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Ab initio simulations of quantum transport commonly focus on a central region which is considered to be
connected to infinite leads through which the current flows. The electronic structure of these distant leads is
normally obtained from an equilibrium calculation, ignoring the self-consistent response of the leads to the
current. We examine the consequences of this, and show that the electrostatic potential �� is effectively being
approximated by the difference between electrochemical potentials ��, and that this approximation is incom-
patible with asymptotic charge neutrality. In a test calculation for a simple metal-vacuum-metal junction, we
find significant errors in the nonequilibrium properties calculated with this approximation, in the limit of small
vacuum gaps. We provide a scheme by which these errors may be corrected.
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I. INTRODUCTION

The last 15 years have seen considerable progress in the
simulation of nonequilibrium many-electron nanoscale
systems1–7 typically using the local density approximation
�LDA� to density functional theory8,9 �DFT� within either a
scattering-states-based approach1,2,10,11 or the framework of
nonequilibrium Green’s functions �NEGFs�.3–7,12 In the latter
simulations the systems under study consist of two elec-
trodes �or leads�, placed to the left and to the right of an
active central region which contains a molecule and parts of
the left and right electrode. Starting from the unconnected
electrode–central-region–electrode system with each of the
electrodes itself in equilibrium but not in equilibrium with
each other,13 the NEGF formalism then provides the formal
apparatus to switch on the contacting terms of the Hamil-
tonian adiabatically, causing a current to flow through the
system. Associated with this current and related to the resis-
tance of the molecule there is a “resistivity dipole” arising
from the newly induced charge density, which causes the
electrostatic potential to drop in the neighborhood of the cen-
tral region. The magnitude of the drop in the self-consistent
electrostatic potential is essentially fixed by a charge neutral-
ity condition, i.e., the fact that the asymptotic electrode re-
gions must themselves be charge neutral since a net charge
would cause the electrostatic potential to diverge. In the case
of jellium electrodes, this charge neutrality condition ac-
quires a strict local form14 since, asymptotically, the electron
density exactly cancels the background density at any point.
The relationship between electrostatic potential drop and
asymptotic charge neutrality has been addressed in earlier
work.10,11,15,16 In this paper we place this into the context of
NEGFs, including a discussion of how to incorporate the
response of the leads to the passing current within the
partitioned-NEGF formalism, and a numerical estimate,
based on a simple model system, of the errors induced by
ignoring this response. It should be pointed out that any prac-
tical implementation of the NEGF formalism based on static
DFT cannot, strictly speaking, properly take into account the
drop in the electrostatic potential between the leads, since the

adiabatic switching of the contacting terms of the Hamil-
tonian �i.e., the time-dependent perturbation� changes the
density, and the response to that change cannot be described
inside the realm of static DFT.17,18 Furthermore, the lead
self-energies, which describe the coupling between the leads
and the central region, are commonly obtained from an equi-
librium calculation.4,5 At the level of the Hartree approxima-
tion and in the nonequilibrium regime, this means that the
leads do not respond to the flow of charge induced by the
applied bias voltage; the electrochemical potentials remain
fixed to their equilibrium values and the drop in the self-
consistent electrostatic potential �� is, as discussed below,
effectively being approximated by the difference between
electrochemical potentials ��.1,4,5,19 At the level of the
Hartree-Fock approximation this lack of asymptotic self-
consistency also implies that the nonequilibrium Fock opera-
tor deep inside the leads would be equal to the equilibrium
one, which is clearly not the case since the Fock operator
depends on the nonequilibrium occupancies of the current-
carrying states, which are different from the equilibrium ones
everywhere. However, we will not further discuss the effects
of the lack of asymptotic self-consistency in the Fock opera-
tor. The most severe effects appear already in the self-
consistent Hartree potential which we will use as an illustra-
tion in our paper. We would like to note that nonpartitioned
NEGF approaches, as suggested by Cini20 and later elabo-
rated by Stefanucci and Almbladh,21,22 are in theory free
from these objections as they focus on the evaluation of the
nonequilibrium Green’s function in the whole transporting
system.

The relation between the electrostatic drop and asymp-
totic charge neutrality is already implicit in the original form
of the Landauer formula23,24 I= �2e2T /hR���, and has been
explored by some authors over the years15,16 until very
recently.25 In Ref. 25 the authors further clarify the distinc-
tion between the difference between the electrochemical po-
tentials of the left and right electrodes �� and the drop in the
electrostatic potential �� as well as the role played by the
geometry. However they do not discuss in detail the validity
of the approximation ��=��.
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To fix ideas consider a biased system that is translation-
ally invariant in two of the three spatial directions and has
some localized inhomogeneity along the z direction. Since
left- and right-going scattering states are occupied up to two
different electrochemical potentials �L and �R, respectively,
a current flows along z, and therefore there is an electrostatic
potential drop ��. If we assume that ��=�R−�L=��, then
it is easy to show that in the asymptotic electrode regions the
electronic density � is in the case of jellium electrodes given
by15,16,26

��z → ± �� = �B�z → ± �� ± �
0

+�

dk±T�Ez��fR�Ez� − fL�Ez�� ,

�1�

where �B�z� is the background density, k± are the magnitudes
of the z components of the momentum in the asymptotic
right �+� and left �−� electrode regions, respectively, Ez�k±�
=k−

2 /2=k+
2 /2−�� is the energy associated with the motion

in the direction of the current, T�Ez� are the usual transmis-
sion probabilities, and fR and fL are the equilibrium Fermi-
Dirac distributions for right- and left-going electrons aver-
aged over the components of the momentum perpendicular
to the direction of the current, each of which is characterized
by an electrochemical potential �R�L�. The latter, as functions
of k−, are given by15,16,26

fL,R�k−� =
1

�2��2 �kL,R
2 − k−

2���k− − kL,R� , �2�

where kL,R are the asymptotic Fermi wave vectors for left-
and right-going electrons, respectively, in the left asymptotic
region. Therefore, when imposing ��=��, associated with
the presence of a current from, say, left to right, there is a
charge depletion in the asymptotic left-electrode region and a
charge accumulation in the asymptotic region of the right
electrode.15,16,25,26 Therefore it is clear that the drop in the
self-consistent electrostatic potential is necessarily different
from ��. It is then surprising that in many state-of-the-art ab
initio quantum transport simulations the approximation ��
=�� is used without further explanation or comments on its
validity.1,4,5,19 Of the few that have considered this problem
let us mention Pötz,15 who introduces a drift in the electronic
distribution functions of left- and right-going electrons so
that the asymptotic electrode regions remain neutral, Bokes
and Godby,16 whose proposed method is applied in this
work, and Lang10 and Di Ventra and Lang,11 who renormal-
ize the electron densities deep in the jellium electrodes. Even
though the effects discussed here are general they may be
minimized by particular device geometries such as the quan-
tum point contact geometry where for sufficiently wide elec-
trodes the current density drops to zero and therefore ��
��� asymptotically.

From the above given discussion it should be clear that
asymptotic self-consistency �i.e., the full nonequilibrium
Green’s function of the leads� is generally needed in order to
describe the drop in the electrostatic potential correctly. The
lack of asymptotic self-consistency naturally leads to the ap-
proximation ��=�� which is incompatible with charge

neutrality in the asymptotic lead regions. The rest of this
paper is organized as follows. In Sec. II we show explicitly
the effect that the lack of asymptotic self-consistency has in
the calculated nonequilibrium properties of a simple jellium
metal-vacuum-metal junction. In Sec. III we express these
ideas in the language of NEGFs, showing which terms are
commonly neglected and providing a simple recipe to incor-
porate them for the case of jellium electrodes. We conclude
in Sec. IV.

II. EXAMPLE: ASYMPTOTIC CHARGE NEUTRALITY IN
A JELLIUM METAL-VACUUM-METAL INTERFACE

Neglecting the nonequilibrium contributions to the
Green’s function of the leads results, at the level of the Har-
tree or DFT LDA approximations, in the approximation
��=��, which in turn is incompatible with asymptotic
charge neutrality in the leads. We now show the effects of
this approximation in the calculated properties of a nonequi-
librium metal-vacuum-metal junction. Even though we will
use a scattering-state-based approach its equivalence with the
NEGF formalism may be noted.

The jellium model of the metal-vacuum-metal inter-
face1,27,28 is defined in terms of the background density:

�B�z� = n0�	�− z� + 	�z − L�� , �3�

where n0=3/4�rs
3 and L is the length of the vacuum gap. For

this system we solve the Kohn-Sham equations self-
consistently using the Perdew-Zunger29 parametrization of
the LDA exchange-correlation potential. Historically this
system was the first to be studied using conventional ab ini-
tio techniques in a nonequilibrium regime,1,28 and, for our
purposes, constitutes a simple system for which the electro-
static effects under study arise in the most transparent man-
ner.

In order to ensure charge neutrality in the asymptotic elec-
trode regions, for a given value of �� we need to find kR and
kL in Eqs. �2� such that

n0 = ��z → ± �� �4�

are satisfied. kR and kL are related to the electrode electro-
chemical potentials simply by

�R − �L =
kR

2 − kL
2

2
. �5�

Therefore, at each step of the self-consistency cycle, we
solve the Poisson equation with Dirichlet boundary condi-
tions, fixing �� and calculating the corresponding �� that
ensures that the asymptotic left- and right-electrode regions
remain neutral. Strictly speaking this procedure is only jus-
tified in the case �such as the metal-vacuum-metal junction�
that there is a one-to-one correspondence between �� and
��, i.e., there is a one-to-one correspondence between the
applied bias and the current. For this particular case our
method is equivalent to the alternative one of fixing �� and
calculating �� by solving the Poisson equation with von
Neumann boundary conditions.7

When studying the influence of asymptotic charge neu-
trality on the calculated nonequilibrium properties we solve
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the Kohn-Sham equations self-consistently using the proce-
dure described by McCann and Brown,1 with the approxima-
tion ��=�� and without it, using the asymptotic neutrality
condition Eq. �4�. In particular the Poisson equation is solved
using Nieminen’s method,1,19,27 which greatly stabilizes the
iterative process and speeds up the convergence.

We next present a set of results for a symmetric metal-
vacuum-metal junction with electrodes characterized by rs
=4,30 focusing on the differences between �� and �� as
functions of the electrode-electrode distance and the effect
that the lack of asymptotic neutrality has in the calculated
resistivity dipoles and current densities.31 Figure 1 shows a
linear relation between �� and �� for different lengths of
the vacuum gap. All the lines fall between two limiting ones:
��=0 for L=0 and ��=�� for L→� as expected. For L
=0 the system is homogeneous along the z direction and
hence there is no electrostatic drop. As the distance between
electrodes increases the transmission coefficient T�Ez� de-
creases, the current decreases, and ��z→ ±��→n0; therefore
the electrostatic drop and the difference between electro-
chemical potentials are approximately equal in that limit. In
fact ����� for L
2rs. However, one should note that
there are no molecular conducting channels present in our
model. If these were present and open, then the deviation
from ��=�� should, according to Eq. �1�, be larger at a
fixed value of the electrode-electrode separation. Figure 2
shows the calculated resistivity dipoles defined as

���z� = ��z,�� � 0� − ��z,�� = 0� �6�

for different values of the applied bias. In Fig. 2�a� the di-
poles were calculated within the approximation ��=��.
Enforcing this boundary condition when solving the Poisson
equation leads to the appearance of unphysical charges
which are placed at the edges of the numerical grid used in
the calculations. These spurious contributions to the induced
density disappear as ��→0 or L→�, since in these limits
��=��. In Fig. 2�b� we show the calculated resistivity di-

poles by choosing kL and kR so that Eqs. �4� are satisfied. The
induced density goes smoothly to zero as z→ ±� even at
small values of L and relatively large values of ��. Finally
in Fig. 3 we present calculated J-�V curves �with �V equal
to �� or �� depending on the pair of curves being com-
pared� for different electrode-electrode spacings. A large dif-
ference between the J-��=�� curve and any of the other
two is present at small electrode-electrode separations. As
argued above, as the separation between the electrodes be-
comes larger all three curves converge into a single one.
Table I contains numerical values of the ratios between linear
response conductances �calculated at a small but finite bias�
with and without the approximation ��=��. The perfor-
mance of this approximation is poorer for larger values of the
conductance, as expected.

III. RELATION TO THE PARTITIONED NEGF
APPROACH

Even though the problem of asymptotic charge neutrality
for jellium electrodes is clear and directly solvable through
the scattering states as is done in this paper, the issue be-
comes more involved within the partitioned NEGF approach.
We proceed to show explicitly the terms that are usually

FIG. 1. �Color online� The figure shows the difference between
electrochemical potentials �� as a function of the drop in the elec-
trostatic potential ��, in units of the equilibrium Fermi energy, for
different values of the electrode-electrode distance L. L=0.25rs

�solid line�, 0.5rs �dashed�, 1rs �short dashes�, 1.5rs �dots�, and 2rs

�dot-dashed�. ����� only for large electrode-electrode spacings.
For reference EF=3.131 eV.

FIG. 2. �Color online� �a� Resistivity dipoles calculated for dif-
ferent values of �� with L=1.5rs, using ��=��. The arrows in-
dicate the presence of unphysical charges at the edges of the nu-
merical grid. �b� Same as in �a� but calculated using our neutrality
scheme. Solid line �� /EF=0.075, dashed �� /EF=0.05, dotted
�� /EF=0.025. The vertical lines indicate the positions of the edges
of both jellium surfaces.
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neglected in practical implementations and to provide a
simple scheme by which asymptotic self-consistency may be
easily implemented.

Let us consider a system’s Hamiltonian partitioned into
two semi-infinite leads �left �L� and right �R�� and finite cen-
tral region �C�. The Green’s functions we consider below are
all defined on the Keldysh contour with the complex time
variable32 � and are meant to represent matrices with two
indices m , n belonging to some complete set of spatially
localized basis functions. Each of these can belong to any of
the above introduced regions L , R, or C. We employ the
notation

�G
�nm � − i�T�	ĉn�
���ĉm�

† ����
�, 
 = L,R,C , �7�

for the disconnected systems and

�G
��nm � − i�T�	ĉn�
���ĉm��
† ����
�, 
,� = L,R,C ,

�8�

for the contacting ones. We also use 1��nm���−���.
Before we turn on the contacting between L and C and C

and R the unconnected Green’s functions satisfy the equa-
tions of motion

�i�� − HL�GL = 1, �9�

�i�� − HC�GC = 1, �10�

�i�� − HR�GR = 1. �11�

This can be also written in a block form as

�i��1 − 
HL 0 0

0 HC 0

0 0 HR
��
GL 0 0

0 GC 0

0 0 GR
� = 1 , �12�

or more concisely as

�i�� − H�G0 = 1 . �13�

Next we turn on the interaction terms that couple the left
and central and the right and central parts, written as VL and
VR, respectively. The coupling, however, induces also a
change in Hamiltonians via the change of the density in the
Hartree and exchange-correlation potentials which we to-
gether write as �H
 for 
=L ,C ,R. Due to the self-consistent
screening �HL/R will attain the periodicity of the bulk crys-
talline electrode far from the central region. Using the block
Green’s functions we have

�i�� − H − �H − V�G = 1 , �14�

where

H + �H = 
HL
0 + �HL VL 0

VL
† HC + �HC VR

0 VR
† HR + �HR

�
and

G = 
GLL GLC GLR

GCL GCC GCR

GRL GRC GRR
� .

The solution of Eq. �14� can be written using Eq. �13� in the
form of the Dyson equation as

G = G0 + G0��H + V� · G , �15�

where · stands for the integral along the Keldysh contour
over an internal time variable.

The Green’s function of the central region corresponds to
the finite system and is usually solved numerically in a self-
consistent manner. It solves the Dyson equation

GCC = GC + GC�HC · GCC + GCVL · GLC + GCVR · GRC

�16�

which can be found as the “CC” component of Eq. �15�. To
have a closed system of equations we need to find GLC and
GRC. These are similarly given as “LC” and “RC” compo-
nents of Eq. �15� as

GLC = GLVL · GCC + GL�HL · GLC �17�

and

GRC = GRVR · GCC + GR�HR · GRC. �18�

The latter two can be formally inverted �in m , n as well as in
�� to give

GLC = �1 − GL�HL�−1 · GLVL · GCC, �19�

FIG. 3. �Color online� J-�V
characteristics for different elec-
trode-electrode spacings. L=�a�
1rs; �b� 1.5rs; �c� 3rs. For the solid
lines �V=��=��, for the dotted
lines �V=��, and for the dashed
lines �V=��.

TABLE I. Ratios between the calculated linear response conduc-
tances per unit area G2P=J /��, G4P=J /��, and G��=��=J /�V
with �V=��=��, together with their corresponding values of the
transmission coefficient evaluated at Ez=EF.

L /rs G2P /G��=�� G4P /G��=�� T �Ez=EF�

1.0 0.89 1.24 0.675

1.5 0.97 1.06 0.347

3.0 1.00 1.00 0.006
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GRC = �1 − GR�HR�−1 · GRVR · GCC. �20�

Combining Eqs. �16�, �19�, and �20� we finally obtain

GCC = GC + GC��HC + �CC� · GCC, �21�

�CC = VL�1 − GL�HL�−1 · GLVL + VR�1 − GR�HR�−1 · GRVR

�22�

=VLG̃LVL + VRG̃RVR, �23�

where we have introduced the self-energy �CC representing
the leads for the central region and defined new auxiliary

Green’s functions G̃L/R that satisfy the equations of motion

�i�� − H
 − �H
�G̃
 = 1, 
 = L,R . �24�

The surface Green’s functions G̃
 need to be such that they
correspond to the equilibrium situation with �HL/R being
turned on but with chemical potentials �or Fermi-Dirac oc-
cupation factors fL and fR� kept the same as in GL/R. For this
reason the only significance of the auxiliary Green’s func-
tions is their presence in the expression for the self-energy
�CC; they have no other direct physical meaning.33 Using the
calculated GCC in Eq. �19� one can now employ the usual
derivation of the expression for the current in terms of GLC

�

�Ref. 34�

I =
2e

�
Re	Tr�VGLC

� �
 . �25�

The usual treatments3,5,6 do not consider the change in the
lead Hamiltonians due to the change in density �HL/R that
arises in the nonequilibrium regime. This results in a simpli-
fication of our equations since the resolvent operators �1
−GR�HR�−1 and �1−GL�HL�−1 do not have to be calculated
in the nonequilibrium regime. We note that the evaluation of
these would require a complete calculation of GLL and GRR
for the contacting system since these give the nonequilibrium
density which in turn determines the changes �HL/R. This can
be most easily achieved for semi-infinite jellium electrodes,
which is equivalent to the calculations presented in the pre-
vious section of this paper �see also Ref. 22 for model one-
dimensional cases treated directly using the nonpartitioned
NEGF formalism�. In this case the change in the potential is
just a constant shift, i.e., �HL/R=�UL/R, which ensures the
asymptotic charge neutrality. As can be seen from Eq. �24�,
this shift moves the bottoms of the bands in the lead densities
of states, which are the only characteristics of the leads that
eventually enters into the final expression for the current Eq.
�25�. The relation between the drop in the chemical poten-
tials, the drop in the induced potential, and these shifts is
simply

�� + �UL − �UR = �R − �L. �26�

Here we have three unknowns �� and �UL/R. �UL/R, or even
the full �HL/R for the case of atomistic calculation, can be
determined iteratively from the central region Hamiltonian.
To describe the implementation of asymptotic self-
consistency into the usual ab initio NEGF calculations we
first consider a central region of converged size which in-
cludes parts of the atomic layers of the left and right elec-
trodes. One could start the iterative cycle by calculating the
the Kohn-Sham Hamiltonian in the central region with the
initial guess ��=�� �i.e., �HL/R=0�. Due to the self-
consistent screening in the central region we expect its
Hamiltonian to be a good approximation to the actual one
except in regions that are close to the edges of the partition.
By including enough of the electrode’s atomic layers into the
central region one can infer the change �HL/R, or its average
over one unit cell �UL/R, from the shape of the self-consistent
potential inside the included atomic layers within the central
region. In order to complete the iteration we need an updated
estimate of the central region self-energy �CC which in-
volves inverting the semi-infinite matrix in Eq. �24�, a task
that can be done using conventional techniques.35,36

IV. CONCLUSIONS

We have shown that in an exact time-dependent density
functional formulation of the partitioned Keldysh-NEGF ap-
proach the changes in the Hamiltonian of the leads due to the
contact need to be included. It is important for a correct
description of the electrostatic potential profile at large cur-
rents or junctions with transmission close to 1. Using a
simple jellium model of a biased metal-vacuum-metal junc-
tion we have examined quantitatively the effects of fixing
��=��. Significant differences between the nonequilibrium
properties calculated using this approximation and using a
more reasonable treatment of the electrostatic problem based
on asymptotic charge neutrality arise in the limit of small
electrode-electrode separation. These effects would be even
more pronounced for resonant molecular junctions where
both electrostatics and high conductance acting simulta-
neously may significantly influence the I-V characteristics of
the system.
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