as calculated from a full three-body calculation and from surface energies, and analyzed long-distance correlation
two-body interactiong3w?2). Solid line: ACFDT-OH1, dashed line: vdW forces.
KS-LDA. For distances less than 5 a.u. the differences are mainly As a general trend for these systems, local-field correc-
due to the distinct overlapping in the two- and three-slab systemgions correct the RPA results, shifting them toward the KS-
However, ifa=7 such differences are only due to the the presencd DA values. Very likely such corrections are less important
of non-additive terms in the actual dispersion forces for the threethan those expected previously from the modeling of effects
slab system. The inset shows the total correlation contribution@eyond RPA using local or semilocal prescriptidhhis is
el (@) (solid line) and the additive paw"c"%(@) (dots using the  specially manifest in the case of jellium surface energies,
ACFDT-OHI. where our full ACFDT result lies between the RPA values
and the hybrid RPA+GGA ones that, until now, could be
tral atoms. This term depends on the relative angle formedonsidered as the best approach to the exact surface energies.
by the three atoms taking a positive repulsive value for a This work provides a firm basis to the use of energy op-
triangular shape, but a negative attractive one for the lineatimization procedures for prospective applications of the
disposition. In order to study the pairwise non-additivity of TDDFT-ACFDT, but there are several important points that
the jellium slabs energy we have carried out the calculatiomeserve future attention. The first one is the self-consistency
of threeslabs, of equal thicknedsand equal spacing, as a issue, since so far all the TDDFT and many-body calcula-
function of a, that will be compared to the sum of energiestions of correlation energies have been carried out over KS
for pairs of slabs. _ density profiles. In other words, the set of one-electron wave
The additive part of the correlaticnf‘g‘(a) to the interact-  functions does not minimize the total energy expression that
ing energy per electron of a three-slab system obtained fromontains the ACFDT correlation. Important steps have al-
the resultss"(a) of two interacting slabs may be written as ready been taken in this directié>®but a fully (or, at least,
partially) self-consistent implementation of the TDDFT-
. . . ACFDT at a numerically affordable cost is clearly an attrac-
sl'C"A(@) = 5(e"c(2a+ L) + 25{"(a). 12 tive challenge. For the r):mdel systems treated in){his paper, it
is very unlikely that self-consistency would be important.
The first term on the right-hand side accounts for the interHowever, it would not be the case for many localized sys-
action between the farthest external slabs, while the secori¢ms and, of course, for any other problem where the KS-
term describes the two interactions between the closest pairsPA or GGA is not an optimal approach to the exact KS
The factor 2/3 is included to correctly compare the energynon-interacting system.
per electron of systems with different number of slabs. The A second issue that we would like to emphasize in these
residual, non-additive, part is shown in Fig. 10, and is largeseonclusions is related to the functional approximation to the
for small separation distances. However, this should be atXC kernel itself. There are limits that are not recovered by
tributed to the fact that the energies are being evaluated oitie simple Hubbard-like form we have used here. For in-
different overlapping electronic density profiles. In fact, thestance, the XC-kernel so constructed lacks the inclusion of
energy differences shown in Fig. 10 stabilize at a distanceelf-interaction corrections for one- or two-electron systems.
a=7, where the electron overlapping is very small. Then, welhat means that the energy-optimized functional forms must
can see unambiguously the non-additive effects which, obe improved to properly account for this limit, which defi-
course, are not present in a KS-LDA calculation. Using thenitely might be important in systems with highly localized
ACFDT-OH1 approximation, such non-additive effects leadelectrons. Work is currently in progress to include such self-
to a decrease of the attractive force at large distances anthiteraction corrections while keeping the numerical stability
within our numerical error bars, lowering by about 10% theof the functional approximation.
absolute value of the leading asymptotic term from the addi-
tive 3w2 expression. It would be interesting to obtain a fur-
ther confirmation using, for instance, a model calculation as The authors gratefully thank J. E. Alvarellos, E. Chacén,
that carried out in Ref. 53 due to the implications that thisk. T. Delaney, T. Gould, J. M. Pitarke, A. Rubio, S. Tsuzuki,
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and U. von Barth for many valuable discussions. This workpoints are distributed in two GL grid&ach one typically
was funded in part by the EU through the NANOPHASE comprising 30—40 poinjs The first grid includes small val-
Research Training NetworfContract No. HPRN-CT-2000- ues of the momentum, and the second one is a coarser grid
00167 and the Spanish Education Ministry DGESIC grantfor the high momentum contributions up to a value
BEM2001-1679-C03-03. Omax= 300k, gr being the Fermi momentum of the HEG with
the averaged density of the slabs. The frequenayis de-
scribed in a similar fashion, with the coarse grid reaching the
APPENDIX: NUMERICAL PROCEDURE cutoff valueun,,=40g2. Nonetheless, as mentioned in Sec.

For a spin-compensated system exhibiting translationalll’ Umax Must be increased several times 1o reach a good

. . . . _convergence if using DW or Cor kernels. In any case, to
Invariance a_long the(Y_ plane, theZKS orbitals fmd e’;erg'es reduce numerical uncertainties like those shown in Fig. 3,
are  ¢ng () =yn(2expliq-r))/(2m)* and enq =en+0j/2.

: 1 high-u asymptotic contributions are estimated by numerical
¥n(2) ande,, are the solution of the reduced eigenvalue prob-extrapolation.

lem The non-interacting respongg can be obtained from an
1 P infinite sum over alloccupied and unoccupigd-dependent
{— 5ot vs(z)] Un(2) = entn(2) (A1) KS orbitalsyn(2):
297 oce
wherevg(2) is the KS effective potential. Then, all the rel- Xo(Z1,2,0;;1u) = E Un(Z0) Yn(20)
evant operators can be written in a representation on the n
coordinatesz; , and theXY relative distance;=|r;~r | v iU (2 . Al
(or, equivalently, on the modulug of the XY momentuny. % S G 1 Yim(20) Y2, (AD)

Thus, the ACFDT correlation energy per surface unit can be ) ) ) )
written as whereS,(q;,iu) are analytical function¥’ In this case, the

number of unoccupied states in E@4) is a critical param-
I eter, and the convergence must be then carefully checked.
Ec = _f %J dgec(a,u), (A2) Typi(_:ally, about 150(250)_ z states are needed_ to reach the
S 2 required accuracy for thin slaljsurface energigscalcula-

0 0 tions. Since the KS wave functions themselves are not an
where optimal representation of the density response, we solve the
Dyson equatior((3)) for eachu, g;, and\ using a represen-

tation in an orthogonal set dig functions of the sub-space
ec(q,u) = f dz,dze 92! x f X\ (22,21, iu)dA generated by the product functiofig(2) yin(2).
A way to circumvent the infinite sum appearing in Eq.
(A4) is the use of the Green functioB(z;,z,;()) of the
reducedz-dependent KS HamiltoniagAl) to evaluate the
- Xo(Z2, 24, iU) | (A3)  non-interacting respon$&> In this scheme, the interacting
response is evaluated by solving directB) in its z repre-
sentation. The second method, if enough care is taken, is
For eachg, andu, we evaluate the non-interacting responseexact up to the numerical errors due to the discretization of
Xo and obtain the interacting ong solving the Dyson equa- the z space, which is actually the only critical convergence
tion (3). The\ dependence is represented by an eighth-ordeparameter. The choicdz=0.05 is enough to reach con-
Gauss-LegendréGL) grid, which is ample because of the verged results. We have followed both procedures as a fur-
smooth dependencies on the scaling paramketethe g, ther check of the numerical accuracy of our results.
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