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A method for the calculation of the conductance of nanoscale electrical junctions is extended to
ab initio electronic structure methods that make use of the periodic supercell technique and applied
to realistic models of metallic wires and break junctions of sodium and gold. The method is
systematically controllable and convergeable and can be straightforwardly extended to include more
complex processes and interactions. Important issues, about the order in which the thermodynamic
and static �small field� limits are taken, are clarified, and characterized further through comparisons
to model systems. © 2009 American Institute of Physics. �DOI: 10.1063/1.3096912�

I. INTRODUCTION

Nanoscale and molecular electronics is one of the most
active topics of research in physics today;1–3 it has very im-
portant consequences, both for fundamental research and for
industrial processes, which will reach their inherent quantum
limits in the decades to come. Accurate methods of theoret-
ical as well as experimental characterization are essential,
and many open questions remain about the structure, equi-
librium, and dynamics of nanometer-sized systems carrying
electrical currents. The ab initio simulation of materials
properties is in a unique position to develop the scope and
our understanding of electronics at the nanoscale, providing
the only method of systematic analysis of electronic and
structural effects, which are never all simultaneously acces-
sible in an experiment. Present simulations of nanoscale
transport usually fall into two categories, either employing
time-dependent density functional theory �TDDFT�4–6 or
various flavors of Landauer–Büttiker-type formulas,7–9

sometimes using a nonequilibrium Green’s function
formalism10 �for a review see Ref. 9�. Due to the way they
are formulated, using embedding schemes, these techniques
often rely on localized functions �atomic8,11–14 or
Wannier15,16 function� to describe the single particle wave
functions of the system. This introduces an inherent diffi-
culty in converging calculations, as the basis sets usually
cannot be refined systematically. There is still a great deal of
uncertainty about the precision of both experiments, e.g., due
to fluctuation in experimental conditions of contact and cur-
rent flow, and theory, where no standard model is yet ac-
cepted as being predictive of experiments, apart from simple
cases of continuous contact with conductances of at least one
quantum of conductance �G0�. The role and importance of
electron-electron9,17–21 and electron-vibration22–24 interac-
tions have been recognized as an important factor in obtain-
ing the correct transport properties even though satisfactory

treatment for a general system at the ab initio level is not yet
available.

In the following, we present a method to calculate the
conductance of a quantum junction, which can be systemati-
cally converged and extended to include the effects of differ-
ent interactions. The formalism has been previously applied
to model systems in one-dimensional25 and jellium slabs26

and is here extended to incorporate three-dimensional �3D�
realistic ab initio electronic structures at the level of local or
semilocal TDDFT. Section II describes the method and how
it must be adapted to suit the periodic boundary conditions
and supercells which are often used in ab initio calculations.
Preliminary numerical characterization is carried out in Sec.
III. Section IV analyzes the convergence properties of the
method and applies it to monatomic wires of sodium. In
particular, the possibility of obtaining precise calculations of
very low conductances is explored for a tunnel junction. Fi-
nally, Sec. V examines the contact geometry and bonding
effects for bulk gold electrodes.

II. METHODOLOGY

The conductance of a nanojunction characterizes the
long-time dynamics of the electronic response of electrons to
a driving electric field.26 While formally the long-time limit
demands the study of an extended system, for calculation
purposes it is possible to consider a finite model for a finite
time and the resulting conductance is obtained by extrapola-
tion of the conductance function

G2P = lim
�→0+

lim
L→�

G2P��,L� , �1�

where G2P is the two-point conductance �see Ref. 26�. The
order of limits is important here: the one given characterizes
transport in an extended system, whereas the reverse would
reflect damped oscillations of density in a finite �even though
large� system. The underlying finite system can fulfill any
boundary conditions and these do not affect the extrapolateda�Electronic mail: matthieu.jean.verstraete@gmail.com.
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results. We take advantage of this fact and use the periodic
boundary conditions and a plane-wave basis for the ab initio
calculations below.

It is presumed in the following that the junction whose
conductance we are searching for is centered at 0 in the
middle of the cell �which thus extends from −L /2 to +L /2�.

The calculation of the electronic response function at the
level of local or semilocal TDDFT, which then leads to the
conduction function �Eq. �1��, proceeds in three steps. First
we perform a calculation of the occupied �en�0� as well as
the unoccupied �en�0� eigenenergies en and eigenstates
�n�r� of the system.

Second, we use the eigenvalues and eigenstates to com-
pose the positive imaginary-time Matsubara Green’s function

G�r,r�;�� = �
n

�n�r��n
��r��

e−en�

e�en + 1
, �2�

where � is the inverse temperature. As G is antiperiodic in
imaginary time �fermionic� there is no need to specify ex-
plicitly its behavior for negative imaginary time.

The electronic response to the total electric field is char-
acterized by the polarizability

P�r,r�;�� = − G�r,r�;��G�r�,r;− ��

= G�r,r�;��G�r�,r;� − �� , �3�

which, after Fourier transformation, �→�, and integration
over the cross-sectional area of the junction A gives the in-
tegrated polarizability relevant for charge transport

P�x,x�;i�� =
1

A2� � dS�dS�� P�r,r�;i�� . �4�

Methods going beyond the present level of approxima-
tions, i.e., using nonlocal exchange-correlation kernels27,28 or
Green-function-based many-body methods,29 would differ in
the above Eqs. �2� and �3�. The expression for the irreducible
polarizability, Eq. �3�, would contain further vertex
diagrams29 and, in the case of many-body methods, the
Green’s function cannot be expressed in terms of one-
electron wave functions as in Eq. �2�. However, the discus-
sion that follows would apply also to these computationally
more demanding approaches.

Finally, the third step consists of integrating the polariz-
ability to obtain the conductance function. For an infinitely
long system, the conductance is obtained from the
expression26

G2P��,�� = ��
−�

0 �
0

�

P�x,x�;i��dxdx�, �5�

where this integral converges for any finite � since
P�x ,x� ; i��→0 for x ,x�→�. The integration region corre-
sponds to choosing the elements of polarizability which con-
nect points on opposite sides of the junction. This is intuitive,
as we are interested in how a perturbation on one side can
influence charges on the other side, through the junction.

For a finite system of length L we obtain the correspond-
ing function

G2P��,L� = ��
D

P�x,x�;i��dxdx�, �6�

where D is a domain of positive x� and negative x which
must guarantee the correct limiting procedure. Using a peri-
odic supercell, for x�−x→ �L, we approach a periodic im-
age of the system we want to study. Further, if the system is
not translationally invariant we will approach a region of the
�x ,x�� plane �the lower right hand corner of Fig. 1�, where
the polarizability behaves very differently from that near
�0,0� �typically one with a more metallic behavior and larger
polarizability than the junction�. Hence, a correct integration
needs to truncate the quadrant defined by −L /2�x�0 and
0�x��L /2. For a finite system there is no unique choice of
D, but there is a natural one, which is 0�x��L /2 and
−�x���x�0, or equivalently 0�x�−x�L /2, defining a
triangle between 0 and the points �0,L /2� and �−L /2,0�
�Fig. 1�.

The finite size of the system determines the minimal
frequency which can be reliably described in the conduc-
tance, or equivalently the longest time propagation. For
longer times or lower frequencies the electrons will reach the
limits of the system, and the conductance decays. The mini-
mum frequency may be estimated as

�min = 2	vF/L , �7�

where vF is the Fermi speed. Thus, an electron at the Fermi
level takes time 1 /�min to traverse the whole system. This
frequency will be essential in determining how to extrapolate
the conductance function to zero frequency: Eq. �7� is a
rough �in the sense that it comes from a crude approximation
for the finite size effects� lower bound for the validity of the
conductance function. �min always corresponds to a sharp
downturn in G�i��. In order to calculate the static conduc-
tance, one has to extrapolate the conductance curve from an
interval in frequency above �min down to 0. We will usually
extrapolate linearly after finding that the apparent functional
form of G�i�� changes substantially in the different cases
below and is quite different from the analytical jellium
result.25 In the following, we will place a dot on conductance

FIG. 1. �Color online� Left: example of a color plot of the polarizability
P�x ,x�� for a junction. P is nonzero only near the diagonal x=x� and lower
in the central tunneling region �see below�. Right: the region of spatial
integration for the polarizability as in Eq. �6�. For periodic systems the
polarizability will have spurious images, which must be excluded from the
integration region. Taking the thermodynamic limit will increase the size L
of the system and the triangular domain converges uniformly to the quarter
plane 0�x�� and −��x��0. The inset is a cartoon of an atomic wire
with a central site and two positions x and x�.
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curves at the frequency �min and explain the fitting intervals
used for the extrapolation of G�i��.

We apply the formalism described above to systems de-
scribed by modern electronic structure methods. Many of
these techniques use periodic boundary conditions to de-
scribe crystalline structures and represent wave functions and
electronic densities using plane wave basis sets. Here we
describe the corresponding small changes needed in the
formalism.

First, as we wish to describe an isolated nanojunction
between two leads �which are in principle infinite� we will
use only the zone-center 
 k-point of the Brillouin zone �BZ�
along the axis of conduction. Using several k-points would in
effect simulate an array of interfering junctions. The periodic
boundary conditions are nevertheless exploited as the regions
near the edge of the simulation cell are described continu-
ously instead of being brutally cut off or terminated with
hydrogen atoms. The thermodynamic limit along the conduc-
tion axis must still be ensured by increasing the longitudinal
system size until the conductance converges.

In the directions perpendicular to x a denser k-point grid
can be used if bulk 3D leads are considered: the electronic
structure of the leads will thus be represented correctly, but
care must be taken that the transverse distance between
images of the “junction” part of the cell is sufficient to
avoid interference between periodic images. In the case of a
purely 1D system no perpendicular k-points are necessary
as the system is supposed to be isolated in vacuum along y
and z.

III. NUMERICAL CHARACTERIZATION

In order to understand the convergence behavior of the
main results we have also analyzed a finite 1D jellium model
and a finite 1D tight-binding �TB� model. The length L of
both systems can be made much larger than in the ab initio
models, which allows a detailed study of the extrapolation to
small frequencies. Similar to the ab initio case, both models
use periodic boundary conditions and their parameters are
such that the density and the Fermi speed of the particles will
be identical to that of a sodium chain studied within the
self-consistent ab initio calculations. In fact, the jellium
model with a bare electron mass is an excellent model for the
sodium wires. This is shown in Fig. 2 where the dispersion
of eigenenergies obtained from ab initio calculations is com-
pared with the dispersion of the 1D jellium and the fitted TB
model. More generally, these two models represent two ex-
tremal types of electronic structure for metallic wires. The
correct understanding of the extrapolations to infinite size
and zero frequency of their conductance functions is very
useful for performing extrapolations of more realistic but nu-
merically more demanding ab initio calculations.

For both model systems one can find the eigenstates ex-
actly by going into reciprocal space. The conductance func-
tion �Eq. �6�� can be expressed using the exact eigenstates of
the Hamiltonian

G2P��,L� = 2��
ij

�s�pi − qj��2�1 − nqj
�npi

�
e��epi

−eqj
� − 1

i� + eqj
− epi

, �8�

where the sum goes over all eigenstates, pi or qi are the
momenta of the eigenstates, npi

are Fermi occupancies of the
state pi at temperature T=1 /kB�, epi

are the eigenenergies
corresponding to an eigenstate with the momentum pi, and
the factor 2 accounts for the spin degeneracy. The function
s�� represents the conductance vertex factor �similar to the
expression for conductivity in terms of the polarization func-
tion, see, e.g., Bruus and Flensberg30� and takes different
forms for the two systems as given below.

The jellium model consists of a 1D noninteracting elec-
tron gas of total length L and density n=N /L, where N is the
total number of electrons. If EF is the Fermi energy, the
eigenvalues are

epi
=

pi
2

2
− EF, pi =

2	

L
i,i = � 1, � 2, . . . �9�

and the conductance vertex factor is

s�p� =
1

�2L
�

0

L/2

dxe−ipx = −
i

�2Lp
�1 − e−ipL/2� . �10�

The Fermi energy is obtained from the requirement that the
charge per unit length is identical to that of the sodium wires;
the length L is set to NdNa, where dNa is the interatomic
distance of the sodium wire so that the density of electrons is
n=N /L=1 /dNa.

In the case of the tight-binding model, the Hamiltonian
has the form

HTB = �
−N/2

N/2−1

−
t

2
�cn

†cn−1 + H.c.� , �11�

with the resulting eigenvalues epi
=−t cos�pi� for a state with

momentum pi. The momentum only takes discrete values

FIG. 2. �Color online� The dispersion of eigenenergies obtained from the ab
initio calculations �see Sec. IV for details� is almost identical to that of 1D
jellium using the bare electron mass. The TB model is fit to have the same
Fermi speed, and the differences with respect to the ab initio dispersion are
more significant.
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pi =
2	

N
i, i = 0,1,2, . . . ,N − 1 �12�

and the conductance vertex factor is

s�p� =
1

�2N
�
n=0

N/2

eipn =
1
�2

eip�N/2+1� − 1

eip − 1
. �13�

At half filling, the Fermi momentum kF= p�N/4� and the Fermi
speed are vF=de�p� /dp= t. Making use of the Fermi speed of
the sodium wires considered in Sec. IV, vF=0.33 a.u., we
identify the TB parameter as t=vF /dNa	0.07.

The evaluation of expression �8� for both models is very
fast and can be done for much longer wires than in the case
of first-principles calculations. In the top panel of Fig. 3, we
show the conductance functions for jellium wires of lengths
L=NdNa with N=4, 8, 16, and 100 at temperatures much
lower than the Fermi energy. The curves converge smoothly
to the zero-temperature infinite-length limit that is known
analytically25 and readily give the static limit of one quantum
of conductance G2P�0,��=2e2 /h=1 /	 a.u. Furthermore,
the functional form shows finite size effects �the downturn
of the conductance� according to the expected criterion
�Eq. �7��

�min =
0.44

N
= 0.11,0.05,0.03,0.004 �14�

for N=4,8 ,16,100, respectively. The extrapolation for
N=8 or N=16 gives good estimates of the conductance
through the limit in Eq. �6�. Note that one should not ex-
trapolate the values of G��min� as the extrapolation of a
lower bound will only give a lower bound for the true static
conductance �unless the system size is exhaustively con-
verged�. Instead, at a given system size, G�i�� can be lin-
early extrapolated to G�0� from the region above the down-
turn. At temperatures comparable with the Fermi energy
�bottom graph in Fig. 3� the extrapolated value is somewhat
below the zero temperature limit but the functional form of
the conductance is essentially identical.

On the other hand, the tight-binding model, shown in
Fig. 4, offers less reliable extrapolations �at low tempera-
tures, upper panel�. This is caused by the nonmonotonic be-
havior of the conductance function at small frequencies,
which in turn arises because of the bandwidth of the model
�here the bandwidth is 2t=0.14 a.u.�. Thus, if we use the
�min criterion and trust the conductance function just above,
G�0� will be overestimated and will converge quite slowly
with system size. In contrast to the jellium case, we do not
have the analytical result for an infinite size chain and arbi-
trary imaginary frequency; instead as the N=� curve we use
the overconverged results for N=1000 and N=5000, which
are numerically identical in the interval of frequencies shown

FIG. 3. �Color online� Convergence of the conductance of a jellium wire
with respect to system size. The lengths correspond to sodium wires 4, 8, 16,
and 100 atoms long. Upper graph: T�EF ��=1000�. Lower graph: T
EF

��=30�. The curves at low temperature approach the analytical infinite-size
result �for T=0, continuous line�. The curves should be extrapolated to zero
frequency, disregarding values for ��min �indicated by a dot on each
curve�.

FIG. 4. �Color online� Convergence of the conductance function of a tight-
binding model with respect to system size �4, 8, 16, and 100 atoms�. vF is
fixed to that of the sodium wire. Upper graph: T�2t ��=1000�. Lower
graph: T
2t ��=30�, where 2t is the bandwidth. The curves give the cor-
rect zero temperature conductance for L→�, but the extrapolation to �=0
is complicated by the nonmonotonic behavior at small frequencies.
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in Fig. 4. This demonstrates that the nonmonotonic behavior
is not a finite size feature. The behavior weakens if we look
at the conductance curve at higher electronic temperature.
This is shown in the lower graph in Fig. 4 for a temperature
comparable to the bandwidth. For these temperatures the
conductance function can be easily extrapolated to �high T�
conductance values identical to the jellium model �Fig. 3,
lower graph�. This suggests that in principle, by performing
the calculations at different electronic temperatures or smear-
ing, one may enhance the extrapolation procedure in realistic
calculations, which may combine aspects of free-electron
�jellium� and localized electron �TB� behaviors. In practice,
even in low conductance cases, we have seen no indication
of the tight-binding behavior of G in the ab initio calcula-
tions. The behavior is probably an artifact of the finite TB
electronic structure.

To summarize, the models show good convergence in
the extrapolated conductance at �=0 for systems of length
equivalent to 8 or 16 atoms. The jellium dispersion is quite
close to the ab initio ones below, whereas the tight binding
one is not—this could be expected from the metallic nature
of the junctions. The conductance function of the TB chain is
qualitatively different and actually overshoots the quantum
of conductance for small imaginary frequencies and large L.
Finally, for high temperature �T comparable to EF� both
models depart from the analytic curves for T=0 and the con-
ductance decreases.

IV. SODIUM MONOWIRES: SIZE CONVERGENCE
AND ENERGY DEPENDENCIES

We begin the ab initio studies with a prototypical appli-
cation: the calculation of the conductance of a uniform mon-
atomic wire �monowire� of sodium atoms. With one s elec-
tron per atom and given the simple-metal nature of sodium,
the conductance in the independent particle case will be two
quanta of conductance due to spin degeneracy.

A. Technical details

The ground state wave functions and electronic structure
are calculated within the density functional theory �DFT�31,32

using a plane wave representation with the ABINIT �Ref. 33�
or SFHINGX �Ref. 34� codes �the results have been checked to
be independent of the ground state code used�. We employ
norm-conserving Troullier–Martins-type35 pseudopotentials
with nonlinear core corrections36 and the d channel as a local
potential. The kinetic energy cutoff �20 hartree� and number
of bands �100 per Na atom� were overconverged to allow for
full checks of the convergence of the conductance calcula-
tion. The calculation of the conductance in a module of the
GWST code37 was carried out with a kinetic energy cutoff of
8 hartree.

The interatomic distance was set to 2.477 Å. Other dis-
tances were checked but did not influence the results appre-
ciably: the Fermi point for the wire is fixed by the parabolic
nature of the bands, and, most importantly in our case, the
Fermi speed scales as the interatomic spacing, making the
critical minimum frequency �Eq. �7�� independent of the
spacing.

The perpendicular size of the unit cell is more important,
as we wish to simulate a truly 1D system using a supercell.
The lateral dimensions of the unit cell are fixed to 4 Å, which
is enough to ensure that conductance only happens along the
wire direction. Checks with 8 and 16 Å cells showed that the
conductance function is already well reproduced to within a
few percent.

B. Results for uniform Na monowires

Figure 5 shows the size convergence of the conductance
function for unit cells containing 4, 8, and 16 atoms. As can
be seen in this simple case the conductance function is cor-
rect to lower and lower frequencies as the system size is
increased, and the extrapolation tends toward 1 /	. Already
with an eight atom cell the linear extrapolation of G2P to zero
frequency gives a value very close to 1 /	, as expected from
section III. Comparing the values obtained for successively
larger system sizes gives an estimate of the residual error in
converging L. A 16 atom unit cell is about 40 Å long. The
very slow convergence of G��min,L� as a function of L is
due to the 1D character of the system. Coulomb screening in
one dimension is quite inefficient and the polarizability de-
cays quite slowly. In 3D systems the screening will be stron-
ger and the size convergence quicker

A very important point is to have a good estimate of the
Fermi level. In 1D atomic chains this is not trivial, as the
equivalent of k-point sampling is the length of the system.
The distance between the levels bracketing the EF decreases
with L, but not uniformly. For small L, there is an alternation
in the position of the Fermi level: for wire lengths which are
multiples of 4 the Fermi level is exactly on a single particle
state, whereas for other values it is higher and between
states. The dielectric response of these two cases is very
different, as one case appears to be a metal and the other an
insulator �whose gap goes to 0 as L→��. In the interest of
brevity we have not included the results for L=NdNa with
N=5,6 ,7 in Fig. 5: they oscillate slightly �as a function of
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FIG. 5. �Color online� Convergence of the conductance of a continuous
monowire of sodium atoms with respect to cell size �4, 8, and 16 atoms in
the unit cell�. The minimum frequency for which the conductance function
is valid depends on the Fermi speed and goes down with increasing system
size. For eight atoms the extrapolation to zero frequency is already good,
arriving close to the expected two quanta of conductance �horizontal line�
for a noninteracting system with spin degeneracy.
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N� and converge more slowly, although to the same end re-
sult. We will see these effects again in section C for the case
of a wire with a gap.

In our formulation the conductance is expressed in
imaginary frequency. This implies contributions from all
electron hole pairs in the polarizability, not just those for
states near the EF. Because of this the convergence in the
number of states is comparable to �but slightly faster than�
that of a GW calculation29 with between 5 and 20 bands per
electron �for Na wires we need ten bands per electron�.

C. Na monowires with a gap

We now proceed with an inhomogeneous case: a wire of
Na atoms with a gap �of width d�. This is the simplest ex-
ample of a nanojunction. The conductance will naturally go
into a tunneling regime as the gap becomes wider. This ex-
ample is important because first it has a simple dielectric
response and also because tunneling is an important and ex-
treme regime for the conductance. Figure 6 shows the size
convergence of a wire with a gap of one atom. The two
remaining parts of the wire are of equal length, increasing
from two to eight atoms �each�. The even length leads con-
verge relatively quickly to a regular conductance function
from below. The odd length leads converge from above but
very slowly because the highest occupied molecular orbital/
lowest unoccupied molecular orbital states are quite far
apart, which give a badly placed Fermi level, as above for
continuous wires �bad in the sense that it is far from the
limiting Fermi level for an infinite system�. Extrapolation to
0 frequency gives a conductance of 0.05 a.u. ��0.005�.

The oscillations of G��� are due to aliasing effects in the
Fourier transform from imaginary time to imaginary fre-
quency. These are in some cases difficult to eliminate for
very low amplitude elements of P�x ,x� , i��.

Finally we consider the transition from the conducting to
the tunneling regime by increasing the gap size �for eight
atom leads�. The conductance functions are represented in

Fig. 7 with the inset showing the decrease in the extrapolated
static conductance as a function of the size of the gap. The
conductance decreases with gap size, and by a gap of 3/4 of
an atomic spacing �about 4 bohr� the tunneling regime begins
with exponential decay of G. The tail of G�d� gives a very
good fit to G�d�=1.68 exp�−0.770d�, where d and G are in
atomic units. The dashed lines are linear extrapolations of G
fit to the interval �0.05, 0.2� hartree. For the lowest curves
�largest gaps� the fit was performed further out on �0.2, 1� as
the functions are flatter and the aliasing noise more impor-
tant. In this way we are able to represent quite small conduc-
tance values down to 0.001 a.u. �or 0.003G0�.

A similar system was examined by Beste et al.14 but with
gold chains instead of Na. They find a conductance of about
0.12 a.u. for a gap of dAu /2 �1.28 Å�, which is close to our
value of 0.18 a.u. for dNa /2. One important conclusion of
Ref. 14 is the very strong deviations that can appear depend-
ing on the basis set nature with localized basis sets. Our
results can be converged systematically using a plane-wave
basis set, but probably heavier calculations as a trade off.

V. GOLD WIRES: LEAD STRUCTURE
AND K-POINT SAMPLING

We now proceed to a more structured system showing an
explicit constriction. A gold junction is made from a two
atom wire contacted to bulk 3D electrodes. The electrodes
are fcc stacked gold �at the experimental nearest neighbor
distance of 2.9 Å in Ref. 38� of which we use a 2�2 �111�
surface unit cell. The wire atoms are evenly spaced with the
fcc interlayer distance of 2.37 Å �which is compressed com-
pared to the DFT-local-density approximation �LDA� equi-
librium distance of 2.5 Å for the infinite straight wire39�. No
relaxation of atomic positions with respect to the bulk is
taken into account, but the addition of further structural ef-
fects is in no way more difficult; contrary to some other
approaches to transport4,14 we are not constrained to specific
unit cell lengths or layer spacings. A typical unit cell is
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FIG. 6. �Color online� Convergence of the conductance of a wire with a gap
�one atom missing� with respect to the size of the lead wires �two to eight
atoms in each lead�. The conductance functions converge well for even
numbers of atoms in the leads due to a correct positioning of the Fermi level
and can be extrapolated to zero frequency �the line segment extrapolates
from eight-atom lead case�. With odd numbers of atoms the Fermi level is
positioned in an artificial gap.
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FIG. 7. �Color online� Conductance function of gapped wires with respect to
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atomic distance in the regular wire�. There are eight atoms in each lead.
Inset: extrapolated 0 frequency conductance as a function of gap length. The
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atomic distances the tunneling decay appears.
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shown in Fig. 8 for the minimal electrode thickness of two
layers �in each electrode�. Electrodes 3 and 4 layers thick
were also tested. Because of periodicity and in order to main-
tain a continuous fcc structure at the cell boundary, the point
of contact of the wire to the right electrode alternates be-
tween the different possible fcc stacking sites �for two and
four layer electrodes� and an on-top position �for three layer
electrodes�. We find a little effect of contact position on the
conductance of the junction �see below� in this continuously
metallic, well contacted case.

A. Technical details

The pseudopotential we use is of the Hartwigsen–
Goedecker–Hutter �HGH� flavor40 with only the 6s electrons
in the valence. Our choice of pseudopotential is justified by
its softness, by the chemical homogeneity of the system, and
our intention to go beyond LDA and include many-body cor-
rections. We have performed tests on fcc gold in the GW
approximation �which is beyond the scope of the present
article�, including the 5d electrons. The problems recognized
by Marini et al.41 for Cu appear for Au as well: the exchange
self-energy is quite badly represented for the 5d electron
states due to the absence of the 5s and 5p. The latter are far
in energy but have an important spatial overlap with the 5d.
Consequently, the exchange self-energy lacks important con-
tributions if one uses only the valence electrons. The GW d
bands are very poor �whereas their position in LDA is very
close to experimental values�; some bands are pushed down
and others up to the Fermi level, which would change the
conductance severely. The use of a purely 6s potential is less
realistic but reduces these exchange effects �which are now
between the 6s and the core 5d states�. A more complete
solution is that adopted by Shishkin and Kresse42 in the PAW
formalism.43 As PAW allows explicit reconstruction of the
core states, the exchange with the valence can be calculated
explicitly. Finally, the d electrons do not complexify the in-
dependent particle conductance calculation formally, but do
make the calculations much heavier �with additional ten
electrons per atom�. As the states at the Fermi level are
purely s-electronlike, the conductance will not be affected
strongly. However, as our method is an integral of the
dielectric response of the system, the absence of the d
electrons will have an indirect effect through changes in the
polarizability.

B. Results

From a calculation of a uniform wire �with k-points
along the wire axis�, we estimate the Fermi speed in the wire
to be 0.42 a.u. �1.9�106 m /s�, corresponding to a
wavelength of 7.22 bohr. A simple metal approximation
for the bulk gives an estimated Fermi speed of 0.64 a.u.
�1.4�106 m /s� from the Au Seitz radius. A DFT calculation
of fcc bulk naturally gives a more complex band structure—
the modulus of the Fermi speed varies by some 20% in re-
ciprocal space. The HGH pseudopotential gives an average
value of 1.02 a.u. �2.2�106 m /s�. A more complete pseudo-
potential with d electrons reduces this value to 0.67 a.u.
�1.5�106 m /s�. The value we are interested in is the speed
of propagation of an electronic signal through the whole sys-
tem, i.e., through the 3D bulk �with the pseudopotential we
are using� and the wire, which will be between the pure bulk
and pure wire values. With the bulk and wire vF, we can
estimate the minimal frequencies that can be represented for
different unit cell sizes. With cells of lengths 27, 36, and 45
bohr, we obtain �min=0.163, 0.132, and 0.113 hartree.

In Fig. 9 �lowest three curves� we represent the conduc-
tance as a function of imaginary frequency for a series of
gold junctions �like that schematized in Fig. 8� with 2, 3, and
4 layers of fcc gold in the bulk leads. As before for linear
wires, initially only the 
 point wave functions are used and
G��� takes similar values to the case without leads, which
would suggest a similar system length of 
8 layers in each
lead to converge the conductance. The extrapolated value
close to the quantum of conductance is in agreement with the
results of the more extended models of the monatomic gold
contacts.44

With bulk leads it is essential to look at k-point conver-
gence: to represent the bulk states correctly, we increase the
sampling of k-points in the direction perpendicular to the
junction axis. Again, as noted above, one must also take care
to keep the nanojunctions themselves well isolated in the

FIG. 8. �Color online� Unit cell of a short gold wire contacted with bulk
gold electrodes, which are two layers thick. Both atoms sit at natural fcc
hollow positions on the �111� surfaces. 0 0.5 1
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FIG. 9. �Color online� Conductance functions of gold junctions containing a
two atom wire and bulk fcc leads. For 2, 3, and 4 layers of gold in the leads
and only the 
 k-point �solid black, dotted, and dashed� and for two layers of
gold and a 4�4 sampling of the BZ perpendicular to the wire axis �solid
orange curve�. The horizontal line is the quantum of conductance. The peak
in the conductance moves to lower energies as the system length is in-
creased. In the case with denser BZ sampling the conductance function is
much better represented even if the minimum frequency has not changed.
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perpendicular direction to avoid interference effects, which
would be amplified by the perpendicular k-points. With two
layer leads and a 4�4 sampling of k-points, we find the
conductance function shown by the top curve of Fig. 9. The
low frequency behavior is now much closer to that of the
longer Na wires. Thus increasing the lead size has two ef-
fects, which are controllable separately in this 3D case: first,
improving the representation of the density of states �DOS�
�which can also be achieved by using the perpendicular
k-points if the leads are bulklike�, and second, lowering the
minimum representable frequency �min �which can only be
achieved by increasing the system length L�. In the future, a
more extended study will combine the effects of longer leads
and perpendicular k-point sampling, but the computational
load will require the parallelization of our code, which is
underway.

To summarize, the bulk leads on gold wires show that
even with relatively small system sizes a constriction limits
the conductance to a single quantum of conductance. Bulk
3D leads give much stronger screening than 1D ones and
faster convergence of the conductance function. Including
k-points to sample the perpendicular electronic states in the
leads improves the description of the DOS and the screening.

VI. CONCLUSIONS

We present a new method to calculate the transport prop-
erties of nanoscopic junctions. The extension of the basic
formalism to periodic systems and realistic electronic struc-
ture is detailed, and the convergence properties are compared
to model systems. Order-of-limit problems are reviewed,
which also concern many other approaches to quantum trans-
port, as well as numerical issues. The differences and inher-
ent advantages of the method are discussed, in particular the
way it treats electrodes and its systematic convergeability in
the number of single particle states and the spatial represen-
tation of different quantities. Applications to sodium and
gold nanojunctions are presented. The first shows the prop-
erties of purely 1D systems and demonstrates the variation
between regimes of continuous metallicity and of tunnel
junctions. The gold junctions explore contact geometries and
some of the fundamental differences between 1D and 3D
electrode structure and screening.
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