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Origin of static and dynamic steps in exact Kohn-Sham potentials
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Knowledge of exact properties of the exchange-correlation (xc) functional is important for improving the
approximations made within density functional theory. Features such as steps in the exact xc potential are known
to be necessary for yielding accurate densities, yet little is understood regarding their shape, magnitude, and
location. We use systems of a few electrons, where the exact electron density is known, to demonstrate general
properties of steps. We find that steps occur at points in the electron density where there is a change in the
‘local effective ionization energy’ of the electrons. We provide practical arguments, based on the electron density,
for determining the position, shape, and height of steps for ground-state systems, and extend the concepts to
time-dependent systems. These arguments are intended to inform the development of approximate functionals,
such as the mixed localization potential (MLP), which already demonstrate their capability to produce steps in

the Kohn-Sham potential.
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I. INTRODUCTION

Density-functional theory [1] (DFT) and time-dependent
DFT [2,3] have been applied widely to calculate the properties
of ground-state and time-dependent systems of interacting
electrons. In some cases the approximations made in practice
perform extremely well; in others they become less valid,
and hence the accuracy of the approach suffers. While the
Kohn-Sham [4] (KS) formulation of DFT is in principle exact,
the scope of practical DFT calculations is limited by our
understanding of the exact exchange-correlation (xc) potential.
Therefore identifying important features that are missing from
the common approximations, and developing new approxima-
tions which incorporate these features, is crucial.

Steps in the xc potential (a jump in the level of the xc
potential over a relatively short distance) have been shown to
be crucial for an accurate description of the electron density for
a variety of ground-state and time-dependent systems [5—15],
such as tunneling electrons and charge transfer/excitations.
Atomic structure calculations by van Leeuwen et al. [6]
demonstrated that steps arise at the boundaries between atomic
shells. Yang et al. [15], using ensemble DFT, showed how,
as more atomic KS orbitals are occupied, steps form in the
exact xc potential. However, much remains to be understood
regarding their position, shape, and magnitude.

Common approximate functionals struggle to model sys-
tems such as those above, as well as molecular dissociation,
Van der Waals interaction, and open-shell molecules [16].
Therefore improved functionals must be developed, thus
understanding features, such as steps in the xc potential, is
of great importance.

We study the nature of steps that form in the KS potential for
asymmetric ground-state and time-dependent, ‘molecule-like’
systems (where the external potential tends to zero far from
any atom), and expand the concept to symmetric systems. We
examine the precise shape, height, and position of steps, and
show how steps combine to make other features in vy, even
in the time-dependent regime.

In Sec. I we begin our analysis by considering the thought
experiment of Almbladh and von Barth [5], where a step
in the xc potential forms for a finite system of two spin-%
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electrons. By analyzing the effect of the step on the electron
density, we deduce the principles underlying the position,
height, and shape of steps, applying even when multiple
KS orbitals are occupied. We then extend these ideas to
the time-dependent regime. We derive, from these principles,
arguments for the position and magnitude of steps, to aid the
development of approximate functionals which have the ability
to produce steps in vy, such as the mixed localization potential
(MLP) [14].

In Secs. III-VI we model finite systems in one dimension
using our iDEA code [12] in which we find the exact xc
potential by first solving the time-dependent many-electron
Schrodinger equation to obtain the fully correlated wave
function. From this we calculate the exact electron density
for ground-state, and subsequently time-dependent, systems.
We then reverse engineer the KS potential via an optimiza-
tion algorithm which matches the noninteracting density to
the interacting density. Our main calculations use spinless
electrons in order to explore systems with more correlation
for a given computational cost, i.e., with each electron
occupying a different KS orbital. Our focus will be on
nanowires and devices for which one-dimensional descriptions
are appropriate, and hence we use the appropriately softened
Coulomb repulsion (Jx’ — x| + 1)_1 (in atomic units).

II. THE ALMBLADH-VON BARTH
THOUGHT EXPERIMENT

When using DFT to simulate neutral molecules, such as
that described below, the use of local and semilocal density
functionals to approximate the xc potential gives rise to errors
that affect observables such as binding energy curves and
energy surfaces. These errors arise in part due to the inability of
such approximations to correctly predict the amount of charge
on each atomic site [17—19], therefore it is essential for the
development of improved functionals to understand the role
of the xc step in accurately localizing the KS electrons within
the molecule.

We consider a one-dimensional double-well external po-
tential [20], representing two separated open-shell atoms,
where the right well has single-particle energy states that
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FIG. 1. (Two spin—% electrons in two separated wells)—(a) The
external potential (dotted-dashed blue), together with the electron
density for two interacting, spin—% electrons (solid red). The hori-
zontal gray lines show the bound single-particle energy states of the
potential and the number adjoining each energy level indicates the
degeneracy of that state. (b) The natural logarithm of the density,
allowing the density minimum to be clearly identified. The decay of
In (n) on either side of the density minimum is proportional to the
square root of the ionization energy of the well the electron occupies.
(c) The exact KS potential (dashed green): the step of height Iz — I
(arrow) ensures that one electron is in each well. Note that the step
aligns the ground-state energies of the two wells, as anticipated by
Almbladh and von Barth [5].

are lower than those of the left well [21]. Owing to their
Coulomb repulsion, two spin—%, interacting electrons occupy
different wells; however two noninteracting electrons would
both occupy the right-hand well; see Fig. 1(a). Hence, a step
must form in the KS potential to allow the KS electron density
to match the many-body density. This system has been studied
for many years, originally by Almbladh and von Barth [5] and
Perdew [19].

If we consider each individual well separately, as a
subsystem, then the ground-state energies are equal to minus
the ionization energies of the respective atoms [22] (wells)
since vex(|x| = 00) = 0. (I represents the ionization energy
of the right well and ;. is that of the left well. Considering the
left and right atoms as individual systems, or subsystems, is
valid for well separated atoms, and in the disassociation limit
the concept is exact.)

Treated individually, both subsystem’s KS potential decays
to different, but approximately spatially constant, values,
therefore at their region of intersection in the complete system
a step exists whose height is the difference between those
constants. We define the step height as Sy. = vl — v} =
UES — vfs, where UES and v‘fs are the constants of the KS
potentials in the right and left subsystems, respectively, and
likewise for the xc potentials v}y and vj°. This definition is
exact in the limit that the wells are infinitely separated, as the
xc potential tends to a constant value far from the subsystem,
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hence the step acts to shift vy, by Sy, between the subsystems.
We find, however, that the formula holds well for electrons
with only a few A of separation; see Fig. 1(c).

We reverse engineer the exact KS potential [23] for this
system and, as predicted [5,19], we observe a step in the xc
potential between the wells; see Fig. 1(c). The argument made
by Almbladh and von Barth was that the step must align the KS
single-particle energy levels of the two wells in order for the
highest occupied molecular orbital (HOMO) to have sufficient
weight in each well, i.e., one electron’s worth of charge per
atom (well). Hence, the step must have a magnitude which
equals the difference between the HOMO energies of the two
wells.

While the above argument is robust for this system, we
may come to the same conclusion via a different point of view.
Consider now the form of the electron density far from any
atom. Even for the many-body case, the density will decay
asymptotically like that of a single particle occupying the well
[18,24] n(x) e 2V2Ux Aq only one KS orbital is occupied for
this system, the single orbital approximation (SOA) [14,25] is
exact (up to an additive constant). Applying the SOA to the
density of Fig. 1(a), we find that at the density minimum the xc
potential jumps by Ir — I ; see Figs. 1(b) and 1(c). The SOA
is correctly sensitive to the decay of the electron density either
side of the step when the density is of the form e~ V2x
result also observed by Helbig et al. [7]. Thus, at the interface
between the electrons, where the density decaying from the
left meets the density decaying from the right (the density
minimum), the potential jumps from I, to Ig; see Fig. 1(b). As
this happens over a short range, a sharp step forms. Therefore
the step can be considered to arise from this change in the
decay of the electron density, which we will hence forth refer
to as a change in the ‘local effective ionization energy.

Below we study systems where more than one KS orbital is
occupied. We find that a change in the local effective ionization
energy remains responsible for steps. However, owing to the
analog of this effect in the KS picture (see Sec. V), the
magnitude and shape of steps can change.

III. THE ORIGIN OF STEPS

To begin this section, we detail why, in general, the magni-
tude of the step may change for systems with more than one
occupied KS orbital. In the following section we explore the
effect the magnitude of the step has on the electron density, and
whether the step height Ix — I, (given by the SOA in all cases)
is a good approximation for the step height in a general system.

We consider the form of the decay of the density either side
of the step for both the many-body picture and the KS picture,
in order to more fully understand what determines the step’s
magnitude in general. In the many-body picture, the density
decaying from the left-hand subsystem (more generally—
simply decaying from the left), as the wells are separated
far from one another, is given by n/, (x) o< e =2Vt Likewise,
the right-hand subsystem contributes n',(x) o eT2V2Irx The
decay of the density coming from the left-hand subsystem

in the KS picture is n7(x) oc e 2V20L 0% where ¢, is the
energy of the highest occupied KS orbital that dominates
the asymptotic density of the left-hand subsystem. For the
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right-hand subsystem ng(x) o e"2V2VE =07 where gp is
defined correspondingly. As n” = n, for the exact KS potential,
it must follow that vfs =1I; + &7 and UES = Ig + g (within
an overall additive constant). Noting that the step height is
Sxe = v&S — &S it follows that

Sxe =Ur — 1)+ (g — &), ()

where a negative value indicates a step that drops when going
from left to right, and a positive value vice versa. Equation (1)
is exact in the limit that the atoms are infinitely separated,
however, we have found the equation to be accurate for
separations of a few A. [Eq. (1) requires knowledge of the
exact KS eigenenergies g and ¢, determined partially by the
step, and hence cannot be used to predict the step height.]
The energies ¢, and e refer to the highest occupied
KS orbitals that dominate the density in the outer region
of each subsystem. When the system consists of localized,
well-separated subsystems, this concept is well defined, and it
is in this case that a sharp step may form in vgs. Where the
subsystems are closer and the electrons less localized, we find
that the energies remain a useful interpretive concept.
Equation (1) shows that the step arises from two effects:
the change in the local effective ionization energy in the
many-body picture (/g — I.), and its counterpart in the KS
picture (¢g — €); see Sec. V later. Thus, the overall step can
be considered as the sum of two steps, Sxc = S.. + S¢,, where
Sl =1Igr— I, and S¢, = eg — er; see Sec. VIL
The above argument applies to spin—% electrons as well as
spinless electrons. We note that if we apply the above logic
to a system consisting of spin-% electrons, where there is an
odd number of electrons on each site, the highest occupied KS
orbital must be spread over both wells. Hence, in this case e =
€L, and therefore the step height is that of the Almbladh-von
Barth thought experiment discussed above (Sx. = Ig — I).
When developing approximate xc functionals, there are
certain known exact properties that one aims to satisfy,
such as the derivative discontinuity of the xc energy with
respect to electron number [18]. The derivative discontinuity
predicts a jump in the xc potential by a constant as the
electron number passes through an integer, which may lead
one to connect steps in the xc potential with the derivative
discontinuity. However, it is apparent from the above analysis
that the magnitude of the step in vy is a result of the
precise way in which the electron density decays from each
subsystem. The decay of the density, in the many-body
picture, and in the KS picture, has no direct association
with the electron affinity of the subsystem [—ey (N + 1)],
nor the affinity of the system as a whole. We therefore conclude
that the step which forms in vy, is not attributed to the derivative
discontinuity. For example, in the Almbladh-von Barth system
this insensitivity to the affinity is complete.

IV. HEIGHT OF STEPS

Next we examine the effect that under- or overestimating the
step height would have on the electron density. For example,
noting that any step given by the SOA is of height Iz — I, we
may ask whether this is an appropriate value for the step height
in a general system. To answer this, one must consider the
effect that altering the step height has on the electron density.
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For spin-% electrons in a separated double-well system

where the occupied KS orbitals are atomic orbitals, changing
the step height equates to adding a constant to the potential
within a given subsystem, and so usually affects the density
only in the region of the step (see below). However, if the
change in step is too large—enough to alter the occupation of
the wells—the electron density will be affected everywhere.
In the case where the highest occupied orbital is spread over
both sites, the step height must be exactly Ig — I;.

Building on the arguments of Perdew [19] for the range of
allowed energies of a system connected to a reservoir, we find
arange for our step height for our molecular system consisting
of spinless electrons. If we consider a system where, in the KS
picture, M states are filled in the left well, and N states are
filled in the right well, we can place a range on the magnitude
of the step that must exist in vy, based on correctly filling
the eigenstates of the individual wells; see Fig. 2. For this
case we are assuming that the wells are sufficiently separated
so that the single-particle eigenenergies (¢) of each well are
unaffected by the electrons in the other well, other than the shift
by a constant due to the step—in all cases this degree of well
separation would be needed in order for a sharp step to form.

We know that the HOMO of the left well [8,%,1 (M)], plus the
shift in energy due to the step (S, without loss of generality
we set v8S = 0), must be less than the lowest unoccupied
molecular orbital (LUMO) of the right well [5]13, +1(NV)], and
vice versa, allowing the amount of charge in each well to be
correct. Thus, we can infer that

ey (M) — ef L ((N) < Sxe < ey (M) —en(N).  (2)

A schematic representation of the range is shown in Fig. 2.
The external potential has been chosen such that the lowest
two single-particle states are located in the right-hand well,

O T T T T T T T
EIIV/|+1(M)“‘.
04} ' 1
3
© L
K = (M) & alN)
~° -0.8 .
& (N)
N\ :
12+ .
| | | | | | |

-12 -8 4 0 4 8 12
X (a.u.)

FIG. 2. The external potential (dashed blue) for the a general
double-well molecule, the lines indicate the bound single-particle
energy levels of the individual wells, where, in thiscase, M = N = 1.
As it is, the external potential in the absence of interaction would give
the incorrect filling of each well, i.e., both electrons in the right hand
well. The green arrow indicates the minimum step height to achieve
one electron per well, and the (longer) red arrow indicates a step
height that is too large. Any value of Sy, between the two values
would give a fairly accurate electron density.

155146-3



M. J. P. HODGSON, J. D. RAMSDEN, AND R. W. GODBY

thus in the KS picture the step must correct this to allow the
lowest two energy states of the overall system to be located
in separate wells. The green arrow indicates the minimum the
step height can be, whereas the red (long) arrow shows a step
that is too large. These limits define the allowed range for the
step height, in order for the electron density to be reasonably
accurate.

Equation (2) applies also for spin-% electrons (noting that
the number of electrons will be different, as two electrons may
occupy each energy level), except for the case where there is
an odd number of electrons on each site. In this case the above
arguments do not apply, however the step height is known
exactly (Sxc = Ig — I1; derived above).

Finally, we look at how changes in the step height affect
the detailed electron density in the region of the step, and
hence show which features of the density determine the exact
step height. Consider a finite molecule that is very similar to
the Almbladh and von Barth thought experiment (System 1),
except two KS states are now occupied as opposed to one; two
spinless electrons, where the external potential is a double well
[20], designed such that the first excited state of the right-hand
well is lower than the ground state of the left-hand well (Fig. 2).
Hence, in the absence of interaction, both spinless electrons
would occupy the lowest two states of the right-hand well. As
the many-electron density has one electron’s worth of charge
in each well due to the Coulomb repulsion and Pauli exchange,
the exact KS potential must form a step to achieve this in the
KS density. The step acts to shift the ionization energy of
the two wells here, as opposed to aligning them, allowing the
ground state of the left-hand well to be lower in energy than
the first excited state of the right-hand well, in accordance with
our range (Fig. 2).

Figure 3 shows how an artificially imposed change in step
height affects the electron density. We observe that the change
to the electron density is small, provided the step height is
in the range given by Eq. (2). The change in step height has
the effect of reducing or increasing the density minimum very
slightly. Precisely how the density minimum is affected is
determined by the individual KS densities, i.e., n; = |¢;|*> and
Ny, = |¢2|2. As the magnitude of the step is decreased, less
of the right-hand KS density tunnels through to the left, and
the opposite effect happens for the left-hand KS density. Thus
we can conclude that the step height ultimately determines
the degree to which the left-hand electron occupies the right
well and vice versa—this applies to all cases. Thus, local
and semilocal approximations to the xc potential must be
exceedingly sensitive to changes in the density at the location
of the step, or else a fully nonlocal approximation must be
employed.

V. POSITION OF STEPS

We consider the xc potential far from a molecule (i.e.,
several subsystems), hence the subsystems are no longer
distinguishable. And therefore, the density must decay with the
ionization energy of the whole molecule, which in the case of a
molecule comprised of separated atoms is the Jowest ionization
energy all the wells. This means that for any subsystem’s
density which does not decay with the ionization energy of
the whole system, there must be a second change in the local
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FIG. 3. System 1 (two spinless electrons in an asymmetric
double well)—(a) The exact vy, potential (solid red) and two
artificial stepped vy, potentials (long-dashed green and dashed blue).
(b) Natural log of the density at the density minimum. The natural log
of the KS densities for the ground-state (|¢;|*) and the first excited
state (|¢,|?) are shown. As the step height is decreased these densities
change (indicated by the arrows), and thus affect the overall density
by increasing or decreasing the magnitude at the density minimum
(determined by the precise way the KS densities superimpose).
(c) The densities corresponding to the step heights of (a), where
the colors and line styles correspond.

effective ionization energy far from the system, and therefore
another step must form. This second step was first observed
by Perdew [19] and also by Makmal et al. [26] in the exact
exchange potential for LiF, where they attribute the steps to
shifts in the KS eigenvalues. They discuss the ‘domain’ of each
atom being dominated by the HOMO of that atom, resulting
in a plateau to correct for the nonzero asymptotic limit caused
by the HOMO eigenvalue being nonzero. This is the analog of
the change in the local effective ionization energy in the KS
picture. Hence, generally, this causes a step in the exact KS
potential in accordance with our derivation of Eq. (1). Thus,
the ‘overall’ step in the exact xc potential is a combination
of the steps caused by the change in local effective ionization
energy and the crossover of the single-particle KS densities
(see below). When correlation effects are taken into account
both these effects must also be considered.

We define, as a function of space, I(x) = 8]7(%)2 (which
is the second term in the SOA expression for the KS potential
[Eq. (1) in Ref. 14], hence showing the correct sensitivity
of the SOA to the ionization energy), which represents the
local effective ionization energy when the density decays
asymptotically, which is true for regions of the density near the
edge of a subsystem. Hence, in such a region I(x) =1, and
between subsystems 7(x) may have a step demonstrating the
change in the local effective ionization energy. (While in this
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FIG. 4. System 2 (two spinless electrons in a molecule)—(a) The
electron density (solid red) and external potential (dashed blue).
(b) The Hxc potential (dashed green), the arrows indicate where
the steps are. One step forms at the density minimum, where the
KS single-particle densities cross. The second step forms far from
the molecule, again where the KS densities cross. (c) There are two
changes in the local effective ionization energy (black dotted) in the
many-body density, each corresponding to a step in vy, the gray
lines indicate the ionization energies of the subsystems (/, and Ig).
(d) The natural log of the KS densities, blue short-dashed is the first
excited KS density and red dashed is the ground-state KS density. As
the decay rate of the first excited state must be less than that of the
ground state, far from the molecule the densities must cross.

paper we apply this formula to spinless electrons, the concept
applies to spin-% electrons also.)

Figure 4(a) shows a molecular system (System 2) [20]
where we observe the second, postulated step far from the
molecule; see Fig. 4(b). In Ref. [26] the correcting step is
observed for the exact exchange potential. Our step is, in part
the same as this correcting step, however it superimposes
with a step which forms as a result of a change in local
effective ionization energy at the same point in space. Also
in Ref. [7] the second step was deduced to exist, however,
was not observed. Our findings show that their thinking was
correct, as our argument here applies to the spin—% case (as well
as for our spinless electrons). Furthermore, Figs. 4(c) and 4(d)
show that the step forms at the point where there is a crossover
of the single-particle KS densities, i.e., where the dominant
contributing single-particle density switches (applying also to
spin-% electrons for systems where more than one KS orbital
is occupied). This is consistent with the findings of Ref. [26]
(discussed above) and Ref. [6], where the xc potential has “a
clear step structure and is constant within the atomic shell and
changes rapidly at the atomic shell boundaries” (also where
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the local ionization energy can change). Reference [15] also
found that a step structure forms when more than one orbital
begins to be occupied.

Here we observe that the change in the local effective
ionization energy and the crossover in the KS single-particle
densities manifest at the same point, hence the two steps
superimpose (Sxc = S!. + S¢). In general, a change in the
dominant single-particle KS density corresponds to a change
in the local effective ionization energy, but not necessarily
vice versa. For example, in the Almbladh-von Barth system
there is a change in the local effective ionization energy without
acrossover of the localized KS densities, since only one orbital
is occupied (eg = € = Sxe = Ig — I1).

Della Sala and Gorling showed that for a three-dimensional
system, along a direction r which corresponds to a nodal
surface of the HOMO, the exact xc potential will approach a
nonzero constant [27]. Our analysis can be generalized to 3D,
and agrees with this result; if the HOMO is zero in the direction
r, then, as r — 00, the dominant contribution to the overall
density from the single-particle KS densities must come from
the highest occupied KS orbital that does not correspond to a
nodal surface. Hence, the nonzero KS density and the ‘true’
HOMO KS density cannot cross. Thus the counteracting step
we observe in Fig. 4 will not manifest and the xc potential may
tend to a nonzero constant.

The role of the KS orbitals in this argument is reminiscent
of the appearance of KS orbitals in meta-GGA [28,29]
functionals and the Becke-Edgecombe electron localization
function (ELF) [30], and draws attention to the power of
the KS orbitals in improving density functionals. Our MLP
approximation, likewise, makes use of the KS orbitals in
defining the degree of localization.

A. Time-dependence

We look at the single-particle time-dependent KS densities
for two electrons in an asymmetric double-well external poten-
tial [20], where for ¢ > 0 a perturbing field (0.1|x]|) pushes the
electrons together (System 3) [20], and find that the dynamic
steps also occur at the points where the individual KS densities
cross, showing that, to some degree, the dynamic steps occur
as a result of this phenomenon; Fig. 5. However, this concept
is less well defined for the time-dependent case, as the idea of
a well defined ionization energy is no longer applicable.

The step here does correspond to a peak in the velocity
field (current density divided by electron density), which in
turn forms as a result of a minimum in the electron density, as
in Ref. [12]. We find that in the system studied in Ref. [12] there
are density minima, and thus peaks in the velocity field, that
do not correspond to steps in the time-dependent xc potential.
We have confirmed that this is because these density minima
do not correspond to KS single-particle densities crossing.

Thus, the question remains; why do the KS single-particle
densities seem to always cross at density minima? For dynamic
finite systems interference ‘ripples’ in the density are likely to
occur [12], hence if an orbital density develops an extremum,
there is an enhanced likelihood of it crossing an adjacent orbital
density. Thus, minima in the dynamic electron density may
also serve to indicate where steps will form. However, as the
energy levels are not well defined in the dynamic regime the
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FIG. 5. System 3 (dynamic double-well)—Two electrons in an
asymmetric double-well external potential, where a perturbing field
(0.1]x|) pushes the electrons together for r > 0. (a) The natural
logarithm of the single-particle KS densities (ground-state—solid
red, first excited-state—dashed blue), with the time-dependent part
of the Hxc potential (short-dashed green) at + = 4.6 a.u. (b) The
same as (a) but at = 5 a.u. and the single-particle KS densities have
crossed, causing a time-dependent step to form in the Hxc potential
at the point where the densities cross.

magnitude of the step may vary from that given by Eq. (1).
But, if the system is in the adiabatic limit then our arguments
for the ground-state steps would approximately apply for the
time-dependent system.

B. The role of density minima for ground-state systems

A turning point often occurs when the dominant contri-
bution shifts from one electron to another. Thus a density
minimum is likely to correspond to a change in the local
effective ionization energy and/or a crossover of the single-
particle KS densities. Hence, in our calculations we observe
that density minima are usually good indicators of where steps
will form. Next we will show that steps do not form at all
density minima, as some density minima can not correspond
to a change in the local effective ionization energy or this
concept is not well defined. However, we demonstrate below
how certain density minima, which also represent the interface
between localized electrons, are indicators for where in the
electron density steps will form for ground-state systems.
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FIG. 6. System 4 (crafted external potential)—(a) The noninter-
acting electron density (dashed green) for two electrons in the external
potential of (c). The IEP (see text) is shown by the downward facing
arrow at x ~ —2.8 a.u. and the density minimum is by the upward
facing arrow at x ~ 0.13 a.u. (b) The interacting electron density
(solid red) for two electrons in the external potential of (c). Again the
IEP is shown by the upward facing arrow at x ~ —0.39 a.u. and the
density minimum by the downward facing arrow at x ~ —0.26 a.u.
The interaction acts to draw the IEP and density minimum together.
(c) Shows the external potential for this system. This potential
has been crafted so that, for noninteracting electrons, the density
minimum and IEP are very different.

Consider a subsystem where the majority of the electron
density corresponds to one strongly localized electron. If there
is a minimum in the density within the subsystem it cannot
correspond to a change in the local effective ionization energy,
because there is only one occupied energy state. Thus, there
can never be an overall step in vy for a minimum within a sub-
system consisting of one electron. This then shows that not all
density minima correspond to steps in the xc potential. Yet, the
question remains; which density minima will give rise to steps?

In systems containing well-separated subsystems, the local
effective ionization energy is well defined near the boundary
of each subsystem, but can change from one value to another
as the boundary is crossed. If the number of electrons in
this subsystem integrates to an integer (which is usual for
localized systems), we can define the integer electron point
(IEP) as an indicator of this boundary, and hence of where
a step may form. (We note that as a given subsystem may
contain several, localized electrons, features in vy, within the
subsystem may correspond to IEPs due to changes in the
local effective ionization energy and/or crossing single-particle
KS densities. However the possible delocalization due to
the electrons being confined within the subsystem may cause
these features to be unrecognizable as steps; see Secs. VI and
VII, and Fig. 7.) Therefore, if, in 1D, the density minima (a
and b) satisfy fab n(x)dx = N, where N is an integer, those
density minima are good indicators of where steps (or other
features) may form, provided that the IEPs and density minima
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FIG. 7. System 5 (crafted external potential)—(a) The electron
density for two interacting electrons (solid red) in a potential crafted
such that the IEP (defined by the condition that the electron density
to the left of the point integrates to exactly one electron) is distinctly
different from the density minimum. The downward facing arrow
indicates the IEP at x ~ —1.2 a.u., and the upward facing arrow
indicates the density minimum at x ~ 0.24 a.u. (b) The Hartree
exchange-correlation potential (dotted green): the predominant fea-
ture of the potential—not a step—is at the IEP. (c) The external
potential (dashed-dotted blue).

tend to coincide (which we observe them to). We show below
how the Coulomb repulsion and the degree of localization
in the system are responsible for density minima and IEPs
being at approximately the same point. We note that in the
time-dependent regime (as observed above and in Ref. [12]),
owing to energy levels being less well defined, the IEP is not an
indicator of a density minimum that may correspond to a step.

To explore the relationship between density minima and
integer electron points (IEPs) in the ground state, we examine
how a system may be split into subsystems. With a sufficient
degree of localization for all electrons in a system, IEPs
indicate the crossover from one electron to the next. In the
limit of complete electron localization, the IEPs are definite
intersections between the electrons, hence giving a clear
boundary between the subsystems. As the electrons delocalize,
some of the on-site electron spreads into the neighboring sites.
This delocalization, and the effect it has on the shape of steps
in the xc potential at the IEPs, is studied below.

We observe in calculations of electron densities that an
IEP typically occurs approximately at a minimum in the
electron density. To show that the Coulomb repulsion is largely
responsible for this phenomenon, we introduce a two-electron
system (System 4), where the IEP and density minimum
are designed to be significantly different for noninteracting
electrons; see Fig. 6(a). With two interacting electrons in the
same external potential we observe the IEP and the density
minimum tending to the same point; see Fig. 6(b).

To understand this, we imagine artificially increasing the
interaction strength between the electrons: The likelihood of
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FIG. 8. System 6 (increase separation of wells)—(a) The external
potential (dotted blue) and electron density (solid red). (b) The Hartree
exchange-correlation (Hxc) potential has a step; this ensures that both
KS electron occupy just one well each. (c) The external potential and
electron density for System 6'. The system is that of System 6, except
that the wells have been brought closer together. (d) The Hxc potential
for System 6’ shows a step, like that of System 6, but because the
delocalization is stronger the step is less sharp.

finding the left electron in the right subsystem, i.e., to the
right of the IEP, and vice versa, reduces owing to the electron
repelling the other from its vicinity. Thus, the electrons localize
and the density at the IEP tends to zero. For a non-negative
quantity, such as the electron density, any zero point must
correspond to a minimum.

For the physical interaction strength, it is possible for a
system (e.g., System 5 below) to have an IEP that does
not correspond to a minimum in the density of interacting
electrons. However, achieving this requires a carefully crafted
external potential which causes the appropriate degree of
delocalization.

Figure 7 shows that the predominant feature in the Hartree
exchange-correlation (Hxc) potential (vy + vy.) forms at the
IEP, however there is no step as the local effective ionization
energy does not have a well defined value on each side of the
feature—a characteristic of the exact functional shared by the
SOA in more delocalized systems such as this one.

To summarize, a change in the local effective ionization
energy is required for a step to form—usually indicated by
a density minimum corresponding to an IEP. The IEP and
density minimum will be at approximately the same point
in the electron density owing to the degree of localization
in the system coupled with the Coulomb repulsion. Future
improved density functionals may exploit this approximate
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FIG. 9. System 7A, 7B, and 7C—(a) The external potential
(dotted-dashed blue) and the electron density (solid red) for System
7A. (b) The same for System 7B. (c) The external potential (dotted-
dashed blue), defined by averaging the external potentials of 7A
and 7B, with the electron density (solid red). (d) The xc potential
(v2) for System 7A (dotted green), with the xc potential (v2) for

System 7B (dashed blue). The xc potential for System 7C (solid red)
is compared against %(v;‘c + v2) (short-dashed black). We note the
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functional relationship to include features of the exact KS
potential examined above.

VI. SHARPNESS OF STEPS: EFFECT
OF DELOCALIZATION

Considering how the step forms, it is apparent that the more
abrupt the switch between dominant KS orbitals (correlated
with localization), and between local effective ionization en-
ergies, the sharper the step will be. Therefore, next we test what
happens to the shape of a step as the region of delocalization
increases. (We note that the step forms in the region of highest
delocalization, which corresponds to the interface between
the electrons [31].) Tempel er al. considered a singlet case
where two potentials were separated, and the effect on the
step was observed [32]. Their findings are in agreement with
our concept of the local effective ionization energy. They find
that as the molecule dissociates the step becomes clear as
the separation increases, i.e., as the local effective ionization
energy becomes well defined [i.e., (x) — I].

We introduce another system (System 6), which has the
usual form: two spinless electrons in an asymmetric double
well [20]. Figure 8(b) shows the Hxc potential for System
6—mnote the sharp step.

Figure 8 shows that as the localization decreases the
‘sharpness’ of the step decreases also. This observation is
in agreement with our above analysis—sharp steps cannot
form in regions where there is not a well-defined difference
in ionization energy. Note the second, very diffuse step about
x ~ 11 a.u. where the KS single-particle densities cross once
more; see Fig. 8(d). Here the effect is to counteract the step
between the electrons so that there is no net step. [In Fig. 8(b)
the system is not large enough for the KS densities to cross
twice, hence there is only one step.]

We apply the Hartree-Fock (HF) approximation to System 6
as a means of determining the role that exchange plays in these
systems. We reverse engineer the HF electron density using
iDEA to find the local potential which describes the density
(HF-KS potential). In this way we can compare the steps of the
HF-KS potential to those of the exact KS potential. For some
systems—where the KS HOMO and LUMO are distinctly
different—we observe the HF-KS potential to have a step
which is almost perfect, as for System 6. Whereas for systems
where the KS HOMO and LUMO energies are close, corre-
lation is stronger, and the HF-KS potential’s step (and other
features) are less accurate. Thus both exchange and correlation
may be important in determining the properties of the steps.

VII. BUMPS AND OTHER SUPERPOSITIONS OF STEPS

In the following model systems we demonstrate that
the steps in vy, in symmetric systems in effect coalesce
to form ‘bumps’ in the potential, for systems with some
degree of delocalization. We demonstrate this by studying two

good agreement between the two, and how well the bump in the
potential is reproduced by the superposition of steps. (e) is a close up
of the bump and steps in (d).
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FIG. 10. System 8A, 8B, and 8C—(a) The external potential
(dotted-dashed blue) and the electron density (solid red) for System
8A at t = 0. The gray lines indicate the perturbed potential and
the electron density at ¢+ = 2.5 a.u. (b) The same for System 8B.
(c) The external potential (dotted-dashed blue), defined by averaging
the external potentials of 8A and 8B (as for the perturbed potential
shown in gray), with the electron density (solidred) andat# = 2.5 a.u.
(gray). (d) The dynamic part of the Hxc potential (v{}.(t) — vii, . (f =
0)) for System 8A (dotted green), with the same potential for System
8B (dashed blue). The same potential for System 8C (solid red)
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examples—one time-dependent and one ground-state—each
comprised of three systems (A, B, and C). The external
potential for the third system (C), in each case, is given by
vS, = 24, + v8)). From this we can find the relationship
between the KS potentials for the three systems. We write (to
first order) [33]
Sv
UI%S = Ués + Mﬁ(vgu - U?xt)
ext

and likewise with A replaced by B. If we add the two together
and divide by two we get

1 Sv
c _ A B KS c A B
Ugs = E Uks + Uks + Sv (Zvexl — VUext — vext)
ext

thus, provided the systems are sufficiently similar in character
to have similar response functions

Suks Sv Svks
(o).~ Ge),~Go), @
8 Vext c O Vext B S Vext A

we can infer that

vks ~ 3 (vis + vks)- “)

In the present context the bump potential of system C is the
sum of two oppositely-stepped potentials A and B.

A. Ground-state example

We study three systems to demonstrate, using the above
linearity, how positive and negative steps may manifest in
a symmetric system as a bump. The bump we observe is
very similar in character to that of Ref. [34], where a ‘peak’
in the xc potential arises between atomic shells. Reference
[8] describes peaks/bumps forming with steps for molecular
systems like our own. We show below how steps and bumps
both manifest through the superposition of steps in the
xc potential. Reference [26] also observed a peak in the
exact exchange potential at ‘the crossover point of orbital
domination.’

System 7A [Fig. 9(a)] is the usual two spinless electrons in
an asymmetric external potential [20] designed to give a step,
System 7B [Fig. 9(b)] is the same as System 7A but reflected
about x = 0 (explained below), and the symmetric System 7C
[Fig. 9(c)] is the superposition of 7A and 7B (as described
above).

‘We choose our second system (System 7B) to be the mirror
image of System 7A, so that 7C is symmetric. Finally, we
construct System 7C from System 7A and 7B (as stated above).
The density minimum is aligned at x = 0 in all three systems.
As System 7C is symmetric, no overall steps can form in the
exact xc potential of C; instead a bump forms at the density
minimum; see Figs. 9(d) and 9(e). This bump acts to ‘push’ the
electrons apart, recreating the effect of the Coulomb repulsion.
Figure 9(d) shows the xc potential given by Eq. (4) as well

is compared against the averaged potential (short-dashed black) at
t = 1.25 a.u. We note the good agreement between the two, and how
well the ‘dip’ in the potential is reproduced by the superposition of
steps. (e) The same graph for = 2.5 a.u., the dip has now become a
bump.
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as the exact xc potential for Systems 7C, 7B, and 7A. We
observe the precision with which the xc potential of System
7C is replicated by the superposition of steps, as well as the
self-interaction correction either side of this central feature.
This accuracy is due to Eq. (4) holding well (in itself a striking
result). We have also shown that the symmetric bump feature
in the exact xc potential of System 7C can be thought of as the
sum of positive and negative steps; see Fig. 9(e) for close up.

We stress that Systems 7A and 7B satisfy the requirement
that their differences from System 7C may be described within
a linear-response framework Eq. (3). In this sense, there are
several sets of systems which would demonstrate the above
superposition of steps to form a bump. We also point out that
had System 7A not corresponded to the reflection of 7B about
x = 0, then 7C could be asymmetric and hence may have an
overall step. We have simulated this scenario and found that
two differently sized steps superimpose to give a step-and-peak
combination for System C, reminiscent of the step and peak
of Fig. 1(c).

B. Time-dependent example

We extend this concept of superimposing steps to dynamic
systems. We once again consider three systems [20]: the
first (System 8A), a symmetric double well in its ground
state, designed such that, for > 0, a dynamic steps grows
[Fig. 10(a)]; the second (System 8B) the mirror image of
the first [Fig. 10(b)], and the third (System 8C) is symmetric
[Fig. 10(c)]. Once again we align the origins of the three
systems at the density minima.

System 8A, in the ground state, is comprised of two
electrons in a double well. At r = 0 we apply a perturbing
field which excites the left electron by increasing the depth
of the left well allowing the left electron to explore excited
states—a dynamic step grows at the density minimum as
a result. System 8B is the same, but reflected about x = 0.
System 8C (defined in the same way as the ground-state
example) is symmetric, so both electrons explore excited
states. As two dynamic steps form, they correctly superimpose
at all times to create a feature which oscillates between a
bump and a dip; see Figs. 10(d) and 10(e).

VIII. CONCLUSIONS

Knowledge of how the positions, magnitudes, and shapes
of xc potential steps depend on features of the density, such

PHYSICAL REVIEW B 93, 155146 (2016)

as the locations of minima and the local ionization energies,
provides an important basis for the construction of improved
density functionals. We have introduced the concept of the
‘local effective ionization energy’ which applies in regions far
from an atom, where the ionization energy associated with
a single electron is well defined. At an interface between
localized electrons the local effective ionization energy can
change; when this happens over a short range it gives rise
to a step in the exchange-correlation (xc) potential with a
magnitude equal to the difference in ionization energies. For
systems with more than one occupied Kohn-Sham (KS) orbital,
the analog of this effect, in the KS picture, arises from the
crossover from one localized single-particle KS density to
another. At this point, the dominant contributing KS orbital to
the overall electron density changes. This effect also gives rise
to a step, even in the time-dependent regime.

We build on the thought experiment of Almbladh and von
Barth [5] by considering the above effects far from a pair
of separated atoms. One step forms between the atoms and
corrects the number of electrons on each atom. The second
step, far from the molecule, also corresponds to a change in
the local effective ionization energy and a crossover of the
single-particle KS densities.

We also derive from this fundamental understanding of
steps a practical means of approximating where steps in the
electron density will form, and provide a range for the step
height to ensure accurate electron densities. We find that steps
usually require a minimum in the electron density in order
to form; however not all density minima yield steps, as the
minimum must correspond to the interface of at least two
localized electrons. By integrating over a region of electrons
which is localized relative to other electrons in the system, we
can define an integer electron point, i.e., the point in the density
where this crossover occurs thus a step can form. Localization
indicates which systems will require steps, while the degree
of localization affects the shape of the steps. Further, linear-
response theory shows how various other features in the KS
potential can be interpreted as the superposition of steps, even
in time-dependent systems.
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