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ABSTRACT

The principal theme underlying this work is that of coupling. Coupling is a general

technique with applications in many areas of probability, as well as being an active

area of research in its own right. In this thesis a number of problems involving

coupling are investigated: some new results, as well as an indication of exciting

possibilities for future research, are given in each case.

Our journey into the world of coupling begins with the topic of the cutoff phe-

nomenon for random walks on groups. Chapter 2 investigates the behaviour of a

coupling for a general random walk on the hypercube, proving the existence un-

der a simple condition of a new type of threshold behaviour called a coupling-cutoff.

Chapter 3 is concerned with the theory of maximal couplings of Markov chains. This

concept is generalised to maximal coalescent couplings, and an explicit description

of an optimal co-adapted coupling for the symmetric random walk on Zn2 is pre-

sented. The difference between optimal co-adapted and maximal couplings is also

investigated for Brownian motion and the Ornstein-Uhlenbeck process.

Coupling is at the heart of the simulation technique known as perfect simulation,

and this subject forms the focus of the second half of the thesis. Some consideration

is given to the efficiency of Coupling from the Past (CFTP) algorithms, but the

principal novel contribution to this area is an investigation into the existence of

a dominated CFTP algorithm for subgeometrically ergodic Markov chains. This

question turns out to be significantly harder than that for geometrically ergodic

chains: we introduce a class of positive recurrent chains, named tame chains, for

which a perfect simulation algorithm is shown to exist.
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1. AN INTRODUCTION TO COUPLING

In this introductory chapter we present some background material on the theory and

applications of coupling. Precise definitions shall be given, but a more intuitive view

of coupling methods will often be taken, as it is this approach which usually serves to

be the most enlightening in applications. In preparation for the work in Chapters 2

and 3, we introduce the concept of random walks on groups and briefly review some

methods for analysing their convergence rate. The relatively simple but important

example of a random walk on the hypercube will also be introduced: this process is

the main subject of analysis in the first half of this thesis.

1.1 Coupling: art meets science

The term coupling, in the field of probability, refers to the practice of constructing

two (or more) probability measures on a single measurable space in order to compare

them. Usually this is performed in order to deduce properties of the individual mea-

sures, or to investigate similarities between the two. The two principal applications

of coupling that will be exploited in this thesis are: bounding the rate of conver-

gence to equilibrium of ergodic Markov chains; and proving stochastic domination

statements.

Formally speaking, a coupling may be defined as follows (Lindvall 2002).

Definition 1.1. Let P and P ′ be two probability measures on a measurable space

(E, E). A coupling of P and P ′ is a probability measure P̂ on (E2, E2) such that the

marginals of P̂ are P and P ′. That is, if we define the natural projections π and π′

by π(x, x′) = x and π′(x, x′) = x′ for (x, x′) ∈ E2, then

P̂ π−1 = P and P̂ π′−1 = P ′ .

Rather than simply working with probability measures, throughout this thesis

we shall primarily be concerned with coupling random processes, such as Markov
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chains. To that end, the following definition of the coupling of two random elements

is more appropriate.

Definition 1.2. Let X : (Ω,F ,P) → (E, E) and X ′ : (Ω′,F ′,P′) → (E, E) be F/E-

and F ′/E-measurable functions respectively. A coupling of X and X ′ is a measurable

function (X̂, X̂ ′) : (Ω̂, F̂ , P̂)→ (E2, E2) such that

X̂
D= X and X̂ ′

D= X ′ .

Thus P̂(X̂, X̂)−1 is simply a coupling of the probability measures PX−1 and P′X ′−1.

When there is no danger of confusion, we shall normally say simply that (X,X ′)

is a coupling, or that X and X ′ are coupled. (This is a slight abuse of notation,

since in such cases we will strictly be working with a coupled version (X̂, X̂ ′) of

(X,X ′), but we shall be explicit about this if necessary.) Similarly, we shall also

simply write (Ω,F ,P) for the joint space on which (X,X ′) is defined. It will be

assumed throughout this thesis (unless explicitly stated to the contrary) that all

state spaces are Polish (and so regular versions of conditional probability measures

may be assumed to exist.)

Note that the existence of a coupling for any two such random elements is trivial:

simply take X and X ′ to be independent of one another. This idea forms the basis of

the first application of coupling (Doeblin 1938), but is commonly not of great use: the

true power of the coupling method lies in the number of possibilities for the joint dis-

tribution of (X̂, X̂ ′): careful construction of this distribution can often be extremely

informative about the marginals. Although coupling is a well-defined mathematical

technique, and rigorous descriptions can be given using measure-theoretic language

as above, the choice of an informative coupling is something of an art form as we

shall see, and is often based on intuition.

Throughout this thesis, much use will be made of the total variation metric as a

means of measuring the distance between two probability measures.

Definition 1.3. Let µ and ν be probability measures defined on a space E. Define

the total variation distance between µ and ν by

‖µ− ν‖ = sup
A⊂E
|µ(A)− ν(A)| = 1

2
sup
|h|≤1

∣∣∣∣∫ h d(µ− ν)
∣∣∣∣ .
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This metric assumes values in [0, 1]. If E is countable, then

‖µ− ν‖ =
1
2

∑
x∈E
|µ(x)− ν(x)| .

There are a number of useful identities satisfied by this metric, the most conve-

nient of which (for the work in later chapters) is the following:

Lemma 1.4. Let µ ∧ ν be the greatest common component of µ and ν, and let λ be

a measure that dominates µ and ν. Write

f =
dµ

dλ
, g =

dν

dλ
.

Then the total variation metric satisfies the following equality:

‖µ− ν‖ = 1−
∫

(f ∧ g) dλ . (1.1)

Proof. Define the set Cµ ⊆ E by Cµ = {x : f(x) ≥ g(x)}. Then

2 ‖µ− ν‖ = sup
|h|≤1

∣∣∣∣∫ h d(µ− ν)
∣∣∣∣ =

∫
Cµ

d(µ− ν)−
∫
E\Cµ

d(µ− ν)

=
∫
|f − g| dλ =

∫
(f − f ∧ g) dλ+

∫
(g − f ∧ g) dλ

= 2
(

1−
∫

(f ∧ g) dλ
)
.

Two other notions of distance between measures that are commonly used are

those of `p and separation distance.

Definition 1.5. Let µ and ν be probability measures defined on a space E. Let λ, f

and g be as in the statement of Lemma 1.4. For 1 ≤ p ≤ ∞ the `p-distance between

µ and ν is given by

‖µ− ν‖p =


(∫
|f − g|p dλ

)1/p
if 1 ≤ p <∞

ess sup |f − g| if p =∞.
(1.2)

Note that

‖µ− ν‖1 = 2 ‖µ− ν‖

by definition, and that Jensen’s inequality yields:

‖µ− ν‖p ≤ ‖µ− ν‖q , for all 1 ≤ p ≤ q ≤ ∞.
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Definition 1.6. Let µ and ν be probability measures defined on a countable space

E. The separation distance between µ and ν is defined by

dS(µ, ν) = max
x∈E

(
1− µ(x)

ν(x)

)
.

Equivalently, dS(µ, ν) is the smallest s ≥ 0 such that µ = (1− s)ν + sρ for some

probability measure ρ. This distance takes values in [0, 1] but is not a metric. It is

simple to show (see for example Diaconis (1988)) that

‖µ− ν‖ ≤ dS(µ, ν) .

Now suppose that the random variables X and X ′ are coupled. The following

inequality provides a useful upper bound on the total variation distance between the

laws of X and X ′ on (E, E).

Lemma 1.7. Let the coupled random variables X and X ′ have laws µ and µ′ respec-

tively on (E, E). Then ∥∥µ− µ′∥∥ ≤ P (X 6= X ′
)
. (1.3)

Proof. For any set A ∈ E ,

P (X ∈ A)− P
(
X ′ ∈ A

)
= P

(
X ∈ A, X = X ′

)
+ P

(
X ∈ A, X 6= X ′

)
− P

(
X ′ ∈ A, X = X ′

)
− P

(
X ′ ∈ A, X 6= X ′

)
= P

(
X ∈ A, X 6= X ′

)
− P

(
X ′ ∈ A, X 6= X ′

)
≤ P

(
X 6= X ′

)
.

The result follows by Definition 1.3.

In Chapter 3 the existence of a coupling which shows that inequality (1.3) is

sharp will be demonstrated.

Taking this idea a little further, suppose now that X = {Xn}∞0 and X ′ = {X ′n}
∞
0 ,

where Xn and X ′n are elements in (E, E). Let (X̂, X̂ ′) be a coupling of (X,X ′), and

suppose that T is a random time such that

X̂n = X̂ ′n for n ≥ T .

Direct application of Lemma 1.7 (using the fact that {X̂n 6= X̂ ′n} ⊆ {T > n}) then

yields:



1. An Introduction to Coupling 6

Lemma 1.8 (The coupling inequality). Let (X̂, X̂ ′) be a coupling of X and X ′ as

above. Then

∥∥P (Xn ∈ ·)− P
(
X ′n ∈ ·

)∥∥ ≤ P (T > n) . (1.4)

Such a random time T is called a coupling time. A ‘good’ coupling is usually one

that has a ‘small’ coupling time. The coupling is called successful if

P (T <∞) = 1 .

Now, if X is a Markov chain on a countable space E, with transition kernel P ,

then X is said to be weakly ergodic if

lim
n→∞

∑
k∈E
|δxPn(k)− δyPn(k)| = 0 for all x, y ∈ E .

(Here δx is the Dirac point mass at x.) That is, X is weakly ergodic if and only if

the total variation distance at time n between the law of the chain started at x and

that of the chain started at y converges to zero as n → ∞, for all x, y ∈ E. Thus

the coupling inequality, despite its simplicity, immediately leads to a very important

application of coupling theory: if there exists a successful coupling of these two chains

for any pair of starting states x, y ∈ E, then X is weakly ergodic. The existence of

the reverse implication to this statement forms the basis of the work in Chapter 3.

Furthermore, if X and X ′ are two versions of an ergodic chain with stationary

distribution π, such that X0 = x and X ′0 ∼ π, then inequality (1.4) provides a bound

on the rate at which X approaches equilibrium:

‖P (Xn ∈ ·)− π(·)‖ ≤ P (T > n) .

Remark 1.9. An analogous result to Lemma 1.8 holds if X and X ′ are continuous-

time processes in DE , the space of càdlàg functions defined on [0,∞) with values in

a Polish space E, endowed with the Skorokhod topology.

An important class of couplings is that of co-adapted couplings:

Definition 1.10. Let (X̂, X̂ ′) be a coupling of the two random processes X and X ′.

This coupling is called co-adapted if the processes X̂ and X̂ ′ have a common past

expressed by a fixed filtration of σ-algebras.
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Note that if X and X ′ are Markov processes then this condition implies that X̂

and X̂ ′ viewed separately are both Markov processes, but not that the joint process

(X̂, X̂ ′) is Markovian. More informally, a co-adapted coupling is one for which the

evolution of either process is not allowed to depend upon the future of the other.

Co-adapted couplings tend to be easier to work with, but non-co-adapted couplings

certainly have their uses: this topic will be further discussed in Chapter 3.

Finally, a more general notion in the theory of coupling is that of distributional

coupling (called weak coupling in Lindvall (2002)). Let X = {Xn} be a discrete time

stochastic process on (E, E). For non-negative integer-valued random variables T ,

let θTX be the shift operator defined by

θTX =

{
{XT+n}∞n=0 on {T <∞}
(x, x, . . . ) on {T =∞} ,

where x is a fixed element of E. Writing D= to denote identity in distribution, we

have the following definition:

Definition 1.11. Let X and X ′ be discrete time stochastic processes on (E, E). We

say that (X̂, X̂ ′) is a distributional coupling of X and X ′, with coupling times T and

T ′, if

(a) X̂
D= X and X̂ ′

D= X ′;

(b) (θT X̂, T ) D= (θT ′X̂ ′, T ′).

An analogous definition holds for processes X,X ′ ∈ DE .

Thus distributional coupling serves to weaken the requirement that X̂ and X̂ ′

eventually coincide, and asks instead that X̂ behaves probabilistically from time T as

X̂ ′ does from time T ′. Further discussion of distributional coupling can be found in

Thorisson (2000): we shall briefly meet this coupling again in Chapter 3, where the

notion of stitching together distributions at randomised stopping times is considered.
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1.2 Random walks on finite groups

We have seen in the above that the coupling inequality may be used to bound the

total variation distance between two Markov chains. In this section we consider a

special class of chains: random walks on finite groups. This class contains many

interesting processes, a large proportion of which are very well suited to the coupling

method.

Given a finite group G, a random walk X may be defined on G by first defining

a probability measure P on a generating subset H ⊆ G. Repeated independent

draws from the distribution P yield random elements h1, h2, . . . ∈ H. X = {Xk}k≥0,

started at some element x ∈ G, is then defined as follows:

X0 = x; Xk = hkXk−1 .

The transition kernel for this walk, denoted P (·, ·), satisfies

P (x, y) = P (yx−1) ,

and the distribution of Xk is given by

Px (Xk = g) = P k(gx−1) =
∑
h∈H

P k−1(hx−1)P (gh−1) =
∑
h∈H

P k−1(x, h)P (h, g) .

Since H generates G it follows that, if X is aperiodic, P k(·) converges to the uniform

distribution on G, Uniform(G), as k →∞.

On many occasions it will be more convenient to work with a continuous-time

version of the random walk, X = {Xt}. The kernel P (·, ·) has associated to it a

continuous-time semigroup Pt = e−t(I−P ): this has kernel

Pt(x, y) = e−t
∞∑
k=0

tkP k(x, y)
k!

.

X may be realised by holding the walk in its present state for an Exp(1) amount of

time, and then making a transition according to the discrete-time kernel P (·, ·). For

this reason, we will say that the kernel P (·, ·) (or the measure P ) generates both the

discrete and continuous time walks.

We now introduce a very important example of a Markov chain, which shall be

the subject of much analysis in the first three chapters of this thesis.
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Example 1.12 (Simple symmetric random walk on a hypercube). Let Zn2 be the

group of binary n-tuples under coordinate-wise addition modulo 2: this can be viewed

as the vertices of a cube in n dimensions. Zn2 is one of the simplest groups on which

to study random walks, due to its high level of symmetry.

A random walk X on Zn2 may be described as follows. For x ∈ Zn2 , write x =

(x(1), . . . , x(n)) ∈ {0, 1}n, and define elements {ei}n0 by

e0 = (0, 0, . . . , 0); ei(k) = 1[i=k], i = 1, . . . , n .

Consider then the probability measure Pn given by

Pn(ei) =
1

n+ 1
, i = 0, . . . , n .

For x, y ∈ Zn2 let

|x− y| =
n∑
i=1

|x(i)− y(i)|

be the Hamming distance between x and y. It follows that the transition kernel

corresponding to Pn is given by

Pn(x, y) =

{
(n+ 1)−1 if |x− y| ≤ 1
0 otherwise.

This kernel then describes an aperiodic, irreducible nearest-neighbour symmetric

random walk on Zn2 : its state diagram is the Cayley graph of Zn2 with generating set

H = {ei}n0 , and its unique equilibrium distribution is Un = Uniform(Zn2 ).

The continuous-time version of this walk can be realised as follows: flip coordinate

i (1 ≤ i ≤ n) to its opposite value (zero or one) whenever there is an incident on Λi,

where {Λi}n1 are a set of mutually independent Poisson processes, each of rate 1/n.

Variations on this walk, produced by allowing Pn(ei) to depend on i, will be

considered in Chapter 2.

This random walk was analysed in detail during the 1980s. The following exam-

ples describe two co-adapted coupling schemes for this chain. The first of these is

based on a method (which can be applied to both the discrete and continuous-time

chains) due to Aldous (1983).

Example 1.13 (Aldous coupling). At time k ≥ 0, let

Uk =
{

1 ≤ i ≤ n : Xk(i) 6= X ′k(i)
}
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be the set of coordinates on which Xk and X ′k disagree, where X and X ′ are the two

random walks to be coupled. At step k + 1, draw 0 ≤ i ≤ n uniformly at random

and set Xk+1 = Xk + ei. Then define X ′k+1 as follows:

• if |Xk −X ′k| > 1:

– if i /∈ Uk set X ′k+1 = X ′k + ei ;

– otherwise, choose a coordinate j ∈ Uk\ {i} uniformly at random and set

X ′k+1 = X ′k + ej ;

• if |Xk −X ′k| = 1, with Uk = {j}:

– if Xk(i) = X ′k(i) set X ′k+1 = X ′k + ei ;

– if i = 0 set X ′k+1 = X ′k + ej ;

– if i = j set X ′k+1 = X ′k + e0 ;

• finally, if |Xk −X ′k| = 0, set X ′k+1 = X ′k + ei .

This update scheme marginally updates X ′ according to the transition kernel Pn,

and so this is a valid coupling. It may be described more simply as follows: if Xk

and X ′k agree on coordinate i then this match is preserved at time k + 1; if not,

then another unmatched coordinate of X ′k (if it exists) is moved so as to decrease the

number of unmatched coordinates by two; when (if) a single unmatched coordinate

j remains, this coordinate is coupled as soon as i ∈ {0, j}.

The second coupling we shall consider here is defined for the continuous-time

walks X and X ′.

Example 1.14 (Partial-independence coupling). This coupling treats each coordi-

nate of the n-tuple X separately, and is very simple to describe. For 1 ≤ i ≤ n, let

Λi and Λ′i be independent Poisson processes of rate 1/n. Coordinates X(i) and X ′(i)

are made to flip independently (at incident times of Λi and Λ′i respectively) until the

first time that they agree, after which they remain equal forever (with transitions

driven by Λi, say). Due to the memoryless property of the Exponential distribution

this defines a valid coupling. In order to distinguish this coupling from the triv-

ial independence coupling (where X and X ′ are completely independent until they
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agree on all coordinates), we shall refer to this scheme as the partial-independence

coupling.

Both of these coupling schemes will prove useful in the next two chapters of this

work. In the final section of this introductory chapter, we look at how the Aldous

coupling may be used to bound the time taken for the walk to approach equilib-

rium. There are many other ways of analysing the convergence rate of random walks

on groups, including eigenvalue analysis and group representation theory (Diaconis

1988): this latter technique can sometimes provide very tight bounds on the time

taken to reach stationarity, especially in examples where the measure P driving the

walk is constant on conjugacy classes of G. One final method of analysing conver-

gence rates, which is more probabilistic in nature, is that of strong uniform times:

this technique will also (briefly) be reviewed below.

1.2.1 Time to reach equilibrium

Definitions 1.3, 1.5 and 1.6 provide a number of ways of measuring the distance

between two probability measures, and hence between the distribution of a random

walk at any given time and its stationary distribution. In his paper of 1983, Aldous

defined the following parameter, which measures the time until the random walk is

within a fixed distance of equilibrium (with respect to the total variation metric).

Definition 1.15. Let X be a random walk on a group G, driven by a probability

measure P , with equilibrium distribution U = Uniform(G). We define

τmix(ε) = τmix(G,P, ε) = inf {t > 0 : ‖P (Xt ∈ ·)− U(·)‖ ≤ ε} , (1.5)

and set

τmix = τmix(1/e) . (1.6)

τmix will be referred to as the mixing time of X.

The choice of 1/e in this definition is fairly arbitrary, and is made primarily for

algebraic convenience: with this choice it can be shown (see for example Aldous and

Fill (2002)) that

‖P (Xt ∈ ·)− U(·)‖ ≤ exp
(
−
⌊
t/τmix

⌋)
.
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We now use the coupling of Example 1.13 (applied to the continuous-time chain)

to bound the mixing time for the symmetric random walk on Zn2 , following the

calculation in Aldous (1983). Let

Nt =
∣∣Xt −X ′t

∣∣
count the number of coordinates on which the coupled chains X and X ′ disagree at

time t ≥ 0. The coupling scheme ensures that N is a decreasing process, and that

the coupling time T is given by the time taken for N to be absorbed at zero. Now,

the transition rates for N are given by

Q(k, k − 2) =
k

n
, for 2 ≤ k ≤ n; Q(1, 0) =

2
n
.

Let {Tk} be independent Exp(k/n) random variables. Then the coupling time T is

bounded above by

T ∗ = Tm + · · ·+ T5 + T3 + T1; m =

{
n n odd
n− 1 n even.

Since the {Tk} are independent, it follows that

E [T ∗] = n

(
1
m

+ · · ·+ 1
5

+
1
3

+ 1
)
∼ 1

2
n log n

Var (T ∗) = n2

(
1
m2

+ · · ·+ 1
52

+
1
32

+ 1
)
∼ Cn2 .

Finally, for any α > 1/2, the coupling inequality and Chebyshev’s inequality between

them yield ∥∥∥Pαn logn
n − Un

∥∥∥ ≤ P (T ∗ > αn log n)

≤ Var (T ∗)
((α− 1/2)n log n)2 −−−→n→∞

0 . (1.7)

Therefore τmix (and indeed τmix(ε) for all 0 < ε < 1) is asymptotically bounded

above by (n/2) log n.

An alternative method of bounding the mixing time is to use a strong uniform

time. This is a particular type of randomised stopping time (first defined in Pitman

and Speed (1973)).
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Definition 1.16. A random variable T defined on (Ω,F) with values in the extended

time set N ∪ {∞} is said to be a randomised stopping time (RST) of the Markov

chain X, if for each n ∈ N the event {T > n} is conditionally independent of the

future (Xn+1, Xn+2, . . . ) given the past (X0, . . . , Xn).

Note that if for all n the event {T > n} is completely determined by (X0, . . . , Xn)

then T is simply a stopping time of X. A RST differs from a stopping time in general

since the event {T > n} is allowed to depend upon auxiliary randomness. As a simple

example of a RST, let X be a real-valued Markov chain and suppose that V is a

real-valued random variable independent of X. Then

T = inf {n : Xn ≥ V }

is a RST of X.

Now suppose that X is an ergodic random walk on the group G, with stationary

distribution Uniform(G).

Definition 1.17. A strong uniform time (SUT) for X is a randomised stopping time

T such that

P (Xk = x |T = k) =
1
|G|

,

for all x ∈ G and k ≥ 0.

That is, XT has distribution Uniform(G) and is independent of T . (This concept

can of course be generalised to Markov chains on a more general state space: this

leads to the definition of a strong stationary time.) Strong uniform times are useful

for bounding the mixing time of a random walk due to the following result (Aldous

and Diaconis 1987).

Proposition 1.18. If T is a SUT for X then

dS (L(Xn),Uniform(G)) ≤ P (T > n) , n ≥ 0 (1.8)

(where L(X) is the law of X). Conversely, there exists a SUT T such that inequal-

ity (1.8) holds with equality.

Inequality (1.8) shows that SUTs are to separation distance what coupling times

are to total variation distance (recall inequality (1.4)). SUTs are connected to cou-

pling via the following proposition.
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Proposition 1.19 (Aldous and Diaconis (1987)). Let T be a SUT for the Markov

chain X with starting state x. Then there exists a coupling of X and the stationary

chain Y with coupling time T .

Proof. Given T and {Xn}, we construct Y as follows. On each non-null event

{T = m}, define Y
(m)
n = Xn, for n ≥ m. Conditional on {T = m}, the future

process
{
Y

(m)
n : n ≥ m

}
is distributed as the stationary Markov chain (since T is

a SUT), and so can be extended backwards to
{
Y

(m)
n : n ≥ 0

}
as the stationary

chain. Finally, define Yn = Y
(m)
n on {T = m}, for each m. It follows that {Yn} is a

stationary Markov chain, with Yn = Xn for all n ≥ T .

Note that this coupling is not co-adapted, since the chain {Yn : n ≥ 0} depends

upon the values of T and XT .

SUTs also have a link to the distributional coupling of Definition 1.11 (due to

Thorisson, but reported in Aldous and Diaconis (1987)). This follows from the

observation that if T is a SUT of X, and Y is a stationary version of the chain, then

(T,XT , XT+1, . . . )
D= (T, YT , YT+1, . . . ) .

Thus X and Y form a distributional coupling, with coupling time T .

Finally, Aldous and Diaconis (1987) construct a simple SUT T for the symmetric

random walk on Zn2 , and show that

P (T ≥ (n+ 1)(log n+ c)) ≤ 1
(c− 1)2

, c > 1 .

Thus the time taken to make the separation distance small is asymptotically bounded

above by n log n for this walk. Note that this is twice the bound on τmix obtained

above using coupling.

1.3 Summary

This introductory chapter has summarised some of the general coupling theory that

underlies the work in this thesis. Thorisson (2000) and Lindvall (2002) contain a

wealth of information on the coupling method, while a more comprehensive study

of distances between probability measures can be found in Gibbs and Su (2002).

Readers interested in the fascinating topic of random walks on groups (which will
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really only be touched upon in this thesis) are advised to consult any of the following

references: Aldous (1983), Diaconis (1988), Aldous and Fill (2002), Saloff-Coste

(2004).

The layout of the rest of this thesis is as follows. Chapter 2 investigates the

partial-independence coupling of Example 1.14 for a generalised version of the ran-

dom walk on Zn2 , proving the existence under a simple condition of a new type of

threshold behaviour called a coupling-cutoff. Chapter 3 is concerned with the theory

of maximal couplings of Markov chains. This idea is generalised to maximal coales-

cent couplings, and an explicit description of an optimal co-adapted coupling for the

symmetric random walk on Zn2 is presented.

The tone of the thesis changes at this point, as Chapters 4 and 5 deal with the

subject of perfect simulation. The first of these chapters provides an introduction

to Coupling from the Past and associated algorithms: this review is based upon

the encyclopedia article of the author (Connor 2007). It concludes with a summary

of the paper by Kendall (2004), which proves the existence of a perfect simulation

algorithm for geometrically ergodic Markov chains. Chapter 5 is based upon the

article of Connor and Kendall (2007), which extends this result to a class of positive

recurrent chains.



All generalizations are dangerous, even this one.

Alexandre Dumas



2. THE COUPLING-CUTOFF PHENOMENON

A natural question in the study of random walks on groups is the following: how

many steps of the walk are necessary for the chain to be within a small distance of

its stationary distribution? Classical theory says that asymptotically equilibrium is

approached exponentially, with the rate governed by the second-largest eigenvalue (in

modulus) of the transition matrix P (see, for example, Rosenthal (1995a)). However,

such an answer only gives a bound (which is often very conservative) on how many

steps are sufficient, and does not provide any quantitative description of how the

distance from stationarity changes over the relatively short term.

Initial interest in the above problem was sparked by the question: how many

shuffles of a pack of cards is necessary for the deck to be “well-shuffled”? Of course,

an answer to such a question depends on the definition of a ‘shuffle’ and on the

precise meaning of ‘well-shuffled’. Card shuffling questions can be re-phrased in

terms of random walks on the symmetric group Sn (the group of permutations of n

elements) with the uniform distribution Un as the unique equilibrium distribution.

‘Well-shuffled’ can then be defined in terms of the distance to stationarity (usually

measured using one of the distances introduced in Section 1.1).

The first random walk for which a conclusive result was obtained was that of the

transposition shuffle. This walk evolves in discrete time by choosing two positions

1 ≤ i, j ≤ n uniformly at random (with replacement) and swapping the cards in

positions i and j. (Equivalently, the cards labelled i and j may be swapped.) In the

notation of Section 1.2, the random walk X is generated by the following distribution

Pn:

Pn(id) =
1
n
, Pn(σ) =

2
n2

for all transpositions σ ∈ Sn.

This random walk was studied by Diaconis and Shahshahani (1981). They proved

the remarkable result that (n/2) log n steps are both necessary and sufficient for X

to be close to uniform when n is large.



2. The Coupling-Cutoff Phenomenon 18

Theorem 2.1 (Diaconis and Shahshahani 1981). Let τn = (n/2) log n. For c > 0,

∥∥P τn+cn
n − Un

∥∥ ≤ ae−2c

for a universal constant a. Conversely, for c < 0, as n tends to infinity,

∥∥P τn+cn
n − Un

∥∥ ≥ 1
e
− e−e−2c

+ o(1) .

(Here, and throughout this thesis, we write fn = o(gn) if fn/gn → 0 as n →

∞, and fn = O(gn) if fn/gn is eventually bounded.) Such behaviour is called a

cutoff phenomenon: the total variation distance from stationarity stays close to

its maximum value of one for a time, before dropping rapidly towards zero. This

type of result really concerns a sequence of random walks: for the transposition

shuffle this sequence is {Sn, Pn}, and Theorem 2.1 states that convergence takes

place asymptotically in a window of length O(n) centred at time (n/2) log n.

More formally, the following definitions are commonly used in the setting of

continuous-time random walks (see, for example, Diaconis and Saloff-Coste (2006),

Chen (2006)).

Definition 2.2. For n ≥ 1, let Pn be a probability measure on a finite group Gn,

such that the continuous-time random walk X(n) generated by Pn (recall Section 1.2)

has stationary distribution πn. We say that the sequence {Gn, Pn, πn}∞1 exhibits:

(1) a τn-pre-cutoff if there exist 0 < a < b and a sequence of positive numbers

{τn}∞1 such that

lim inf
n→∞

‖Paτnn − πn‖ > 0 , and lim
n→∞

∥∥∥Pbτnn − πn
∥∥∥ = 0 ;

(2) a τn-cutoff if there exists a sequence of positive numbers {τn}∞1 such that

∀c ∈ (0, 1), lim
n→∞

‖Pcτnn − πn‖ = 1

and ∀c > 1, lim
n→∞

‖Pcτnn − πn‖ = 0 ;

(3) a (τn, bn)-cutoff if τn, bn > 0 satisfy bn = o(τn) and

d−(c) = lim inf
n→∞

∥∥∥Pτn+cbn
n − πn

∥∥∥ satisfies lim
c→−∞

d−(c) = 1 ,

d+(c) = lim sup
n→∞

∥∥∥Pτn+cbn
n − πn

∥∥∥ satisfies lim
c→∞

d+(c) = 0 .
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The three parts of this definition are given in increasing order of precision: (3)

implies (2) implies (1). The weakest statement (that a pre-cutoff exists) simply means

that the convergence to equilibrium takes place over a period of time bounded by

(aτn, bτn]. The sequence {τn} will be called the cutoff time in cases (2) and (3), with

the exact type of cutoff being made explicit when necessary. We will often informally

say simply that the sequence of random walks
{
X(n)

}
has a cutoff at time τn. In

case (3) the term bn will be referred to as the window of the cutoff. Note that two

sequences {τn} and {τ ′n} are both cutoff times for a sequence {Gn, Pn, πn} if and

only if τn ∼ τ ′n as n tends to infinity (Chen 2006).

Recall from Definition 1.15 that τmix(G,P ) = τmix(G,P, 1/e) is the time taken

for the random walk on G with transitions driven by P to be within 1/e of its

stationary distribution (with respect to total variation). Thus if {Gn, Pn, πn} is a

sequence of walks which exhibits a τn-cutoff, it follows that for any ε ∈ (0, 1),

τmix(Gn, Pn, ε) ∼ τmix(Gn, Pn) ∼ τn as n→∞.

In what follows we shall write τmixn for τmix(Gn, Pn, 1/e). Thus for a sequence pre-

senting a cutoff, it is always possible to take τn to be the mixing time τmixn : in this

case therefore, there is strong motivation for saying that the mixing time is ‘the time

taken to reach equilibrium’.

An analogous set of definitions exist of course for discrete-time random walks.

If a set of continuous chains
{
X(n)

}
exhibits a τn-cutoff with τn → ∞ then the

discrete-time family of walks will display a cutoff at the same instant (Chen 2006).

This will be the case for all the walks we are interested in below, most of which will

have a uniform stationary distribution, Uniform(Gn): this will usually be written

simply as Un.

There is also no need to restrict attention to random walks on groups when

studying cutoffs, nor to use total variation to measure distance from stationarity.

Work in this latter setting has been carried out very recently by Chen (2006), who

uses eigen-analysis to prove the existence of `p-cutoffs for a large number of sequences

of Markov chains. In this thesis we are principally concerned with total variation

distance (due to its link with coupling via the coupling inequality, Lemma 1.8). It

should be remarked though, that mixing times and cutoff phenomena are of course
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specific to the distance by which convergence is measured. More information on the

cutoff phenomenon can be found in any of the following definitive references, from

which much of this introductory material is taken: Diaconis (1988), Diaconis (1996),

Saloff-Coste (1997), Saloff-Coste (2004).

The most famous example of a cutoff comes from analysis of the riffle shuffle:

this is the shuffle commonly used by card players, whereby the deck is cut into two

piles which are then merged into one whilst maintaining the relative order of the

cards in each pile. A mathematical model for this shuffle was proposed by Gilbert

and Shannon (Gilbert 1955), and later, independently, by Reeds (1981). Following

earlier work by Aldous (1983), Bayer and Diaconis (1992) proved that for the Gilbert-

Shannon-Reeds riffle shuffle, with τn = (3/2) log2 n,

∥∥P τn+c
n − Un

∥∥ = 1− 2Φ
(
−2−c

4
√

3

)
+O

(
n−1/2

)
.

Thus this random walk exhibits a (τn, 1)-cutoff. This result made national newspaper

headlines when it was first published: it shows that it takes about 7 riffle shuffles to

adequately randomise a standard deck of 52 playing cards.

The great interest in the cutoff phenomenon arises from the fact that such be-

haviour has been shown to occur for a number of random walks on groups (see

Figure 2.1). It is certainly not true, however, that all random walks on groups ex-

hibit this behaviour: the walk on Z/nZ driven by the uniform measure on {−1, 0, 1}

does not present a cutoff (see Diaconis (1988)). Despite this interest, there is as yet

a limited amount of theory for predicting exactly when a cutoff will exist (although

a few heuristic arguments have been put forward - see the discussions in Diaconis

(1996) and Ycart (1999)). One recent conjecture, due to Yuval Peres, is that a

Gn Walk τn Reference

Sn Top-to-random n log n Aldous and Diaconis (1986)

Sn Random transpositions 1
2n log n Diaconis and Shahshahani (1981)

Sn Riffle shuffle 3
2 log2 n Bayer and Diaconis (1992)

Zn2 Symmetric random walk 1
4n log n Aldous (1983)

Fig. 2.1: Table of some known total variation cutoff phenomena for random walks on groups.
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necessary and sufficient condition for a set of Markov chains to exhibit a cutoff is

that

τdn(1/4)λn →∞ as n→∞,

where λn is the spectral gap of Pn (i.e. 1 minus the second largest eigenvalue), and

τdn is the mixing time measured by the distance d. (If d is the total variation metric

then τdn(ε) = τmixn (ε).) This conjecture is proved when d is the `p-distance (1 <

p ≤ ∞) by Chen (2006), and in the case of birth-death chains when d is separation

distance by Diaconis and Saloff-Coste (2006). There do exist counterexamples to

this conjecture however, due to Aldous (Chen 2006) and Peres (P. Diaconis, personal

communication).

Of particular interest to us is the fact that the simple random walk on Zn2 , intro-

duced in Example 1.12, is known to exhibit a ((n/4) log n, n)-cutoff. This was first

shown in Aldous (1983), with the following refined version being proved by Diaconis

and Shahshahani (1987).

Theorem 2.3 (Diaconis and Shahshahani (1987)). For the simple random walk on

Zn2 , with τn = n+1
4 log n, the following statements hold:∥∥P τn+cn

n − Un
∥∥2 ≤ 1

2

(
ee
−4c − 1

)
;

and as n→∞, for any ε > 0 there exists C < 0 such that for c < C,∥∥P τn+cn
n − Un

∥∥ ≥ 1− ε .

The upper bound of this theorem is proved using group representation theory.

The lower bound is obtained by a probabilistic argument. The upper bound of this

cutoff has also been proved using coupling and strong uniform times (Matthews

1987). Chen (2006) shows that this random walk exhibits a ((n/4) log n, n)-`p-cutoff

for all 1 ≤ p ≤ 2, and also a ((n/2) log n, n)-`∞-cutoff.

The result of Theorem 2.3 was made even more precise in the paper of Diaconis

et al. (1990). They analysed the ‘shape’ of the cutoff: that is, how ‖P τn+cn
n − Un‖

behaves as a function of c. They proved the following:

Theorem 2.4 (Diaconis et al. (1990)). For the simple random walk on Zn2 , let

τn = (n/4) log n. Then for fixed c ∈ (−∞,∞), as n→∞,∥∥P τn+cn
n − Un

∥∥ ∼ Erf
(
e−2c

√
8

)
, (2.1)
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where

Erf (z) =
2√
π

∫ z

0
e−t

2
dt

denotes the error function.

This theorem provides a far greater level of detail about the convergence to

stationarity around the cutoff time than is available for most other chains. Such a

detailed analysis is possible thanks to the facts that Zn2 is abelian and benefits from

a highly symmetric structure.

2.1 Coupling-cutoffs for random walks on Zn2

The discussion at the start of this chapter concerns the behaviour of the distance from

stationarity of a sequence of random walks. In the results stated above, this distance

is measured using the total variation metric, for which the simple random walk on

Zn2 exhibits a ((n/4) log n, n)-cutoff. The question that we now ask is: when does

a coupling time for two such walks exhibit similar cutoff behaviour? This depends

upon the coupling of course! For the continuous-time symmetric random walk on the

hypercube, one coupling strategy encountered in Chapter 1 is particularly accessible

to analysis: this is the partial-independence coupling of Example 1.14. In this chapter

we investigate the behaviour of this coupling when n is large. The analysis is then

extended to random walks where each coordinate may move at a different rate.

To define what is meant by ‘similar cutoff behaviour’, let us introduce a little

notation. Let X(n) and Y (n) be continuous-time random walks on a group Gn, each

generated by the probability measure Pn. Let Tn be a coupling time for X(n) and

Y (n). For t ≥ 0, define

Fn(t) = P (Tn ≤ t) (2.2)

to be the distribution function of Tn. It is then possible to define the following three

types of behaviour:

Definition 2.5. For n ≥ 1, let Tn and Fn be defined as above. We say that the se-

quence {Gn, Pn, Tn}∞1 (or simply the sequence
{
X(n)

}
, when it is clear what coupling

strategy is being used) exhibits:
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(1) a τn-coupling-pre-cutoff if there exist 0 < a < b and a sequence of positive

numbers {τn}∞1 such that

lim sup
n→∞

Fn(aτn) < 1 , and lim
n→∞

Fn(bτn) = 1 ;

(2) a τn-coupling-cutoff if there exists a sequence of positive numbers {τn}∞1 such

that

∀c ∈ (0, 1), lim
n→∞

Fn(cτn) = 0

and ∀c > 1, lim
n→∞

Fn(cτn) = 1 ;

(3) a (τn, bn)-coupling-cutoff if τn, bn > 0 satisfy bn = o(τn) and

F+(c) = lim sup
n→∞

Fn(τn + cbn) satisfies lim
c→−∞

F+(c) = 0 ,

F−(c) = lim inf
n→∞

Fn(τn + cbn) satisfies lim
c→∞

F−(c) = 1 .

As with total variation cutoffs (Definition 2.2), a coupling-cutoff for discrete-time

walks may be defined in the obvious way. Note that in this definition no restrictions

are placed upon the sequence {Gn, Pn, Tn}: this is in keeping with the general defini-

tion of the cutoff phenomenon. Although this sequence will have a natural structure

in all of the examples considered below, no such structure is demanded in general:

the coupling-cutoff phenomenon is a new area of research and we do not wish to

restrict ourselves to working with a particular set of sequences at this early stage.

Recall from Example 1.12 that the continuous-time walk on Zn2 evolves as follows:

coordinate i (1 ≤ i ≤ n) flips to its opposite value (zero or one) whenever there is an

incident on Λi, where {Λi}n1 are a set of mutually independent Poisson processes, each

of rate 1/n. In what follows these rates will be allowed to differ between processes

Λi and Λj : in general the rate of Λi will be denoted by λi. Unless otherwise stated,

it will not be assumed that the rates {λi} are normalised.

The partial-independence coupling for two such walks allows unmatched coordi-

nates to evolve independently until the time that they first agree, whereafter they

move synchronously. Let X(n) and Y (n) be two random walks coupled in this way,

with X
(n)
0 equal to some fixed state and Y

(n)
0 ∼ Un. If X(n)

0 and Y
(n)

0 do not agree

on the ith coordinate (which happens with probability 1/2), then the time taken for
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agreement on this coordinate is equal to the time of the first incident on a Poisson

process of rate 2λi. This yields

P
(
X

(n)
t (i) = Y

(n)
t (i)

)
=

1
2

+
1
2

(
1− e−2tλi

)
= 1− 1

2
e−2tλi .

Therefore, if Tn is the partial-independence coupling time,

Fn(t) = P (Tn ≤ t) =
n∏
i=1

P
(
X

(n)
t (i) = Y

(n)
t (i)

)
=

n∏
i=1

(
1− 1

2
e−2tλi

)
. (2.3)

(Note that this is independent of the choice of X(n)
0 .)

For the rest of this chapter, Tn will always be the partial-independence coupling

time. Since the coupling strategy is consistent throughout, we will simply say that

the sequence
{
X(n)

}
does/does not exhibit a coupling-cutoff.

2.1.1 A simple example: the symmetric random walk

We begin this investigation into coupling-cutoffs with two results concerning the

symmetric random walk, when λi = 1/n for all i.

Proposition 2.6. Suppose that the rates {λi} are normalised, so that
∑
λi = 1.

Then Fn(t) is maximised for all t ≥ 0 when λi = 1/n for all i = 1, . . . , n.

Proof. Recall the classical inequality relating geometric and arithmetic means (Hardy

et al. 1952): for any set of real non-negative numbers a1, . . . , an,(
n∏
i=1

ai

)1/n

≤ 1
n

n∑
i=1

ai, (2.4)

with equality if and only if all the ai’s are equal. Therefore,

Fn(t) =
n∏
i=1

(
1− 1

2
e−2tλi

)
≤

(
1
n

n∑
i=1

(
1− 1

2
e−2tλi

))n

=

(
1− 1

2n

n∑
i=1

e−2tλi

)n
≤

1− 1
2

(
n∏
i=1

e−2tλi

) 1
n

n

=
(

1− 1
2
e−

2t
n

)n
,

where both inequalities follow by application of inequality (2.4).
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The following result shows that the partial-independence coupling time for the

symmetric random walk is (n/2) log n: Proposition 2.6 shows that this is therefore a

lower bound on the expected coupling time for a random walk driven by any set of

normalised rates {λi}.

Proposition 2.7. The random walk with λi = 1/n for all i = 1, . . . , n exhibits a

((n/2) log n, n)-coupling-cutoff.

Proof. Define τn = (n/2) log n and bn = n. From equation (2.3) it follows easily that

Fn(τn + cbn) =
(

1− 1
2

exp
(
− 2
n

(τn + cbn)
))n

=
(

1− 1
2
e−2c

n

)n
−−−→
n→∞

exp
(
−1

2
e−2c

)
.

Thus

F+(c) = F−(c) = exp
(
−1

2
e−2c

)
for this random walk, and Definition 2.5(3) is satisfied.

This simple example demonstrates very clearly what is meant by a coupling-

cutoff. Figure 2.2 shows plots of Fn(cτn) (with τn = (n/2) log n) as a function of c

for a range of n. It is evident that the transition from zero to one, when the time

axis is scaled by τn in this way, takes place over a shorter interval as n increases:

the sequence of functions {Fn(cτn)} converges to a step function (with unit jump at

c = 1) as n→∞.

Note the difference between the shape of the coupling-cutoff around τn and that

of the true cutoff (around τn/2). Theorem 2.4 showed that the change in total

Fig. 2.2: Plots of the function Fn(cτn) over the range c ∈ (0, 3) for n =10 (red), 102, 103,
104, 105 (blue).
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Fig. 2.3: ‘Shape’, as a function of c, of the coupling-cutoff and the total variation cutoff about
their critical times: solid line shows 1 − exp

(
−e−2c/2

)
(coupling-cutoff); dashed

line shows Erf
(
e−2c/

√
8
)

(total variation cutoff).

variation distance behaves like an error function around τn/2, whereas the proof

of Proposition 2.7 shows that the distribution of the coupling time behaves like an

extreme value function. The difference between these two types of behaviour is

shown in Figure 2.3: it is evident that the true cutoff is slightly sharper than the

coupling-cutoff.

2.1.2 Breaking the symmetry

The relatively simple example of the symmetric random walk indicates the potential

for gain from studying coupling-cutoffs. Although a coupling-cutoff only gives an

upper bound on the true mixing time of a chain (via the coupling inequality), in

some cases the coupling construction is much easier to study. This is certainly the

case when the equality of the λi’s is broken. Indeed, equation (2.3) remains true no

matter what values of λi > 0 are used, whereas there is no longer a simple expression

for the total variation distance between L
(
X(n)

)
and Un when the rates are not

identical (see, for example, Barrera et al. (2006)).

Diaconis (1996) considered the specific example where λi ∝ i−α for α ≥ 0, with∑
λi = 1. He proved that a (τn, bn)-cutoff is exhibited for all such α, with the cutoff

parameters as given in Figure 2.4. This result, sketched in Diaconis (1996), is based

on eigen-analysis. It shows that a cutoff persists when symmetry is broken, but is

unsatisfactory in that it relies on the sequence of rates decreasing in a very specific

way. In particular, it does not take into account the commutativity of Zn2 and the

fact that the convergence behaviour is independent of coordinate permutation.

The result was recently improved upon by Barrera et al. (2006). They consider
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τn bn

α = 0 1
4n log n n

0 < α < 1 1
4(1−α)n(log n− log log n) n

α = 1 1
4n log n(log n− log logn) n log n

1 < α <∞ ζ(α)
4 nα(log n− log logn) nα

Fig. 2.4: Cutoff time τn and window bn for the random walk on Zn2 with rates λi ∝ i−α.
Here ζ(α) =

∑∞
s=1 s

−α is the Riemann zeta function.

n-tuples of independent, exponentially converging processes. This class of processes

includes, but is not limited to, the random walks on Zn2 considered in this chapter.

They give conditions under which the n-tuple exhibits a cutoff, with the convergence

to equilibrium being measured by a number of distances including total variation.

The following theorem states the restriction of their result to random walks on Zn2 .

Theorem 2.8 (Barrera et al. (2006)). For n ≥ 1, denote by λ(1,n), λ(2,n), . . . , λ(n,n)

the values of λ1, . . . , λn ranked in increasing order. Define

τn = max
1≤i≤n

{
log i

4λ(i,n)

}
. (2.5)

If

lim
n→∞

λ(1,n)τn =∞

then the random walk on Zn2 with rates {λi} exhibits a τn-cutoff.

It has recently come to our attention that the thesis of Chen (2006) shows that

the value of τn in equation (2.5) is also the `2-cutoff time for this random walk.

Furthermore, since this chain is reversible, Corollary 2.1 of Chen (2006) implies that

the walk exhibits an `p-cutoff for all 1 < p ≤ ∞, with the `p-mixing time being of

the same order as the `2-mixing time.

The fact that a total variation cutoff was shown to hold in more generality

than the symmetric case by Diaconis (1996) prompted the present investigation into

coupling-cutoffs. (During the process of this investigation the results of Barrera et al.

(2006) and Chen (2006) were published.) The following two simple examples show
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that a coupling-cutoff can hold when the rates λi are not identical, and provide some

motivation for the results of Section 2.1.3.

Example 2.9. Consider a random walk on Zn2 with
√
n rates equal to 1 and the

remaining rates equal to 3. Theorem 2.8 shows that the walk exhibits a cutoff at

τn = max
{

log
√
n

4
,
log n
12

}
=

log n
8

.

Now consider the coupling time distribution:

Fn

(
log n

4
+ c

)
=
(

1− 1
2
e−2c

√
n

)√n(
1− 1

2
e−6c

n3/2

)n−√n
−−−→
n→∞

exp
(
−1

2
e−2c

)
.

Since this final expression tends to zero as c → −∞ and to one as c → ∞, this

random walk exhibits a ((1/4) log n, 1)-coupling-cutoff.

Example 2.10. For a second example, consider the rates

λi =

{
1 i = 1
log log n i ≥ 2 .

By Theorem 2.8, this walk has a cutoff at time

τn =
log n

4 log log n
.

Furthermore, it also exhibits a (log n/(2 log log n), 1/ log logn)-coupling-cutoff, since

Fn

(
log n

2 log log n
+

c

log logn

)
=
(

1− 1
2

exp
(
−(log n+ 2c)

log log n

))(
1− 1

2
e−2c

n

)n−1

−−−→
n→∞

exp
(
−1

2
e−2c

)
.

These examples show that a coupling-cutoff is exhibited in at least two cases

where a cutoff is known to occur, with the coupling-cutoff time being twice that of

the total variation cutoff. Example 2.10 shows that a coupling-cutoff can occur even

when most of the rates tend to infinity with n. In the next section, we investigate

general conditions under which a coupling-cutoff occurs for a random walk on the

hypercube. As remarked above, it is desirable to approach the problem from a

perspective which takes into account the commutativity of Zn2 . We therefore choose

to work with discrete probability measures µn on [1,∞), rather than a set of rates

{λi}: the result of this will be that the existence of a coupling-cutoff is directly

related to the convergence of appropriately scaled versions of {µn} as n tends to

infinity.
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2.1.3 A measure-based approach

Let {µn} be a sequence of probability measures on [1,∞), where µn is the sum of n

point masses, each of weight 1/n, whose locations may or may not be distinct. We

shall assume throughout that µn has been scaled so that µn({1}) ≥ 1/n for all n.

Consider a random walk X(n) on Zn2 , with rates governed by the measure µn. The

partial-independence coupling time distribution for this walk satisfies the natural

generalisation of equation (2.3):

Fn(t) = exp
(
n

∫ ∞
1

log
(

1− 1
2
e−2tλ

)
µn(dλ)

)
. (2.6)

We now find conditions on {µn} such that the sequence
{
X(n)

}
of random walks

exhibits coupling-cutoff behaviour.

Remark 2.11. The assumption that µn({1}) > 0 is not restrictive. If the sequence

{µn} instead satisfies

σ(n) = inf
λ≥1
{µn[1, λ] > 0} > 1

for some n, then it suffices to study the measures {µ̂n}, where

µ̂n({x}) = µn ({x/σ(n)}) .

From equation (2.6) it then follows by a simple change of variables that if {µ̂n}

exhibits a τ̂n-coupling-cutoff, the sequence {µn} will exhibit a coupling-cutoff at

time

τn =
τ̂n
σ(n)

.

The following proposition provides a sufficient condition for the chains
{
X(n)

}
to exhibit a coupling-pre-cutoff.

Proposition 2.12. For n ≥ 1 and ε > 0, let λn(ε) be defined by

λn(ε) = inf {λ ≥ 1 : µn[1, λ] ≥ ε} .

If there exists ε > 0 such that λn(ε) is eventually bounded above, then the sequence{
X(n)

}
exhibits a (log n)/2-coupling-pre-cutoff.
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Proof. Let τn = (log n)/2. Since µn is supported on [1,∞), it follows that the

coupling time Tn is stochastically dominated by the coupling time for the walk with

all rates equal to 1. Thus, for any fixed b > 1,

Fn(bτn) ≥
(

1− 1
2
e−2bτn

)n
=
(

1− n−b

2

)n
,

and so Fn(bτn)→ 1 as n→∞.

Now let ε > 0 be such that λn(ε) ≤ C < ∞ for all large n. Then Fn may be

bounded above as follows:

Fn(t) ≤ exp
(
n

∫ C

1
log
(

1− 1
2
e−2tλ

)
µn(dλ)

)
≤ exp

(
nµn[1, C] log

(
1− 1

2
e−2tC

))
≤
(

1− 1
2
e−2tC

)nε
.

Therefore, for fixed b > 1,

Fn

( τn
bC

)
≤

(
1− n−1/b

2

)nε
−−−→
n→∞

0 .

Hence Definition 2.5(1) is satisfied for any b > 1, with a = (bC)−1 > 0, and so these

chains exhibit a (log n)/2-coupling-pre-cutoff.

The sufficient condition of this proposition is rather restrictive: Example 2.10

shows that both a total variation and coupling-cutoff can exist even when µn con-

verges vaguely to the zero measure on [1,∞).

Given a measure µn, define τn by

τn = max
λ≥1

{
log(nµn[1, λ])

2λ

}
=

log(nµn[1, λ∗n])
2λ∗n

, (2.7)

where λ∗n ∈ [1,∞) is defined by this last equality. (If there are two or more values of

λ achieving the maximum in equation (2.7) then we shall (arbitrarily) always take

λ∗n to be the minimum of these values.) Note the similarity between this definition

and that given in equation (2.5) for the total variation cutoff time.

Given λ∗n, we may define a new measure νn on (0,∞) as follows:

νn({x}) =
µn({λ∗n x})
µn[1, λ∗n]

. (2.8)
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This measure has total mass (µn[1, λ∗n])−1 ∈ [1,∞) and satisfies νn(0, 1] = 1. The

idea behind this scaling is as follows. λ∗n describes in some sense the ‘critical point’

of µn: it will be shown that under a certain condition, any mass µn places to the left

of λ∗n will not influence the coupling-cutoff time. For ease of notation we define

βn = nµn[1, λ∗n] ∈ [1, n] .

Lemma 2.13. If βn →∞ as n→∞ then νn(0, 1] w−→ δ1.

Proof. By definition of τn (equation (2.7)),

log (nµn[1, λ])
λ

≤ log βn
λ∗n

for all λ ≥ 1.

Thus for all x ≥ 1/λ∗n,
log (nµn[1, xλ∗n])

x
≤ log βn .

This yields

nµn[1, xλ∗n] ≤ βxn for all x ≥ 1/λ∗n. (2.9)

Hence

νn(0, x] =
µn[1, xλ∗n]
µn[1, λ∗n]

=
nµn[1, xλ∗n]

βn
≤ βx−1

n , (2.10)

where the inequality follows from (2.9). Thus for all ε ∈ (0, 1),

νn(0, 1− ε] ≤ β−εn −−−→n→∞
0

because βn → ∞ as n → ∞. Since νn(0, 1] = 1 for all n, this proves the required

convergence.

This makes more precise what is meant by λ∗n describing the ‘critical point’ of µn.

Under the assumption that βn →∞, the measures νn converge weakly to δ1 on (0, 1]:

this is exactly the sort of behaviour to be expected if the sequence {λ∗n} captures

information about the coupling-cutoff time. Theorem 2.15 makes this observation

exact: its proof makes use of a simple inequality, which for ease of reference is

produced here as a proposition.

Proposition 2.14. For 0 ≤ x ≤ 1/2,

− x− x2 ≤ log(1− x) ≤ −x . (2.11)
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Proof. Observe that for 0 ≤ u ≤ 1/2,

−(1 + 2u) ≤ −1
1− u

≤ −1 .

Integrating each term in this sequence of inequalities with respect to u, over the

range 0 ≤ u ≤ x ≤ 1/2, completes the proof.

Theorem 2.15. The sequence of random walks
{
X(n)

}
exhibits a τn-coupling-cutoff

if and only if τn →∞, where τn is defined in equation (2.7).

Proof. First suppose that τn 9 ∞. The standing assumption concerning the mea-

sures {µn} is that µn({1}) ≥ 1/n for all n. Thus, for fixed c > 0, it follows from

equation (2.6) that

Fn(cτn) ≤ exp
(
nµn({1}) log

(
1− 1

2
e−2cτn

))
≤ 1− 1

2
e−2cτn .

But this value is bounded away from one for all c > 0 if τn 9∞. Therefore τn →∞

is a necessary condition for a τn-coupling-cutoff to exist.

Now suppose that τn → ∞: this implies that βn → ∞, since λ∗n ≥ 1. Using the

measure νn the coupling time distribution Fn may be rewritten as follows:

Fn(t) = exp

(
βn

∫ ∞
1/λ∗n

log
(

1− 1
2
e−2λ∗ntλ

)
νn(dλ)

)
. (2.12)

For t ∈ R define

θn(t) = βn

∫ ∞
1/λ∗n

exp (−2λ∗ntλ) νn(dλ) . (2.13)

This expression may be used to bound the distribution function Fn as follows. Ap-

plication of Proposition 2.14 to the log term in equation (2.12) shows that, for all

t ≥ 0, the following inequalities hold:

− 1
2
θn(t)− 1

4
θn(2t) ≤ logFn(t) ≤ −1

2
θn(t) . (2.14)

Furthermore, for t ≥ 0, θn(2t) ≤ θn(t) by definition, and so

− 3
4
θn(t) ≤ logFn(t) ≤ −1

2
θn(t) . (2.15)

Thus the behaviour of Fn is determined by that of θn.
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Now consider θn(cτn), for fixed c > 0. By definition of τn,

θn(cτn) = βn

∫ ∞
1/λ∗n

exp
(
−2λ∗nc

[
log βn
2λ∗n

]
λ

)
νn(dλ)

=
∫ ∞

1/λ∗n

β1−cλ
n νn(dλ) . (2.16)

We now search for bounds on θn.

Firstly, for c ∈ (0, 1),

θn(cτn) ≥
∫ 1

1/λ∗n

β1−cλ
n νn(dλ)

≥ β1−c
n νn(0, 1] = β1−c

n . (2.17)

For c > 1, integration by parts yields:

θn(cτn) =
[
β1−cλ
n νn(0, λ]

]∞
1/λ∗n
− log

(
β−cn

) ∫ ∞
1/λ∗n

β1−cλ
n νn(0, λ]dλ . (2.18)

The first term of this expression is non-positive, and so using inequality (2.10), we

see that

θn(cτn) ≤ c log βn
∫ ∞

1/λ∗n

β1−cλ
n νn(0, λ]dλ

≤ c log βn
∫ ∞

1/λ∗n

β1−cλ
n βλ−1

n dλ

= c log βn

[
− β

−(c−1)λ
n

log
(
βc−1
n

)]∞
1/λ∗n

=
(

c

c− 1

)
β−(c−1)/λ∗n
n . (2.19)

Inequalities (2.14) and (2.17) together show that for c ∈ (0, 1),

Fn(cτn) ≤ exp
(
−1

2
β1−c
n

)
−−−→
n→∞

0 ,

since βn →∞ by assumption. Furthermore, combining inequalities (2.14) and (2.19)

for c > 1 yields

Fn(cτn) ≥ exp
(
−3

4

(
c

c− 1

)
β−(c−1)/λ∗n
n

)
−−−→
n→∞

1 .

Thus there is a coupling-cutoff at time τn, as claimed.

The coupling time of Proposition 2.7 may be obtained as a special case of The-

orem 2.15. Let µ̃n = δ1/n be the measure corresponding to the case where λi = 1/n

for all i = 1, . . . , n. Similarly, let µn = δ1 for all n. Then

τn = max
λ≥1

{
log (nµn[1, λ])

2λ

}
=

log n
2

,
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with λ∗n = 1 for all n. By Theorem 2.15, the random walk generated by {µn} exhibits

a τn-coupling-cutoff. This then implies that the walk generated by {µ̃n} exhibits a

nτn-coupling-cutoff, as proved in Proposition 2.7.

The result of Theorem 2.15 provides a coupling version of Theorem 2.8, with the

coupling-cutoff being a factor of two out from the total variation cutoff time. The

form of τn in equation (2.7) shows that λ∗n = o(log n) is a necessary condition for

τn →∞ (and hence for a coupling-cutoff to exist). Thus although a coupling-cutoff

can exist even if µn
v−→ 0, this will not be the case if the vague convergence takes place

too quickly. In other words, the position of the ‘critical mass’ µn[1, λ∗n] determining

the cutoff cannot be allowed to escape to infinity as fast as log n.

Theorem 2.15 also has a nice interpretation in terms of ‘mini-cutoffs’ (this obser-

vation was made in the case of total variation cutoffs in Barrera et al. (2006)). Note

that the distribution of the ith coordinate of X(n) at time t satisfies

P
(
X

(n)
t (i) = X

(n)
0 (i)

)
=

1
2

(
1 + e−2λit

)
.

It follows that the total variation distance between X(n)
t (i) and its stationary distri-

bution is equal to
1
2
e−2λit .

Thus µn[1, λ] is the proportion of coordinates of X(n) which converge slower than at

rate e−2λt. If this proportion is sufficiently large (so that nµn[1, λ] → ∞) then this

sub-tuple of coordinates will not converge before time

log (nµn[1, λ])
2λ

.

Theorem 2.15 shows that this will in fact be the coupling-cutoff time for X(n), so

long as it is the latest convergence time of all such sub-tuples.

2.1.4 Window size calculations

Although Theorems 2.15 and 2.8 provide precise values of the (coupling-) cutoff times,

neither result gives any information about the size of the cutoff window: information

which was easy to obtain in Examples 2.9 and 2.10. Chen (2006) does provide some

results for `2-cutoff window sizes for a general class of Markov chains: however,



2. The Coupling-Cutoff Phenomenon 35

these involve careful partition of eigenvalues into subsets of the real line, and seem

less intuitive than the measure-based approach considered here for coupling-cutoffs.

Recall from Definition 2.5(3) that the sequence X(n) is said to exhibit a (τn, bn)-

coupling-cutoff if bn = o(τn) and

F+(c) = lim sup
n→∞

Fn(τn + cbn) satisfies lim
c→−∞

F+(c) = 0 , (2.20)

F−(c) = lim inf
n→∞

Fn(τn + cbn) satisfies lim
c→∞

F−(c) = 1 . (2.21)

Note that this definition specifies the asymptotic behaviour of the mixing time, but

gives no details about the distribution function Fn at time τn + cbn, nor about the

functions F±. All discussion so far has spoken of ‘the cutoff window’ bn, when it is

clear that if the sequence {Gn, Pn, Tn} exhibits a (τn, bn)-coupling-cutoff then it also

exhibits a (τn, b′n)-coupling-cutoff, where {b′n} is any sequence satisfying O(bn) ≤

b′n = o(τn). Chen (2006) distinguishes between different window sizes by defining

three types of optimality for the sequence {bn}. This distinction is more than is

needed in what follows, for which a single definition of optimality will suffice:

Definition 2.16. Suppose the sequence {Gn, Pn, Tn} exhibits a (τn, bn)-coupling-

cutoff. The window bn will be said to be optimal if, whenever {Gn, Pn, Tn} also

exhibits a (τn, b′n)-coupling-cutoff, bn ≤ O(b′n).

As an example of an optimal window, consider the simple symmetric random walk

on Zn2 , with all rates equal to 1/n. Proposition 2.7 showed that this walk exhibits a

((n/2) log n, n)-coupling-cutoff. Consideration of the proof of this result shows that

a ((n/2) log n, bn)-coupling-cutoff does not exist for any sequence bn < O(n), and so

this is indeed an optimal window.

It is possible to further analyse the optimality of the window by considering

separately the windows either side of the cutoff time τn. That is, instead of using a

single sequence {bn} to establish convergence in equations (2.20) and (2.21), we can

consider each convergence statement separately:

Definition 2.17. Suppose the sequence {Gn, Pn, Tn} exhibits a τn-coupling-cutoff.

If there exists a sequence
{
bLn
}

with bLn = o(τn), such that

FL+(c) = lim sup
n→∞

Fn(τn + cbLn) satisfies lim
c→−∞

FL+(c) = 0,
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then bLn will be called a left-window of the coupling-cutoff.

Similarly, if there exists a sequence
{
bRn
}

with bRn = o(τn), such that

FR− (c) = lim inf
n→∞

Fn(τn + cbRn ) satisfies lim
c→∞

FR− (c) = 1,

then bRn will be called a right-window of the coupling-cutoff.

Remark 2.18. Note that if bLn and bRn satisfy Definition 2.17, then the sequence

{Gn, Pn, Tn} exhibits a (τn, bn)-coupling-cutoff, where

bn = max
{
bLn , b

R
n

}
.

With these final general definitions in place, we now return to the analysis of the

partial-independence coupling for random walks on Zn2 . The following two results

provide general upper bounds on the optimal values of
{
bLn
}

and
{
bRn
}

for this walk,

both of which are determined by the sequence {λ∗n}.

Lemma 2.19. Suppose there is a coupling-cutoff at time τn, with τn defined by

equation (2.7). Then the optimal left-window of the coupling-cutoff is bounded above

by 1/λ∗n.

Note that, since λ∗n ≥ 1, this result shows that the optimal left-window is actually

bounded above by a constant.

Proof. Recall from equation (2.13) the definition of θn:

θn(t) = βn

∫ ∞
1/λ∗n

exp (−2λ∗ntλ) νn(dλ) .

Now consider θn(τn + c/λ∗n), for fixed c ∈ R. Note that τn → ∞ by Theorem 2.15,

and so for any c ∈ R it follows that τn + c/λ∗n ≥ 0 for large enough n. By definition

of τn, with τn + c/λ∗n ≥ 0:

θn(τn + c/λ∗n) = βn

∫ ∞
1/λ∗n

exp (−2λ∗n [τn + c/λ∗n]λ) νn(dλ)

≥ βn
∫ 1

1/λ∗n

exp (−2λ∗n [τn + c/λ∗n]λ) νn(dλ)

≥ βnνn(0, 1]
(
e−2c

βn

)
= e−2c . (2.22)
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Combining inequalities (2.15) and (2.22) shows that for all c ∈ R, with bLn = 1/λ∗n:

FL+(c) = lim sup
n→∞

Fn(τn + c/λ∗n)

≤ lim sup
n→∞

exp
(
−1

2
θn(τn + c/λ∗n)

)
≤ exp

(
−1

2
e−2c

)
. (2.23)

Thus

lim
c→−∞

FL+(c) = 0 ,

and so 1/λ∗n is a left-window for the coupling-cutoff.

This result shows that bLn = 1 is a left-window for the simple symmetric random

walk with rates all equal to one. Thus the optimal left-window for the random walk

with rates all equal to 1/n is bounded above by n (and is actually equal to n by the

discussion following Definition 2.16).

Lemma 2.19 provides a (perhaps surprisingly) small bound on the optimal size of

the left-window. However, it turns out that the general upper bound for the optimal

right-window of the coupling-cutoff is significantly larger than that for the left. This

result, stated as Theorem 2.21, makes use of the Lambert W -function. This is the

function defined by

W (x)eW (x) = x .

(For details of this function, see Corless et al. (1996).) The asymptotic behaviour of

W (x) for large x is described in Proposition 2.20.

Proposition 2.20. For x ≥ e, the function W satisfies

log x− log log x ≤W (x) ≤ log x− log (log x− log log x) . (2.24)

In particular,

W (x) ∼ log x− log log x as x→∞. (2.25)

Proof. By definition,

W (x) = log x− logW (x) (2.26)

= log x− log (log x− logW (x)) . (2.27)

Now simply observe that W (x) ≤ log x for x ≥ e, and insert this bound into equa-

tions (2.26) and (2.27).
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Figure 2.5 shows a graph of W with the bounds of inequality (2.24) superimposed.

Fig. 2.5: Graph of the function W (black). For x ≥ e, W (x) is bounded below by log x −
log log x (blue) and above by log x− log(log x− log log x) (blue).

We are now ready to state the final theorem of this section:

Theorem 2.21. Suppose there is a coupling-cutoff at time τn, with τn defined by

equation (2.7). Then the optimal right-window of the coupling-cutoff is bounded

above by W (τn).

Proof. In order for bRn to be a right-window for the coupling-cutoff, it is sufficient to

show that θn
(
τn + cbRn

)
≤ g(c) for sufficiently large n, where g(c) → 0 as c → ∞.

For then, using inequality (2.15) it follows that

FR− (c) = lim inf
n→∞

Fn(τn + cbRn )

≥ lim inf
n→∞

exp
(
−3

4
θn
(
τn + cbRn

))
≥ exp

(
−3

4
g(c)

)
−−−→
c→∞

1 .

We therefore search for an upper bound on the function θn
(
τn + cbRn

)
for fixed

c > 0. Integration by parts, as in equation (2.18), yields the following:

θn
(
τn + cbRn

)
= βn

∫ ∞
1/λ∗n

(
e−2cbRnλ

∗
n

βn

)λ
νn(dλ)

= βn

(e−2cbRnλ
∗
n

βn

)λ
νn(0, λ]

∞
1/λ∗n

+ βn log(βne2cbRnλ
∗
n)
∫ ∞

1/λ∗n

(
e−2cbRnλ

∗
n

βn

)λ
νn(0, λ] dλ . (2.28)

Now, for c > 0, this first term is negative for all n. Discarding this term, and using
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inequality (2.10) to bound νn(0, λ] in the second term, we see that

θn
(
τn + cbRn

)
≤ βn log(βne2cbRnλ

∗
n)
∫ ∞

1/λ∗n

(
e−2cbRnλ

∗
n

βn

)λ
βλ−1
n dλ

= log(βne2cbRnλ
∗
n)
∫ ∞

1/λ∗n

e−2cbRnλ
∗
nλ dλ

= log(βne2cbRnλ
∗
n)
e−2cbRn

2cbRnλ∗n

= e−2cbRn

(
τn
cbRn

+ 1
)
.

This upper bound blows up as n tends to infinity unless bRn > O(1). Assuming that

bRn → ∞ therefore, with bRn = o(τn) (which necessarily holds for any window by

definition), it follows that for large enough n:

θn
(
τn + cbRn

)
≤ e−c

(
e−cb

R
n
τn
cbRn

)
(2.29)

for any fixed c > 0.

Now, by definition of Lambert’s W -function, it follows that the right hand side

of inequality (2.29) tends to infinity as n → ∞ unless cbRn ≥ W (τn). Thus, with

bRn = kW (τn) for some constant k > 0, the right hand side of inequality (2.29)

satisfies

e−c
(
e−cb

R
n
τn
cbRn

)
−−−→
n→∞


∞ c < k−1

e−c c = k−1

0 c > k−1

.

It follows that for c > k−1, θn(τn + ckW (τn))→ 0 as n→∞, and so

FR− (c) = lim inf
n→∞

Fn (τn + ckW (τn)) = 1 .

Therefore bRn = W (τn) is a right-window of the coupling-cutoff, as claimed.

This bound on the right-window is significantly larger than that for the left-

window. Since τn necessarily tends to infinity when a coupling-cutoff is exhibited, it

follows that the right-window W (τn) also tends to infinity, whereas the left-window

was shown to be O(1). Application of Theorem 2.21 to the symmetric random walk

with rates all equal to 1 shows that bRn = W (log n) is a bound on the optimal right-

window. However, as mentioned after Definition 2.16, the optimal size of both left

and right-windows is constant for this walk. Thus the bound arising from Theo-

rem 2.21 is very conservative in this case. This is also true for the random walks
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presented in Examples 2.9 and 2.10, where the optimal window size is equal to 1/λ∗n

in both cases.

However, the following example shows that the bound of Theorem 2.21 can be

achieved, and so cannot be improved upon in general.

Example 2.22. Consider the random walk on Zn2 governed by the probability mea-

sures

µn =
1
n

n∑
i=1

δ(2 logn(i)∨1) .

(Here and throughout, for a, b ∈ R, we write a∨b = max {a, b} and a∧b = min {a, b}.)

The measure µn places all its mass in the interval [1, 2], with

µn[1, λ] =

⌊
nλ/2

⌋
n

∼ nλ/2−1, for all λ ∈ [1, 2] (see Figure 2.6).

Fig. 2.6: Graph of the distribution functions of the measures µn for n = 5 (red), 10, 20, 50,
200 (purple).

For this sequence,

τn = max
1≤λ≤2

{
log (nµn[1, λ])

2λ

}
= max

1≤λ≤2

{
log
(
nλ/2

)
2λ

}
=

log n
4

.

Note that this maximum is attained at all λ ∈ [1, 2]: as usual we take λ∗n = 1 to be

the minimum of these values. This gives βn =
√
n, and hence νn[1, λ] =

√
nµn[1, λ].

Since τn →∞ as n→∞, this random walk exhibits a τn-coupling-cutoff.

Now, by Lemma 2.19, the optimal left-window of this coupling-cutoff is bounded

above by 1/λ∗n, which is of course constant in this example. Figure 2.7 shows plots

of the function

exp
(
−1

2
θn

(
log n

4
+ c

))
(2.30)
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Fig. 2.7: Demonstration of the convergence of Fn(τn + c) to zero for fixed c < 0. Graphs of
the function in (2.30) are shown for n = 10 (red), 30, 50, 100 (blue).

as a function of c < 0, for a range of values of n. It is apparent that this function,

which is an upper bound for Fn(τn+c) for fixed c < 0 (by inequality (2.15)), converges

to zero as n→∞.

However, the following calculations show that the optimal right-window for this

example is given by W (τn). Consider once again the function θn(τn + cbRn ), for fixed

c > 0 and some sequence bRn = o(τn). Since νn[1, λ] ∼ n(λ−1)/2, integration by parts

as in equation (2.28) yields the following:

θn

(
log n

4
+ cbRn

)
= βn

(e−2cbRn

βn

)λ
νn[1, λ]

2

1

+ βn log(βne2cbRn )
∫ 2

1

(
e−2cbRn

βn

)λ
νn[1, λ] dλ

∼
(
e−4cbRn − e−2cbRn

)
+
√
n log(

√
n e2cbRn )

∫ 2

1

(
e−2cbRn
√
n

)λ
n(λ−1)/2 dλ

=
(
e−4cbRn − e−2cbRn

)
+ log(

√
n e2cbRn )

∫ 2

1
e−2cbRnλ dλ

= log(
√
n)

(
e−2cbRn − e−4cbRn

2cbRn

)
= τn

(
e−2cbRn − e−4cbRn

cbRn

)
.

It follows that the right-window of this coupling-cutoff cannot be bounded above by

a constant, since θn (τn + c)→∞ as n→∞, and so

lim sup
n→∞

Fn(τn + c) ≤ exp
(
−1

2
θn

(
log n

4
+ c

))
−−−→
n→∞

0 .

Indeed, as in the proof of Theorem 2.21, any sequence bRn = o(W (τn)) will force

θn
(
τn + cbRn

)
→∞. It follows that

bRn = W (τn) ∼ log log n− log log log n
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Fig. 2.8: Demonstration of the convergence of Fn(τn + cW (τn)) to one for fixed large c.
Graphs of the function in (2.31) are shown for n = 102 (red), 103, 106, 1010 (blue).

is the optimal right-window for this coupling-cutoff. Figure 2.8 shows graphs of

exp
(
−3

4
θn

(
log n

4
+ cW

(
log n

4

)))
(2.31)

as a function of c > 0 for a range of values of n. This function converges to one for

large c, as expected. Note that the rate of convergence is much slower than that for

the left-window.

We end this section on coupling-cutoffs for the hypercube by returning to the

motivating example of Diaconis (1996).

Example 2.23. Let us reconsider the random walk on Zn2 with transition rates

λi ∝ i−α, for α ≥ 0, and for which the total variation cutoff times are presented

in Figure 2.4. We have already seen (Proposition 2.7) that when α = 0 this walk

exhibits a ((n/2) log n, n)-coupling-cutoff: that is, the coupling-cutoff time is twice

that of the total variation cutoff. We shall now show that similar results hold for

α > 0.

The random walk in question has rates λi = i−α/Zn(α), where Zn(α) is the

normalising constant. Proceeding as in Remark 2.11 it suffices to study the measures

{µn} defined by

µn =
1
n

n∑
i=1

δ(n/i)α .

These are supported on [1,∞) and satisfy µn({1}) = 1/n for all n. It follows that

if the random walks driven by {µn} exhibit a (τn, bn)-coupling-cutoff then the walks

driven by the rates {λi}n1 will exhibit a (τnnαZn(α), bnnαZn(α))-coupling-cutoff.
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Fig. 2.9: Graph of the distribution functions of the measures µn when α = 1 (left) and
α = 1.8 (right), for n = 3 (red), 6, 12, 24 (blue).

The measure µn satisfies

µn[1, λ] =
1
n

∣∣∣ {1 ≤ i ≤ n : (n/i)α ≤ λ}
∣∣∣

∼ 1− λ−1/α (see Figure 2.9). (2.32)

Thus the prospective coupling-cutoff time τn satisfies

τn = max
λ≥1

{
log
[
n
(
1− λ−1/α

)]
2λ

}
.

We now claim that this maximum is achieved at

λ∗n =
(

α log(n/α)
α log(n/α)− 1

)α
. (2.33)

Before proving this, let us consider its consequences. Plugging λ∗n into the definition

of τn yields

τn ∼
log(n/α)− log log(n/α)

2
.

Since this value tends to infinity with n, the condition of Theorem 2.15 is satisfied,

and so the walks driven by {µn} exhibit a τn-coupling-cutoff. By Lemma 2.19, the

optimal left-window of this coupling-cutoff is bounded above by bLn = 1/λ∗n, and

the right-window by bRn = W (τn). Re-scaling by nαZn(α) shows that the original

random walks exhibit a τnn
αZn(α)-coupling-cutoff, with left-window nαZn(α)/λ∗n

and right-window nαZn(α)W (τn). By definition of Zn(α),

nαZn(α) ∼


n

1−α for 0 < α < 1
n log n for α = 1
nαζ(α) for 1 < α ,

where ζ(α) is the Riemann zeta function. Since λ∗n → 1 as n → ∞, the coupling-

cutoffs for the original walk take the form presented in Figure 2.10.
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τn bLn bRn

α = 0 1
2n log n n n

0 < α < 1 1
2(1−α)n[log(n/α)− log log(n/α)] n n log log(n/α)

α = 1 1
2n log n[log(n/α)− log log(n/α)] n log n n log n log log(n/α)

1 < α <∞ ζ(α)
2 nα[log(n/α)− log log(n/α)] nα nα log log(n/α)

Fig. 2.10: Coupling-cutoff time τn, left-window bLn and right-window bRn for the random walk
on Zn2 with rates λi ∝ i−α.

Comparison of Figures 2.4 and 2.10 shows that the coupling-cutoff time is asymp-

totically twice that of the total variation cutoff. The left-window bLn is the same for

both types of cutoff.

All that remains is to prove that λ∗n satisfies equation (2.33). Define for α > 0

and λ > 1 the function ρn by

ρn(λ) =
log
[
n
(
1− λ−1/α

)]
2λ

.

(So τn = maxλ ρn(λ).) Now consider its derivative:

ρ′n(λ) =
1

2λ2

(
1

α(λ1/α − 1)
− log

[
n
(

1− λ−1/α
)])

∝ 1
α(λ1/α − 1)

− log
[
n
(

1− λ−1/α
)]

.

This final expression is the difference of two continuous, strictly monotonic functions

of λ (for fixed α > 0). The first of these is decreasing whereas the second is increasing:

it follows that ρn(λ) has at most one turning point. We now show that ρ′n(λ∗n) > 0

and ρ′n(cλ∗n) < 0 for any fixed c > 1, when n is large.

First consider ρ′n(λ∗n):

ρ′n(λ∗n) ∝ 1

α(λ∗ 1/α
n − 1)

− log
[
n
(

1− λ∗−1/α
n

)]
= log log(n/α)− 1/α , by definition of λ∗n.

Hence ρ′n(λ∗n) > 0 for large enough n.
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On the other hand, for fixed c > 1:

ρ′n(cλ∗n) ∝ 1
α((cλ∗n)1/α − 1)

− log
[
n
(

1− (cλ∗n)−1/α
)]

=
α log(n/α)− 1

α
[
(c1/α − 1)α log(n/α) + 1

] − log

(
n

[
(1− c−1/α)α log(n/α) + c−1/α

α log(n/α)

])
∼ 1
α(c1/α − 1)

− log
(
n
[
1− c−1/α

])
as n→∞.

Therefore there exists Nc ∈ N for all c > 1, such that ρ′n(cλ∗n) < 0 whenever n ≥ Nc.

Now define λ̃n by ρ′n(λ̃n) = 0. Since ρ′ is continuous on [λ∗n, cλ
∗
n], by the above

calculations it must be the case that

λ̃n ∈ (λ∗n, cλ
∗
n), whenever n ≥ Nc.

Thus

0 <
λ̃n − λ∗n
λ∗n

< c− 1 for n ≥ Nc.

But since c can be made arbitrarily close to 1, this shows that λ̃n ∼ λ∗n, and therefore

that the claimed coupling-cutoffs hold.

Remark 2.24. It is actually possible to show that, for this example, the values of

bLn in Figure 2.10 also provide an upper bound on the right-window of the coupling-

cutoff.

2.2 Coupling-cutoffs for the random-to-top shuffle

A second class of random walks to which the above analysis may be applied is that

of random-to-top card shuffles. These are random walks on the symmetric group Sn,

where every transition is such that a card is moved to the top of the pack, with the

relative positions of the other cards remaining unchanged. For the ordinary random-

to-top shuffle, each card is selected with probability 1/n. If the card currently at

the top of the pack is chosen, the order of the cards remains unchanged (ensuring

aperiodicity). This random walk is relatively simple to analyse, and a strong uniform

time argument (as given in Diaconis (1996)) shows that a (n log n, n)-total variation

cutoff occurs.

A biased random-to-top shuffle may be defined by departing from the uniformity

with which cards are chosen in the above setup. There are two common ways of

doing this:
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1) each card i is assigned once and for all a probability pi, and the card to be

moved to the top of the pack is chosen using these probabilities;

2) each position k in the deck is assigned a probability pk, and the card in position

k is then selected with probability pk.

The scheme described in case 1 is often referred to as the move-to-front scheme.

Whether it should strictly be called a ‘shuffle’ is a matter for debate, since it requires

the ‘shuffler’ to observe the face values of the cards throughout: something that is

unlikely to be acceptable in a casino! A better real-life application for this chain is

a library or list management problem: imagine that n books (or computer files) are

used over time with different frequencies; when a book has been used it is returned

to the top of the pile.

The stationary distribution π of this random walk is in general not uniform, but

satisfies

π (card ck in position k, 1 ≤ k ≤ n) = pc1

(
pc2

1− pc1

)
. . .

(
pcn

1−
∑n−1

k=1 pck

)
.

Jonasson (2006) studies the time τmixn (1/4) for this chain. He proves the following

theorem:

Theorem 2.25 (Jonasson (2006)). Consider the move-to-front scheme with card

probabilities pi, i = 1, . . . , n, with pi ≤ 1/3 for all i. Put

tu = min

{
t :

n−1∑
i=1

(1− pi)t ≤
1
4

}
.

Then
1
25
tu − 1 ≤ τmixn (1/4) ≤ tu.

This theorem is proved using a simple coupling argument for the upper bound,

and a variant on the eigenvector technique of Wilson (2004) for the lower bound.

Now consider the following coupling scheme for this random walk. Let X and Y

be two such walks, with X0 ∼ Uniform(Sn) and Y0 ∼ π. Let Λi (i = 1, . . . , n) be

independent Poisson processes, with the rate of Λi equal to pi. X and Y may be

coupled by moving card i to the top of both packs whenever an incident occurs on

Λi: the packs will be coupled when at least one incident has occurred on all but one
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of the Poisson processes. Let Tn be the time taken for at least one event to happen

on all of the Λi. Then

Fn(t) = P (Tn ≤ t) =
n∏
i=1

(
1− e−tpi

)
. (2.34)

Remark 2.26. Although Tn is an upper bound on the coupling time for the random-

to-top shuffle, the two times are asymptotically equal. This follows from the obser-

vation that the number of cards on which X0 and Y0 agree follows a Poisson(1)

distribution as n→∞ (see, for example, Feller (1968)).

Note the obvious similarity between equation (2.34) and that for the distribution

function of the partial-independence coupling for the random walk on Zn2 (equa-

tion (2.3)). This means that almost exactly the same analysis as in the previous

section may be applied to this problem. In particular, the analogous version of

Proposition 2.6 holds: the coupling time for this shuffle is minimised when pi = 1/n

for all i.

We now proceed as before and move from a set of rates to a sequence of measures

{µn} on [1,∞) (re-scaling if necessary), and define

τn = max
λ≥1

{
log (nµn[1, λ])

λ

}
=

log (nµn[1, λ∗n])
λ∗n

. (2.35)

(Note that we do not require a factor of 2 in the denominator of τn for this random

walk, due to the missing 2 in the exponential term of equation (2.34).) With this

setup, the following result follows directly from Theorem 2.15, Lemma 2.19 and

Theorem 2.21:

Theorem 2.27. The move-to-front scheme driven by the sequence of measures {µn}

exhibits a τn-coupling-cutoff (where τn is defined in equation (2.35)) if and only if

τn →∞ as n→∞. Furthermore, bLn = 1/λ∗n is a left-window and bRn = W (τn) is a

right-window of this coupling-cutoff.

The following four examples all appear in Jonasson (2006); a coupling-cutoff holds

for the first three.

Example 2.28. Let pi = 1/n for all i. Here a (n log n, n)-cutoff is known to occur.

Scaling the rates by n gives µn = δ1 for all n: direct consideration of equation (2.34)

shows that this walk exhibits a (log n, 1)-coupling-cutoff, and so the scaled walk

exhibits a (n log n, n)-coupling-cutoff.
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Example 2.29. Let

pi =

{
2

n+1 , 1 ≤ i ≤ n
2

2
n(n+1) ,

n
2 + 1 ≤ i ≤ n.

Jonasson proves that τmixn (1/4) = O(n2 log n) for this chain. Scaling by

n(n+ 1)/2 gives µn = (1/2)δ1 + (1/2)δn, and so τn = log(n/2) and λ∗n = 1. Undoing

the scaling shows that the random walk exhibits a (n/2)(n + 1) log(n/2)-coupling-

cutoff.

Example 2.30. Let pi ∝ i−1: Jonasson shows that τmixn (1/4) = O(n(log n)2). This

example uses the same set of rates as the random walk on Zn2 in Example 2.23 (with

α = 1), and so it is immediate that a coupling-cutoff occurs here too. Furthermore,

Example 2.23 shows that the move-to-front scheme with pi ∝ i−α, for any α > 0 will

exhibit such behaviour, with the coupling-cutoff parameters being twice those given

in Figure 2.10.

Example 2.31. Let pi = 2i/(n(n+1)). In this case Jonasson shows that τmixn (1/4) =

O(n2). Here though, a coupling-cutoff does not hold. To see this, scale the rates by

n(n+ 1)/2 to yield

µn =
1
n

n∑
i=1

δi .

Then

τn = max
1≤i≤n

{
log i
i

}
9∞ ,

and so there is no coupling-cutoff.

Following the analysis of random walks on Zn2 , the move-to-front scheme was

simple to analyse. Note that this is not the case for the second biased random-to-top

shuffling scheme (defined on page 45): the partial-independence coupling for two

random walks evolving according to these dynamics is much harder to analyse in

general.

2.3 Discussion and future work

The work in this chapter has provided an initial insight into a previously unreported

phenomenon: that the coupling time for two random walks can exhibit similar cutoff

behaviour to the distance from stationarity. In the next chapter the idea of maxi-

mal couplings will be introduced: these couplings achieve equality in the coupling
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inequality (1.4). It follows that a maximal coupling for a random walk with a total

variation cutoff will by definition exhibit a coupling-cutoff. What makes the results

of Section 2.1.3 so interesting is the fact that the partial-independence coupling is not

maximal (as can be seen by the difference between the coupling and total variation

cutoff times in equations (2.5) and (2.7)). This will be discussed further below.

Theorem 2.15 shows that a random walk on Zn2 exhibits a coupling-cutoff at a time

which is double the instant of its total variation cutoff. The measure-based approach

of Section 2.1.3 provides a more intuitive understanding of the important role played

by the sequence {λ∗n} in this result than is evident from the proof of Theorem 2.8. It

should be possible to extend Theorem 2.15 to produce a result similar to the more

general form of Theorem 2.8 (Barrera et al. 2006). Consider a general n-tuple of

independent Markov chains, X(n), and suppose that each coordinate X(n)
i may be

coupled to a copy of itself in such a way that the coupling occurs (approximately)

exponentially fast, with rate λi. The partial-independence coupling time for the

sequence
{
X(n)

}
will then exhibit similar coupling-cutoff behaviour as the sequence

of random walks on Zn2 driven by the rates {λi}.

The results of Section 2.1.4 also provide bounds on the optimal left and right

window size of the coupling-cutoff. To the best of our knowledge, little work has

been carried out to date which deals with these window sizes separately. In partic-

ular, Example 2.22 appears to be a new example of a random walk which exhibits

significantly different behaviour either side of a cutoff time. The general bounds on

window sizes provided by Lemma 2.19 and Theorem 2.21 have very different orders

of magnitude, whereas all the examples of random walks on Zn2 presented in this

chapter, with the exception of Example 2.22, can be shown to have their optimal

right-windows also bounded above by 1/λ∗n. It would be of use to establish a good

sufficient condition on {µn} for this to be true.

Recall that the existence of a coupling-cutoff is determined completely by the

behaviour of the function θn defined in equation (2.13). This function may be in-

terpreted as follows. For i = 1, . . . n, let Zni be independent, identically distributed

random variables, whose distribution is a mixture of Exp(2λ) distributions, with
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mixture probability distribution µn. Then, for t ≥ 0,

P (Zni > t) =
∫ ∞

1
e−2λtµn(dλ)

and so

E

[
n∑
i=1

1[Zni >t]

]
= n

∫ ∞
1

e−2λtµn(dλ) = θn(t) .

Thus θn describes the mean number of exceedances of t by the set of random variables

{Zni }. In particular, the set of random walks driven by {µn} exhibits a τn-coupling-

cutoff if and only if

E

[
n∑
i=1

1[Zni >cτn]

]
−−−→
n→∞

{
∞ 0 < c < 1
0 c > 1

.

This suggests that it may be possible to link the work in this chapter to extreme

value theory. This possibility is further motivated by the form taken by the ‘shape’ of

the coupling-cutoff in many examples. For instance, it was shown in Proposition 2.7

and Examples 2.9 and 2.10 that

Fn (τn + cbn) −−−→
n→∞

φ(c) = exp
(
−1

2
e−2c

)
. (2.36)

That is, φ describes the shape of the coupling-cutoff over the window bn. The

function φ belongs to one of the three classes of possible limiting distributions for

the maximum of n i.i.d. random variables. (This is the Fisher-Tippett theorem: see

Bingham et al. (1987).) Of course, for random walks on Zn2 the distribution µn varies

with n, and so the Fisher-Tippett theorem cannot be applied directly. However, the

above observations seem to imply that linking the two areas of theory may prove

fruitful.

When the shape of the cutoff is known, another direction for future research is an

investigation into the speed at which the convergence in equation (2.36) takes place.

The interest in the cutoff phenomenon arises from the desire for a quantitative answer

to the question “How many steps of the random walk are needed for it to be close to

equilibrium?” At first sight, proof of a cutoff seemingly yields a sharp answer to this

question. However, by definition a cutoff phenomenon involves limiting behaviour!

In order to restore some level of quantitativeness to examples where a cutoff has been

shown to occur, it would be interesting to investigate ‘how far’ X(n) is from the cutoff

(as a function of n). The speed at which the convergence in equation (2.36) occurs
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is then a natural way to measure this. For example, consider the symmetric random

walk with all rates equal to 1/n. Proposition 2.7 showed that this walk exhibits a

((n/2) log n, n)-coupling-cutoff with shape φ. Inequality (2.14) shows that

φ(c) exp
(
−e
−4c

4n

)
≤ Fn

(
n log n

2
+ cn

)
≤ φ(c) .

It follows that∣∣∣∣Fn(n log n
2

+ cn

)
− φ(c)

∣∣∣∣ ≤ φ(c)
(

1− exp
(
−e
−4c

4n

))
= O(1/n) .

Finally, it would be of real interest if a better understanding of the relationship

between coupling-cutoffs and total variation cutoffs could be obtained. Based on the

work in this chapter, one might be tempted to conjecture that if
{
X(n)

}
exhibits a

total variation cutoff, then the ‘best possible’ co-adapted coupling for these random

walks will exhibit a coupling-cutoff. This is not true however: from Figure 2.1

we see that the transposition shuffle on Sn exhibits a cutoff, but it follows from a

simple argument (see Huber (2004)) that the distribution function for the optimal

co-adapted coupling for this chain will have a tail which is too fat to produce a

coupling-cutoff.

Considering instead the reverse implication, an answer to the following questions

would prove very useful:

Let
{
X(n)

}
be a sequence of random walks on {Gn}. Suppose there

exists a time-homogeneous co-adapted coupling for two copies of these

walks, for which a τn-coupling-cutoff is exhibited. Does this imply that{
X(n)

}
also exhibits a τ̂n-total variation cutoff? If so, is it then the case

that τ̂n = O(τn)?

It is evident from some of the examples presented in this chapter that there

is often a price to be paid for considering only co-adapted couplings. This varies

between chains of course, but one possible method of categorising the cost is as

follows:

(1) No cost : as the name suggests, this is when nothing is lost by restricting to

co-adapted couplings. Example: the move-to-front scheme of Section 2.2 - the

total-variation cutoff and partial-independence coupling-cutoff times are equal;
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(2) Constant cost : this is when the smallest expected co-adapted coupling time

and the mixing time are out by at most a constant factor. Example: random

walk on Zn2 - the partial-independence coupling-cutoff time is a factor of two

out from the mixing time;

(3) Growing cost : this is when the ratio of the smallest expected co-adapted cou-

pling time to the mixing time tends to infinity. Example: the transposition

shuffle on Sn - this has a cutoff at time (n/2) log n, but the expectation of any

co-adapted coupling time is bounded below by O(n2) (Huber 2004).

Investigation into this categorisation scheme would be extremely interesting, since

it is unclear a priori into which category any given random walk should fall. The

difference between optimal co-adapted couplings and total variation distance is inves-

tigated further in Chapter 3, where it is shown among other things that the optimal

co-adapted coupling for the symmetric random walk on Zn2 has an expected coupling

time of (n/2) log n: it follows that this walk cannot be moved into category (1) above.



“Come together, right now.”

Come together, by John Lennon



3. MAXIMAL COUPLING

In the past two chapters it has been demonstrated that coupling may be used to

bound the rate of convergence of some random walks on groups. However, although

the coupling approach is often much simpler to use than the more analytic options

of eigen-analysis and representation theory, the bounds obtained from coupling often

turn out to be poorer. For example, consider the random walk on Zn2 , for which

the couplings described in Section 1.2 give a mixing time of (n/2) log n, whereas the

true mixing time is known to be (n/4) log n. Although the coupling approach is only

out by a factor of two in this case, things can be much worse: the best co-adapted

coupling for the transposition shuffle on Sn gives a mixing time of order n2 (Huber

2004), whereas a cutoff is known to occur at time (n/2) log n.

Of course, the coupling inequality (Lemma 1.8) provides a bound on how good

any coupling can possibly be:

∥∥P (Xn ∈ ·)− P
(
X ′n ∈ ·

)∥∥ ≤ P (T > n) , (3.1)

where T is a random time such that Xn = X ′n for n ≥ T . In this chapter we consider

the existence of maximal couplings: that is, couplings which achieve equality in (3.1).

3.1 Existence of maximal couplings

3.1.1 Maximal coupling of measures

We start by considering couplings of measures (rather than sequences of measures) on

(E, E). The following theorem (Thorisson 2000; Lindvall 2002) proves the existence

of a coupling (often called the Vasershtein coupling) that is maximal in the sense

that it attains equality in the coupling inequality (1.3).

Theorem 3.1 (Maximal coupling of two probability measures). Let µ and µ′ be two

probability measures on the space (E, E). Then there exists a coupling (X,X ′) such

that
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(i) ‖µ− µ′‖ = P (X 6= X ′);

(ii) conditional on the event {X 6= X ′}, X and X ′ are independent.

Proof. Recall that µ ∧ µ′ is the greatest common component of µ and µ′. Define

c = (µ ∧ µ′)(E) .

Then equation (1.1) shows that ‖µ− µ′‖ = 1 − c, and thus we need to produce a

coupling (X,X ′) such that P (X = X ′) = c. Clearly if c = 0 then µ and µ′ have

disjoint support, and so it suffices to take X and X ′ to be independent. Similarly, if

c = 1 then µ = µ′ and so we may define X ′ = X.

Now suppose that 0 < c < 1. Define probability measures ν and ν ′ by

ν =
µ− (µ ∧ µ′)

1− c
, ν ′ =

µ′ − (µ ∧ µ′)
1− c

.

Let I, V,W and W ′ be independent random variables such that

• I is a Bernoulli random variable with success probability c,

• V has law (µ ∧ µ′)/c on E,

• W has law ν, and W ′ has law ν ′, on E.

Finally, define X and X ′ by

X =

{
V if I = 1
W if I = 0

, and X ′ =

{
V if I = 1
W ′ if I = 0

.

To see that this is a coupling, observe that

P (X ∈ A) = P (I = 1)P (V ∈ A) + P (I = 0)P (W ∈ A)

= c
(µ ∧ µ′)(A)

c
+ (1− c)ν(A)

= µ(A),

and P (X ′ ∈ A) = µ′(A). Finally, by construction, P (X = X ′) = P (I = 1) = c, and

conditional upon the event {X 6= X ′}, X and X ′ are independent by the indepen-

dence of W and W ′.

The intuition behind this maximal coupling is simple: X andX ′ are made to agree

with as large a probability as possible, (µ∧µ′)(E), else are drawn independently from
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the residual measures ν and ν ′. This leads to a method of simulating a maximally-

coupled pair (X,X ′) (see Figure 3.1). Draw a point (x, y) uniformly at random

from the area lying between the x-axis and the density f of µ (with respect to some

dominating measure λ), and let X = x. If (x, y) also lies beneath f ′ (the density of

µ′ w.r.t. λ) then set X ′ = x. If not, draw a new point (x′, y′) uniformly at random

from beneath f ′ but above f , and set X ′ = x′.

Fig. 3.1: Maximal coupling probability.

This construction can be extended to a countable collection of random variables

X1, X2, . . . , resulting in a coupling such that all subsets {Xn1 , . . . , Xnk} are maxi-

mally coupled (see Thorisson (2000) for details).

Maximal coupling problems can also be viewed from the perspective of optimal

transport theory. In the notation of Definition 1.2, let φ(x, x′) be a cost function

defined on Ω×Ω′. Optimal transport problems generally involve trying to solve the

minimisation problem

inf
(X̂,X̂′)

Ê
[
φ
(
X̂, X̂ ′

)]
,

or equivalently,

inf
P̂

∫
Ω×Ω′

φ(x, x′) dP̂
(
x, x′

)
.

Here the function φ(x, x′) represents the amount of work needed to move one unit of

mass from x to x′: the special case of φ(x, x′) = 1x 6=x′ yields

inf
(X̂,X̂′)

P̂
(
X̂ 6= X̂ ′

)
,

which is simply the problem of finding a maximal coupling, by Theorem 3.1. For

further information on this area of theory, see Villani (2005).
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3.1.2 Maximal coupling for stochastic processes

For the remainder of this chapter, X = {Xn} will be a discrete time, homogeneous

Markov chain defined on (Ω,F ,P), taking values in a countable state space S: let

µ be its initial distribution, and P its transition matrix. We shall write µn = µPn

for the n-step distribution of X. Recall from Chapter 1 that X is said to be weakly

ergodic if

lim
n→∞

∑
k∈S
|δxPn(k)− δyPn(k)| = 0 for all x, y ∈ S .

The proof of Theorem 3.1 shows that it is easy to construct a maximal coupling of

two random variables (the Vasershtein coupling). In order to maximally couple two

Markov chains X and X ′ however, it is necessary to define simultaneously for all n a

maximal coupling of the random variables Xn and X ′n, such that the sequences {Xn}

and {X ′n} (considered separately) evolve as Markov chains. As such, the existence of

a maximal coupling for Markov chains is harder to prove than the equivalent result

for a pair of random variables. Nevertheless, such a result does exist:

Theorem 3.2 (Griffeath (1975)). Any Markov chain X has a maximal coupling

(achieving equality in (3.1)). Thus there exists a successful maximal coupling for X

if and only if X is weakly ergodic.

This result is profound, but the proof as given in Griffeath (1975) is rather tedious

(as Griffeath himself admits!). The maximal coupling constructed is necessarily non-

Markovian, and this makes the proof rather technical and somewhat unintuitive.

However, the beautiful paper of Pitman (1976) approaches the construction of

Griffeath’s maximal coupling in a far more intuitive manner, via the use of ran-

domised stopping times (recall Definition 1.16). RSTs are particularly useful when

coupling Markov chains, since they can be used to bound the total variation distance

in a manner similar to the distributional coupling method of Definition 1.11. Thus,

if T is a RST of a chain X defined on (Ω,F ,P), and T ′ is a RST of X ′ defined on

(Ω′,F ′,P′), such that

P (T = n,Xn = y) = P′(T ′ = n,X ′n = y) , n ∈ N, y ∈ S , (3.2)

then it follows that ∥∥µn − µ′n∥∥ ≤ P (T > n) = P′(T ′ > n) .
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Of course, if the random time T is a RST of both chains, then we recover the normal

coupling inequality. If not, then Pitman (1976) makes the following point: given the

matching distributions in equation (3.2), it is possible to define copies of X and X ′,

say X̂ and X̂ ′, on a probability space (Ω̂, F̂ , P̂) which also supports a random time

T̂ and an S-valued random variable Ŷ satisfying:

(i) the P̂ distribution of (X̂, T̂ , Ŷ ) equals the P distribution of (X,T,XT ) (with

the same statement holding for the appropriate primed distributions);

(ii) under P̂ the Markov chains X̂ and X̂ ′ are conditionally independent given T̂

and Ŷ .

The first of these conditions ensures that Ŷ = X̂T̂ = X̂ ′
T̂
P̂-almost surely. This means

that it is possible to define a new process X̂ ′′ by crossing over from X̂ ′ to X̂ at time

T̂ :

X̂ ′′ =

{
X̂ ′n on {T̂ > n}
X̂n on {T̂ ≤ n} .

The conditional independence in (ii) and the strong Markov property of X̂ and X̂ ′

at the RST T̂ then ensures that X̂ ′′ is a Markov chain with initial distribution µ′

and transition kernel P . The result is therefore a coupling (X̂, X̂ ′′) of (X,X ′) with

coupling time T̂ . Thus RSTs enable us to ‘glue’ distributions together and hence

move from a distributional (weak) coupling to a non-distributional (strong) coupling.

Pitman’s coupling construction proceeds by identifying a specific time T which

is a RST of both X and X ′: this T will be the coupling time. The maximal coupling

is achieved by firstly specifying the space-time distribution of (T,XT ), and then

the conditional laws (given T and XT ) of the two pre-T processes and the single

post-T process, with the requirement that these three fragments be conditionally

independent given T and XT . We now state his result.

Let Ω̃ be the space of all sequences

ω̃ = ((ω0, ω
′
0), (ω1, ω

′
1), . . .)

of pairs of points in S, and equip Ω̃ with the product σ-algebra F̃ generated by the

coordinate maps X0, X1, . . . , X
′
0, X

′
1, . . ., where Xn(ω̃) = ωn. Define

T (ω̃) = min
{
n : Xn(ω̃) = X ′n(ω̃)

}
,
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with T (ω̃) =∞ if there is no such n. Finally recall that, for a general σ-finite signed

measure ν,

ν+ = max {ν, 0} and ν− = max {0,−ν}

are both positive measures, and ν = ν+ − ν−.

Theorem 3.3 (Pitman (1976)). Let µ and µ′ be two mutually singular probabilities

on S, let αn = µn − µ′n, and suppose that limn→∞ ‖αn‖ = 0. Then there exists a

unique probability measure P̃ on (Ω̃, F̃) such that

1. P̃ (T = n,Xn = z) = (α+
n−1P − α+

n )(z), n ≥ 1, z ∈ S, and

2. under P̃ conditional on (T = n,Xn = z), for each n ≥ 1, z ∈ S,

(a) the two pre-T processes (X0, . . . , Xn) and (X ′0, . . . , X
′
n) are inhomogeneous

Markov chains with reverse transition probabilities from y at time m to x

at time m− 1 given respectively by

α+
m−1(x)P (x, y)/α+

m−1P (y) and α−m−1(x)P (x, y)/α−m−1P (y) ;

(b) the post-T processes (Xn, Xn+1, . . .) and (X ′n, X
′
n+1, . . .) are a.s. identical,

forming a single homogeneous Markov chain with transition probabilities

P starting at z;

(c) the two pre-T processes and the single post-T process are mutually inde-

pendent. Under this probability P̃ the two marginal processes X and X ′

are Markov (with transition kernel P , and initial distributions µ and µ′

respectively); these chains agree P̃-a.s. after the random time T when they

first meet,

P̃ (T > n) = ‖αn‖ ,

and the maximal coupling thus provided is the maximal coupling of Grif-

feath (1975).

This construction can also be made to work when X takes values in a general

measurable state space, or when X is inhomogeneous: the Markov property is the

only essential requirement (Pitman 1976). In Section 3.2 we will use Pitman’s con-

struction to extend the idea of a maximal coupling to that of a maximal coalescent
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coupling, whereby we aim to minimise the time taken for N chains to couple. Further

discussion of this construction is thus postponed until that time.

Following on from the result of Griffeath (1975), Goldstein (1979) considered

the question of the existence of maximal couplings for two (not necessarily Marko-

vian) processes X1 and X2, taking values in a standard Borel space. He proved the

following theorem:

Theorem 3.4 (Goldstein (1979)). The following are equivalent:

(i) There exists a successful coupling of X1 and X2;

(ii) µ1
∞ = µ2

∞ (agreement on the tail σ-algebra);

(iii) limn→∞
∥∥µ1

n − µ2
n

∥∥ = limn→∞
∥∥µ1 − µ2 | Fn

∥∥ = 0 .

The proof that (iii) implies (i) follows directly from the existence of a maximal

coupling, which Goldstein constructs by piecing together a sequence of measures. If

X1 and X2 are copies of the same Markov chain (with countable state space), then

this coupling turns out to be exactly that of Griffeath (1975).

The idea of piecing together measures was subsequently used by Thorisson (1986),

who proved the existence of a maximal distributional coupling for processes on a

general state space. Recall that (X̂, X̂ ′) is a distributional coupling of X and X ′

with coupling times T and T ′ if both of the following hold:

(a) X̂
D= X and X̂ ′ D= X ′ ;

(b) (θT X̂, T ) D= (θT ′X̂ ′, T ′) .

Theorem 3.5 (Thorisson (1986)). Let X and X ′ be discrete time stochastic processes

on a general state space (E, E). Then there exists a (not necessarily successful)

maximal distributional coupling of X and X ′.

Of course, if there exists a regular version of the conditional distribution of X̂

given (θT X̂, T ), then X̂ and X̂ ′ can be glued together using part (b) of the above

definition. This ‘glueing together’ is the same as used by Pitman (1976), and in

this way the non-distributional maximal coupling of Griffeath may once again be

recovered.
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The remainder of this chapter considers some extensions and applications of maxi-

mal couplings. In Section 3.2 the idea of a maximal coupling of two chains is extended

to that of a maximal coalescent coupling for N ≥ 2 chains. This construction will

be further used in Chapter 4 when we examine the efficiency of a perfect simulation

algorithm known as CFTP. The final two sections of this chapter consider maximal

couplings for specific examples of random processes (namely the random walk on Zn2
introduced in Example 1.12, Brownian motion in Rd and the Ornstein-Uhlenbeck

process).

3.2 Maximal coalescent coupling

Suppose now that, instead of simply coupling two chains X and X ′, we wish to cou-

ple N chains
{
Xi, i = 1, . . . , N

}
, for some 2 ≤ N ≤ ∞. Can we find a ‘maximal

coupling’ for these chains? This is a natural question to ask, given the existence of a

maximal (Vasershtein) coupling for a countable number of probability distributions,

as mentioned in Section 3.1.1. The answer is yes, and in this section we explicitly

describe such a coalescent coupling. Recall that Pitman’s description of a maximal

coupling of two Markov chains is very transparent: Theorem 3.3 explicitly describes

the behaviour of each chain both before and after the coupling time. It therefore

seems natural to use this result as a basis for producing a maximal coalescent cou-

pling: the following construction is based upon the method of Pitman (1976), and

includes a proof of his theorem as a special case (when N = 2).

Maintaining the notation of Section 3.1.2, we again write P for the (common)

transition matrix of the chains, and µin for the distribution of Xi
n. To ease notation

we define the measure

λn = µ1
n ∧ µ2

n ∧ · · · ∧ µNn

to be the greatest common component of the measures
{
µin
}

, and write

dn = 1−
∑
y∈S

λn(y).

dn is simply a generalisation of total variation distance to the case of N ≥ 2 measures

(recall Equation (1.1)). To make this comment precise, suppose that {X̂i} is a

coupling of
{
Xi
}

on some space (Ω̂, F̂ , P̂), such that X̂i
n(ω̂) = X̂j

n(ω̂) for all i, j
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whenever n ≥ T̂ (ω̂), for some random time T̂ . Then

P̂
(
X̂i
n = y, T̂ ≤ n

)
= P̂

(
X̂j
n = y, T̂ ≤ n

)
≤ µjn(y) for all j.

Thus

P̂
(
X̂i
n = y, T̂ ≤ n

)
≤ λn(y)

and so

P̂
(
T̂ > n

)
≥ dn . (3.3)

Inequality (3.3) is therefore a natural generalisation of the coupling inequality,

and we shall call a coupling of the N chains
{
Xi
}

a maximal coalescent coupling if

its coupling time achieves equality in (3.3).

The following notation directly extends that used in Theorem 3.3. Let Ω̃ be the

space of all sequences

ω̃ = ((ω1
0, . . . , ω

N
0 ), (ω1

1, . . . , ω
N
1 ), . . .)

of N -tuples of points in S, and we equip Ω̃ with the product σ-field F̃ generated by

the coordinate maps X0
0 , X

0
1 , . . . , X

N
0 , X

N
1 , . . . where, for instance, Xi

n(ω̃) = ωin. Let

T (ω̃) = min
{
n : Xi

n(ω̃) = X1
n(ω̃) for all i ≥ 1

}
,

with T (ω̃) =∞ if there is no such n. Finally, let

βin = µin − λn, i = 1, . . . , N.

(Note that βin is a non-negative measure for all i and n, and that if N = 2 then

β1
n = α+

n and β2
n = α−n , where αn is defined in Theorem 3.3.)

The main result of this section is that it is possible to construct a maximal

coalescent coupling. We begin the proof by extending the proposition of Pitman

(1976):

Proposition 3.6. For i = 1, . . . , N , let T i be a randomised stopping time (RST) of

the chain Xi defined on (Ωi,F i,Pi). If the Pi distribution of (T i, XT i) is identical

for all i, that is if

Pi
(
T i = n,Xi

n = y
)

= P1
(
T 1 = n,X1

n = y
)
, for all i ≤ N, n ∈ N, y ∈ S, (3.4)

then

dn ≤ P1
(
T 1 > n

)
= Pi

(
T i > n

)
, i = 2, . . . , N, n ∈ N. (3.5)
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Proof. This follows from the argument leading to inequality (3.3), using the strong

Markov property of RSTs and equation (3.4).

We now use this proposition and follow Pitman’s proof of Theorem 3.3 to prove

the main result of this section.

Theorem 3.7. Let µi0, λn and βin (i = 1, . . . , N) be as above, and suppose that

limn→∞ dn = 0. Then there exists a unique probability P̃ on (Ω̃, F̃) such that

1. P̃
(
T = n,X1

n = z
)

= (λn − λn−1P )(z), n ≥ 1, z ∈ S, and

2. under P̃ conditional on (T = n,X1
n = z), for each n ≥ 1, z ∈ S,

(a) the N pre-T processes (Xi
0, . . . , X

i
n) (i = 1, . . . , N) are inhomogeneous

Markov chains with reverse transition probabilities from y at time m to x

at time m− 1 given by βim−1(x)P (x, y)/βim−1P (y) respectively;

(b) the post-T processes (Xi
n, X

i
n+1, . . .) (i = 1, . . . , N) are a.s. identical,

forming a single homogeneous Markov chain starting at z, with transition

kernel P ;

(c) the N pre-T processes and the single post-T process are mutually indepen-

dent. Under this probability P̃ the N marginal processes Xi are Markov

(with transition kernel P , and initial distributions µi0 respectively); these

chains agree P̃-a.s. after the random time T when they first meet, and

P̃ (T > n) = dn . (3.6)

Proof. First observe that to obtain equality in (3.5) it suffices to construct ran-

domised stopping times T i such that

Pi
(
T i > n,Xi

n = y
)

= βin(y), 1 ≤ i ≤ N, y ∈ S, (3.7)

since then

Pi
(
T i > n

)
=
∑
y∈S

βin(y) =
∑
y∈S

[
µin(y)− λn(y)

]
= 1−

∑
y∈S

λn(y) = dn .
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Equation (3.7), along with the strong Markov property of RSTs, implies that

Pi
(
T i = n,Xi

n = y
)

= βin−1P (y)− βin(y)

= (λn − λn−1P )(y), 1 ≤ i ≤ N. (3.8)

We thus attempt to satisfy equation (3.7), since this will yield RSTs
{
T i
}

satisfying

equation (3.4) and such that equality is achieved in (3.5). When this has been

completed, the rest of the theorem follows simply by moving from a distributional to

a non-distributional coupling, as in the discussion immediately after Definition 1.16.

Following Pitman’s proof, the simplest thing to try is to make the conditional

distribution of
{
T i > n

}
given

(
Xi

0, . . . , X
i
n

)
and

{
T i ≥ n

}
equal to rin(Xi

n) for some

functions rin : S → [0, 1]. This then yields

Pi
(
T i > n |Xi

0 = xi0, . . . , X
i
n = xin

)
= ri0(xi0)ri1(xi1) . . . rin(xin) (3.9)

= f in(xi0, . . . , x
i
n) ,

where the functions f in are defined by this last equation: note that they are by

definition decreasing in n. This may be achieved by letting (Ωi,F i,Pi) support a

random variable U i ∼ Uniform[0, 1] which is independent of
{
Xi
n

}
n
, and setting

T i = inf
{
n : f in(Xi

0, . . . , X
i
n) ≤ U i

}
.

We now claim that (3.7) may be achieved in this way by taking

ri0 = βi0/µ
i
0 ; rin = βin/β

i
n−1P, n ≥ 1, (3.10)

where for two measures φ and ψ on S with φ ≤ ψ, φ/ψ denotes the density of φ with

respect to ψ. This follows by a simple induction argument. For n = 0,

Pi
(
T i > 0, Xi

0 = y
)

= Pi
(
T i > 0 |Xi

0 = y, T i ≥ 0
)
Pi
(
Xi

0 = y
)

= ri0(y)µi0(y) = βi0(y) .

Now assume that equation (3.7) holds for n = k ≥ 0. It is then the case that

Pi
(
T i > k + 1, Xi

k+1 = y
)

= rik+1(y)Pi
(
T i > k,Xi

k+1 = y
)

=
(
βik+1(y)/βikP (y)

)
βikP (y)

= βik+1(y) ,
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as required.

Finally, note that the construction outlined above has the feature that for each

i, conditional on either
{
T i = n

}
or
{
T i ≥ n

}
for each n ≥ 1, the pre-n process

(Xi
0, . . . , X

i
n) is an inhomogeneous Markov chain (this follows from the multiplicative

form of equation (3.9)). The reverse transition probabilities of this chain (whatever

the value of n ≥ 1) are as follows: the transition probability from y at time m to x

at time m− 1 is given by

βim−1(x)P (x, y)/βim−1P (y), i = 1, . . . , N ,

as claimed in the statement of the theorem. This completes the proof.

Note that the result of Theorem 3.7 can be generalised in two directions. Firstly,

there is no need for the state space S to be countable: any Polish space will suffice.

Secondly, the result also holds for an uncountable number of chains (if, for example,

S is continuous).

3.3 Maximal coupling for the simple random walk on Zn2

Although a maximal coupling of Markov chains is known to exist, such a coupling

is typically (at best) very difficult to compute explicitly. This usually arises because

the maximal coupling is often not co-adapted, and thus an intuitive description of

the joint evolution of X and X ′ may be difficult, if not impossible. Until recently, for

example, the best known explicit coupling for the transposition shuffle on Sn was the

co-adapted coupling described in Aldous (1983). Instead of giving the correct mixing

time of (n/2) log n however, this strategy takes O(n2) steps to couple. Indeed, it is

quite simple to show that any co-adapted coupling for this random walk will take at

least O(n2) steps. A (non-co-adapted) coupling with a coupling time of O(n log n)

was finally produced by Burton and Kovchegov in 2006.

However, for the running example of a random walk on the hypercube (introduced

in Example 1.12), an almost-maximal coupling due to Matthews (1987) has been

known for some time. This is a non-co-adapted coupling based on the Aldous coupling

of Example 1.13: we now briefly describe this construction.
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3.3.1 An almost-maximal (non-co-adapted) coupling

Let X and Y be the two discrete-time random walks to be coupled, with X0 = 0

and Y0 ∼ Uniform(Zn2 ). Matthews’ coupling proceeds as follows. Define a ‘mythical’

(n + 1)th coordinate, which moves whenever Yk = Yk−1. This yields a new process

Y ∗ on Zn+1
2 : set

Y ∗0 (n+ 1) =

{
1 if |Y0| is odd
0 otherwise.

We similarly define a process X∗, with X∗0 (n + 1) = 0: this of course makes |Y ∗0 | =

|Y ∗0 −X∗0 | even. The coupling strategy actually couples the processes X∗ and Y ∗,

but this of course ensures that X and Y are also coupled.

The coupling time will now be defined by running the process Y ∗ until some stop-

ping time T . The sample path of X∗ over the interval [0, T ] will then be constructed

from the entire path of Y ∗ over [0, T ]. That is, what X∗ does at time k, given k ≤ T ,

will depend upon what Y ∗ does up to time T : thus the coupling will certainly not

be co-adapted.

With this in mind, define

U0 = {1 ≤ i ≤ n+ 1 : Y ∗0 (i) = 1} = {1 ≤ i ≤ n+ 1 : X∗0 (i) 6= Y ∗0 (i)} ,

and, for k ≥ 0, let

Uk = {i ∈ U0 : Y ∗k (i) = 1} .

The stopping time T (which will turn out to be the coupling time) is then given by:

T = min
{
k ≥ 0 : |Uk| =

1
2
|U0|

}
. (3.11)

Thus T is the time taken for half of the originally unmatched coordinates to have

changed to their opposite value.

Given T and Y ∗0 , . . . , Y
∗
T , we now construct X∗1 , . . . , X

∗
T such that X∗ evolves as

a simple random walk on Zn+1
2 and X∗T = Y ∗T . This is done as follows: for k ≥ 1

let ik be the coordinate on which Y ∗k and Y ∗k−1 differ. Since |UT | = |U0\UT |, we can

define a bijection

ρ : U0\UT → UT .
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Then at step k, X∗k is obtained from X∗k−1 by flipping coordinate jk, where

jk =


ik if k > T ;
ik if k ≤ T and ik /∈ U0 ;
ρ(ik) if k ≤ T and ik ∈ U0\UT ;
ρ−1(ik) if k ≤ T and ik ∈ UT .

The similarity between this coupling and the Aldous coupling (in Example 1.13)

is clear: matched coordinates are made to move synchronously, whereas unmatched

coordinates are matched in pairs. The difference between the two is that this coupling

‘cheats’ by looking into the future, and then using this future information about Y to

produce a bijection ρ which makes the pairwise coupling happen as fast as possible.

Matthews (1987) shows explicitly that X∗ does have the correct transition kernel to

be a simple random walk, and also analyses the distribution of T . He proves that,

with τn = (n/4) log n,

P (T > τn + cn) = 2Φ
(
e−2c

√
2

)
− 1 + o(1) , (3.12)

showing the mixing time to be (n/4) log n. This improves the coupling time of the

Aldous coupling by a factor of 1/2, and achieves the time at which there is a known

cutoff (recall Theorem 2.3). Equation (3.12) is very similar to the result of Diaconis

et al. (1990) (Theorem 2.4 of this thesis), which showed that

‖L(Xτn+cn)− L(Yτn+cn)‖ = 2Φ
(
e−2c

2

)
− 1 + o(1) . (3.13)

Matthews’ coupling is therefore extremely close to being maximal: it does not strictly

qualify as maximal due to the slight difference between equations (3.12) and (3.13).

This coupling does, however, demonstrate the potential gain to be made by consid-

ering non-co-adapted couplings.

3.3.2 An optimal co-adapted coupling

We have seen in Chapter 2 that the partial-independence coupling for the continuous-

time random walk on Zn2 (with all rates equal to 1/n) has coupling time of order

n log n/2. Matthew’s maximal coupling for this random walk does give the correct

order of n log n/4, but the coupling is clearly not co-adapted. This therefore suggests

the following question: what is the best possible co-adapted coupling for this walk,
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and is it unique? In this section we answer both of these questions for the continuous-

time version of X.

Remark 3.8. Before proceeding further, it is important to clarify some terminology.

In what follows, any coupling achieving equality in the coupling inequality (3.1) will

continue to be called a maximal coupling. Thus a co-adapted maximal coupling is a

coupling which is both maximal and co-adapted. We will also be considering ‘best

possible’ couplings (which may or may not be maximal) in the class of co-adapted

couplings - these will be referred to throughout as optimal co-adapted couplings.

The issue of finding an optimal co-adapted coupling can be viewed as an optimal

control problem: we aim to find the best way of controlling the chains X and Y

(in a co-adapted manner) so as to minimise the expected coupling time. (Note that

we could equally reasonably wish to consider optimality with respect to some other

function of the coupling time - this will be discussed in Section 3.5.)

Let C be the class of all successful co-adapted couplings for two random walks

on Zn2 . That is, C contains all co-adapted couplings c for which the coupling time

T c satisfies P (T c <∞) = 1. We now describe a framework for a general co-adapted

coupling, and introduce the notation to be used in this section. As usual, X and Y

are the two random walks that we wish to couple. To simplify the algebra, we shall

assume in what follows that each coordinate of X (and of Y ) moves at rate 1 (rather

than rate 1/n), independently of all other coordinates.

For 0 ≤ i, j ≤ n let Λij be independent unit-rate marked Poisson processes, with

marks Uij chosen uniformly on the interval (0, 1). The transitions of X and Y will be

driven by these processes, and controlled by a co-adapted process {Q(t)}t≥0, where

Q(t) = {qij(t) : 1 ≤ i, j,≤ n} is a n×n doubly sub-stochastic matrix. Such a matrix

implicitly defines terms {q0j(t) : 1 ≤ j ≤ n} and {qi0(t) : 1 ≤ i ≤ n} satisfying

n∑
i=0

qij(t) = 1 for all 1 ≤ j ≤ n and t ≥ 0 , (3.14)

and
n∑
j=0

qij(t) = 1 for all 1 ≤ i ≤ n and t ≥ 0 . (3.15)

For convenience we also define q00(t) = 0 for all t ≥ 0.

A general co-adapted coupling for X and Y may now be defined as follows:
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if there is an incident on the process Λij at time t ≥ 0, and the mark

Uij(t) ≤ qij(t), then set Xt(i) = 1−Xt−(i) and Yt(j) = 1− Yt−(j).

From this construction it follows directly that X and Y each have the correct

marginal transition rates for a continuous-time simple random walk on Zn2 . Fur-

thermore, there is a one-to-one correspondence between co-adapted couplings c ∈ C

and matrix processes {Q(t)}t≥0 satisfying the above conditions. Finally, since a

co-adapted coupling strategy is allowed to depend at time t upon

Ft = σ

⋃
i,j

Λij(s),
⋃
i,j

Uij(s), Q(s) : s ≤ t

 ,

we shall write Q(t, At) whenever we wish to emphasise that Q(t) depends not only

upon t but also upon some event At ∈ Ft.

Before proceeding to a discussion of optimal couplings, we introduce here the last

of the notation to be used in this section. At time t ≥ 0 define

Ut = {1 ≤ i ≤ n : Xt(i) 6= Yt(i)}

to be the set of unmatched coordinates, and let Mt be the complement of Ut (that

is, the set of matched coordinates at time t). Finally, for subsets V and W of

[0, n] = {0, . . . , n}, we define the following three functions:

ϕt (V,W ) =
∑
i∈V

∑
j∈W

qij(t) ,

ψt(V,W ) = ϕt(V,W ) + ϕt(W,V ) ,

and ∆t(V ) =
∑
i∈V

qii(t) .

When a subset V ⊂ [1, n] is a single state x, we shall simply write V = x, rather

than the more cumbersome V = {x}.

Note that ψt is symmetric in its two arguments, and that the identities

ϕt(0 ∪Mt, Ut) = |Ut| − ϕt(Ut, Ut) = ϕt(Ut, 0 ∪Mt) (3.16)

ϕt(0 ∪ Ut,Mt) = |Mt| − ϕt(Mt,Mt) = ϕt(Mt, 0 ∪ Ut) (3.17)

follow as a consequence of equations (3.14) and (3.15). This notation allows us

to define concisely the partial-independence coupling of Example 1.14 by the two

statements:

ϕt(0, Ut) = |Ut| and ∆t(Mt) = |Mt| , for all t ≥ 0 .
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(This forces ϕt(Ut, 0) = |Ut|, and so unmatched coordinates evolve independently

while matched coordinates move synchronously.)

Now let us consider a general co-adapted coupling c ∈ C. Due to the symmetry

of Zn2 , any coupling scheme should clearly be invariant under permutation of the

coordinates of the hypercube, and so we need only consider the hitting time at zero

of the counting process Nt = |Ut|. Note that, since the Poisson processes Λij are

independent, the probability of two or more events occurring on the superimposed

Poisson process
⋃

Λij in a time interval of length δ is O(δ2).

Let N c
t denote the state of the chain N at time t when coupling strategy c ∈ C is

used over the period [0, t]. The hitting time of N c at zero (which will be the coupling

time of X and Y ) is denoted τ c. Since C only contains successful couplings,

P (τ c <∞) = P (N c
t = 0 for sufficiently large t) = 1 for all c ∈ C.

The setup described above makes it possible to write down the infinitesimal transition

rates for the chain N c: for small δ > 0,

P
(
N c
t+δ = N c

t + 2
)

= δ (ϕt(Mt,Mt)−∆t(Mt)) + o(δ)

P
(
N c
t+δ = N c

t + 1
)

= δ ψt(0,Mt) + o(δ)

P
(
N c
t+δ = N c

t − 1
)

= δ ψt(0, Ut) + o(δ) (3.18)

P
(
N c
t+δ = N c

t − 2
)

= δ (ϕt(Ut, Ut)−∆t(Ut)) + o(δ)

P
(
N c
t+δ = N c

t

)
= 1− δ (ψt(0, [1, n]) + ϕt(Ut, Ut) + ϕt(Mt,Mt)−∆t([1, n])) + o(δ).

Suppose that N c
t = k. We now argue that any coupling c ∈ C which has a positive

chance of breaking two of the n− k already-matched coordinates cannot be optimal.

To see this, note that the only way in which two matches can be broken is if there

is an event on one of the n − k matched coordinates of Xt in time [t, t + δ). Thus

the expected time taken by any coupling to break two matches is at least (n− k)−1.

This is greater than the time taken to break one match, which can be achieved in

time (n− k)−1/2 (by allowing matched coordinates to evolve independently). If two

matches are broken then N c
t+δ = k + 2, and in order for the process N to reach zero

it must almost surely pass through at least one of the states {k, k + 1}. However,

both of these states can be reached faster from state k than by going via state k+ 2,

and so any coupling strategy c which allows for two matches to be broken cannot be
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optimal. Therefore any candidate optimal coupling c ∈ C must satisfy

ϕt(Mt,Mt) = ∆t(Mt) for all t ≥ 0 . (3.19)

Let C′ ⊂ C be the set of successful co-adapted couplings satisfying equation (3.19).

It is not the case however that breaking single matches is necessarily a bad idea.

Indeed, consider the following coupling strategy: if N is odd, do independence (not

partial-independence) coupling until N becomes even, and then couple in pairs in

the manner of the Aldous coupling of Example 1.12 (“when an unmatched bit moves

on X, move a different unmatched bit on Y ”). In terms of the coupling matrix

description above, this is achieved by setting (for m ≥ 1):

ϕt(Ut, Ut)−∆t(Ut) = |Ut| and ∆t(Mt) = |Mt| when Nt = 2m (3.20)

ϕt(0, [1, n]) = ϕt([1, n], 0) = n when Nt = 2m− 1. (3.21)

An alternative version of this coupling is the following: when N is even, proceed

exactly as above (couple unmatched coordinates in pairs); but when N is odd, em-

ploy the partial-independence coupling, i.e. carry out independence coupling for the

unmatched coordinates only. In our matrix notation:

ϕt(Ut, Ut)−∆t(Ut) = |Ut| and ∆t(Mt) = |Mt| when Nt = 2m (3.22)

ϕt(0, Ut) = ϕt(Ut, 0) = |Ut| and ∆t(Mt) = |Mt| when Nt = 2m− 1. (3.23)

Unlike the coupling described above, this second scheme never breaks any matches

(since ∆t(Mt) = |Mt| for all t). However, a simple calculation shows that if Nt = 1

the coupling time distribution is identical under either strategy.

The main theorem of this section is the following:

Theorem 3.9. A necessary and sufficient condition for a coupling ĉ to be an optimal

co-adapted coupling (with respect to minimising the expected coupling time) is that

ĉ corresponds to a matrix process {Q̂(t)}t≥0 satisfying equations (3.22) and (3.23)

whenever Nt ≥ 2. When Nt = 1 only the first part of (3.23) is necessary.

Proof. By the discussion above, it suffices to restrict the search for an optimal co-

adapted coupling to the set C′. (The proof below can be modified to include all

couplings in C, but the observation that we can restrict to C′ greatly simplifies the
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computations.) First suppose that a coupling ĉ ∈ C′ satisfies equations (3.22) and

(3.23). For such a coupling it is simple to calculate the expected coupling time given

the starting state N0. Recall that if N0 = 2m is even then a coupling satisfying

equations (3.22) and (3.23) proceeds by coupling unmatched coordinates in pairs.

The coupling time in this instance is then given by

τ ĉ =
m∑
k=1

Sk,

where Sk is the time taken for an incident to occur on one of the Poisson processes

Λij with i, j both unmatched, given that N0 = 2k. Such an incident occurs at rate

2k (using equation (3.22)) and so {Sk} form a set of independent Exp(2k) random

variables. This yields

E
[
τ ĉ |N0 = 2m

]
=

m∑
k=1

1
2k

(m ≥ 1) . (3.24)

Similarly, whenN0 = 2m+1 is odd, the coupling proceeds to couple an unmatched

coordinate as fast as possible, and to then proceed as for N0 = 2m. Thus

E
[
τ ĉ |N0 = 2m+ 1

]
=

1
2(2m+ 1)

+
m∑
k=1

1
2k

(m ≥ 0) . (3.25)

Now define the value function v∗ by

v∗(x) = inf
c∈C′

E [τ c |N0 = x] = inf
c∈C′

Ex [τ c] . (3.26)

The optimality of ĉ will follow if it can be shown that v̂ = v∗, where v̂ is defined

(using equations (3.24) and (3.25)) by

v̂(x) =


0 x = 0∑m

k=1
1
2k x = 2m (m ≥ 1)

1
2(2m+1) +

∑m
k=1

1
2k x = 2m+ 1 (m ≥ 0) .

(3.27)

With this aim in mind, define for a coupling c ∈ C′:

V̂ c
t =

∫ t

0
1[N c

s > 0] ds+ v̂(N c
t ) .

Since v̂(x) is non-negative and increasing in x, and C′ contains only successful co-

adapted couplings, it follows that

0 ≤ lim
t→∞

Ex [v̂(N c
t )] ≤ lim

t→∞
v̂(n)Px (N c

t > 0) = 0 ,
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and so

lim
t→∞

Ex
[
V̂ c
t

]
= lim

t→∞
Ex
[∫ t

0
1[N c

s > 0] ds
]

+ lim
t→∞

Ex [v̂(N c
t )]

= Ex [τ c] . (3.28)

Now suppose that it is possible to show that V̂ c is a submartingale for all c ∈ C′

and starting states x ∈ [0, n], and furthermore that V̂ ĉ is a martingale. It would

then follow that

v̂(x) = V̂ c
0 ≤ Ex

[
V̂ c
t

]
→ Ex [τ c] as t→∞ .

Since this holds for all c and x, we see that v̂ ≤ v∗. Moreover, since V̂ ĉ is a martingale,

it follows that v̂ can be attained (using the coupling ĉ), and thus v̂ ≥ v∗. This

optimisation argument is known as Bellman’s Principle (Krylov 1980), and yields

the required proof of the optimality of ĉ. We therefore aim to prove that V̂ c is a

submartingale for all c ∈ C′ and starting states x ∈ [0, n], and that V̂ ĉ is a martingale.

Consider then the following expected change in V̂ c over a small interval [t, t+ δ),

given that τ c > t:

Ex
[
V̂ c
t+δ |N c

t = k > 0,Ft
]
− V̂ c

t = Ek
[∫ δ

0
1[N c

s > 0] ds
]

+ Ex
[
v̂(N c

t+δ)− v̂(N c
t ) |N c

t = k,Ft
]
. (3.29)

Now, using the transition rates in (3.18), along with the condition in equation (3.19)

that is satisfied by any coupling c ∈ C′, it follows that (ignoring all o(δ) terms)

Ex
[
v̂(N c

t+δ)− v̂(N c
t ) |N c

t = k,Ft
]

= δ ψt(0, Ut)v̂(k − 1)

+ δ ψt(0,Mt)v̂(k + 1)

+ δ [ϕt(Ut, Ut)−∆t(Ut)] v̂(k − 2)

− δ [ψt(0, [1, n]) + ϕt(Ut, Ut)−∆t(Ut)] v̂(k) .
(3.30)

Combining equations (3.29) and (3.30) results in:

lim
δ↓0

Ex
[
V̂ c
t+δ |N c

t = k > 0,Ft
]
− V̂ c

t

δ
= 1 + ψt(0, Ut)v̂(k − 1)

+ ψt(0,Mt)v̂(k + 1)

+ [ϕt(Ut, Ut)−∆t(Ut)] v̂(k − 2)

− [ψt(0, [1, n]) + ϕt(Ut, Ut)−∆t(Ut)] v̂(k) .
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In order to prove that V̂ c is a submartingale for all c ∈ C′ and a martingale for

ĉ, it therefore suffices to show that

inf
c∈C′
{1 + ψt(0, Ut)v̂(k − 1)

+ ψt(0,Mt)v̂(k + 1) + [ϕt(Ut, Ut)−∆t(Ut)] v̂(k − 2)

− [ψt(0, [1, n]) + ϕt(Ut, Ut)−∆t(Ut)] v̂(k)} = 0 ,

with the infimum being attained at c = ĉ. That is,

inf
c∈C′

Lct(v̂) = 0 for all t ≥ 0 , (3.31)

where (rearranging some terms)

Lct(v̂) = 1− [ϕt(Ut, Ut)−∆t(Ut)] (v̂(k)− v̂(k − 2))

+ ψt(0,Mt) (v̂(k + 1)− v̂(k))

− ψt(0, Ut) (v̂(k)− v̂(k − 1)) . (3.32)

Since the function v̂ depends upon the parity of N (recall equations (3.24) and

(3.25)), we consider two different situations in order to show this.

Case 1: Nc
t = 2m (m ≥ 1)

In this case we obtain the following expression:

Lct(v̂) = 1− [ϕt(Ut, Ut)−∆t(Ut)] (v̂(2m)− v̂(2m− 2))

+ ψt(0,Mt) (v̂(2m+ 1)− v̂(2m))

− ψt(0, Ut) (v̂(2m)− v̂(2m− 1))

= 1− [ϕt(Ut, Ut)−∆t(Ut)]
1

2m
+ ψt(0,Mt)

1
2(2m+ 1)

− ψt(0, Ut)
(m− 1)

2m(2m− 1)
, (3.33)

by definition of v̂.

Now, from equation (3.16) it follows that

ϕt(Ut, Ut)−∆t(Ut) ≤ ϕt(Ut, Ut)

= N c
t − ϕt(Ut, 0 ∪Mt)

≤ N c
t −

ψt(0, Ut)
2

. (3.34)
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Since N c
t = 2m and ψt is non-negative by definition, using inequality (3.34) to

bound the second term of equation (3.33) yields

Lct(v̂) ≥ ψt(0, Ut)
(

1
4m
− (m− 1)

2m(2m− 1)

)
=

ψt(0, Ut)
4m(2m− 1)

≥ 0 . (3.35)

Furthermore, it follows from equation (3.22) that the Q̂(t,N ĉ
t = 2m) matrix

for ĉ satisfies the following:

ϕt(0, [1, n]) = ϕt([1, n], 0) = ∆t(Ut) = 0 and ϕt(Ut, Ut) = 2m.

Inserting these values into equation (3.33) we see that Lĉt(v̂) = 0, as required.

Case 2: Nc
t = 2m + 1

We first consider the situation m ≥ 1. In this case we obtain

Lct(v̂) = 1− [ϕt(Ut, Ut)−∆t(Ut)]
4m2 − 2m− 1

2m(2m− 1)(2m+ 1)

+ ψt(0,Mt)
m

2(m+ 1)(2m+ 1)
− ψt(0, Ut)

2(2m+ 1)
. (3.36)

Proceeding as in Case 1, inequality (3.34) may be used to bound the second

term of equation (3.36):

Lct(v̂) ≥ 1
2m(2m− 1)

− ψt(0, Ut)
(

1
2(2m+ 1)

− (4m2 − 2m− 1)
4m(2m− 1)(2m+ 1)

)
=

1
2m(2m− 1)

− ψt(0, Ut)
4m(2m− 1)(2m+ 1)

≥ 0 ,

since ψt(0, Ut) = ϕt(0, Ut) + ϕt(Ut, 0) ≤ 2 |Ut| = 2(2m+ 1).

When m = 0, equation (3.32) must be modified slightly, to allow for the fact that

it is no longer possible to make two new matches. The appropriate equation reads

Lct(v̂) = 1− ψt(0, Ut) (v̂(1)− v̂(0)) + ψt(0,Mt) (v̂(2)− v̂(1))

= 1− ψt(0, Ut)
2

(3.37)

≥ 0 ,

since ψt(0, Ut) ≤ 2(2m+ 1) = 2, by definition.
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Finally, recall from equation (3.23) that the Q̂(t,N ĉ
t = 2m + 1) matrix for ĉ

satisfies the following:

ϕt(0, Ut) = ϕt(Ut, 0) = 2m+ 1

and ϕt(0,Mt) = ϕt(Mt, 0) = ϕt(Ut, Ut) = 0 .

Inserting these values into equations (3.36) and (3.37) we see that Lĉt(v̂) = 0 for all

m ≥ 0, as required.

It has therefore been shown that V̂ c is a submartingale for all couplings c ∈ C′, and

that V̂ ĉ is a martingale. This proves that any coupling ĉ satisfying equations (3.22)

and (3.23) is an optimal co-adapted coupling.

The proof of the other half of the theorem now follows simply. It has been proved

above that v̂ = v∗, and so for a coupling c ∈ C′ to be optimal it must satisfy Lct(v̂) = 0:

consideration of the calculations in Cases 1 and 2 shows that equations (3.22) and

(3.23) are necessary for this to hold. For example, consider equation (3.33), which

holds when N c
t = 2m ≥ 2:

Lct(v̂) = 1− [ϕt(Ut, Ut)−∆t(Ut)]
1

2m
+ ψt(0,Mt)

1
2(2m+ 1)

− ψt(0, Ut)
(m− 1)

2m(2m− 1)
.

Firstly, inequality (3.35) shows that ψt(0, Ut) = 0 is necessary for Lct(v̂) = 0. For

such a coupling c, the above expression reduces to

Lct(v̂) = 1− [ϕt(Ut, Ut)−∆t(Ut)]
1

2m
+ ψt(0,Mt)

1
2(2m+ 1)

.

But since ∆t and ψt are non-negative, and ϕt(Ut, Ut) ≤ |Ut| = N c
t = 2m, this means

that

ϕt(Ut, Ut)−∆t(Ut) = 2m and ψt(0,Mt) = 0

are also both necessary. These conditions necessarily force ϕt(Ut,Mt) = ϕt(Mt, Ut) =

0. Combining all these necessary conditions yields

ϕt(Ut, Ut)−∆t(Ut) = |Ut| and ∆t(Mt) = |Mt| when N c
t = 2m,

which is exactly the condition presented in equation (3.22). A similar argument

shows that equation (3.23) is necessary when N c
t = 2m+ 1 for m ≥ 1. Note however
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that, by equation (3.37), only the first half of (3.23) is necessary when N c
t = 1. This

confirms the comment made before this theorem, where it was remarked that the

same expected coupling time could be obtained by allowing matched coordinates to

become unmatched when Nt = 1.

A direct consequence of this theorem is the following:

Corollary 3.10. The expected coupling time of any co-adapted coupling for the sim-

ple random walk on Zn2 , when each coordinate moves at rate 1/n, is asymptotically

bounded below by (n/2) log n.

Proof. The optimality of the coupling ĉ with respect to minimisation of the expected

coupling time was proved in Theorem 3.9. Equations (3.24) and (3.25) show that,

when each coordinate moves at rate 1, E
[
τ ĉ
]
∼ (log n)/2 for large n.

Note that, in the proof of Theorem 3.9, only Markovian couplings c ∈ C′ are

considered. That is, the control Q(t) depends only upon the value of N c
t , even

though as a co-adapted coupling it is allowed to depend upon any events in Ft.

However, this apparent restriction does not affect the validity of the proof, since the

driving processes Λij are Markovian. Furthermore, the cost function in question (the

expected remaining time to couple) is also independent of the past, given N c
t . It is

therefore sufficient to consider only Markovian couplings in the search for maximality

(see Krylov (1980), Chapter 1).

This concludes the current investigation into random walks on the hypercube.

Directions for further research in this area will be discussed in Section 3.5. In the

next section, we turn our attention to two diffusions on Rd, and investigate how good

co-adapted couplings can possibly be for these continuous-time processes.

3.4 Maximal coupling for Brownian motion and the O-U process

Consider a random walk S = {Sn} on R, with step distribution F . Rogers (1999)

considers the problem of coupling a pair of these walks S and S′, with S0 = 0 and

S′0 = a > 0. He first constructs a pair of random variables (X,Y ) such that

(i) X ≤ Y almost surely;
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(ii) X has law F and Y has law Fa = δa ∗ F ;

(iii) E [ϕ(X − Y )] is maximal for any non-negative decreasing convex function ϕ.

(Note the similarity of item (iii) to the optimal transport problem outlined at the

end of Section 3.1.) This provides a maximal coupling of (S1, S
′
1). The monotonicity

of the coupling in item (i) is essential for the optimality in item (iii) to hold for

all suitable functions ϕ. Iteration of the above construction then provides a co-

adapted coupling of the random walks S and S′, with each step being locally maximal.

However, in the case where F is unimodal this local optimality turns out to hold

globally, and so the coupling is both co-adapted and maximal. The random walks

so constructed satisfy Sn ≤ S′n for all n ≥ 0.

The proof of Rogers’ theorem provides an explicit form for the joint law of the

random variables (X,Y ) above. In the case where F is unimodal, with a density f

which is symmetric about zero, this joint law takes on a particularly simple form:

P (X ∈ dx, Y = X) = (f(x) ∧ f(x− a)) dx for x ∈ R, (3.38)

P (X ∈ dx, Y = a−X) = (f(x)− f(x− a)) dx for x ≤ a/2. (3.39)

Thus we see that the one-step coupling in this case is simply a particular instance of

the Vasershtein coupling: X and Y are made to agree with as large a probability as

possible, else they are chosen from the residual densities, but now with Y being the

reflection of X about a/2.

As a scaling limit of a symmetric unimodal random walk, it is to be expected that

a similar result should hold for the coupling of Brownian motions on R. A discussion

of this problem, including its application to the coupling of other diffusions such as

the Ornstein-Uhlenbeck (O-U) process, is the main subject of this section.

3.4.1 Maximal coupling for Brownian motion

Define

pt(x, y) =
e−|x−y|

2/2t

√
2πt

to be the Gaussian heat kernel on R. Let X and Y be Brownian motions on R,

with (X0, Y0) = (x, 0) for some fixed state x ∈ R. The following results all hold for
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d-dimensional Euclidean Brownian motion, 1 ≤ d <∞, but for simplicity of notation

we shall always set d = 1 throughout this section.

The symmetry of the heat kernel means that the reflection of Y around zero, −Y ,

is also a Brownian motion of course, and this suggests a simple method for coupling

the two processes: simply consider the process (x − B,B), where B is a standard

Brownian motion started at zero. This process is equal in distribution to (X,Y ),

and by the path continuity of B the coupling time is equal to the first hitting time

of B at the level x/2. It is a standard result that this hitting time, τx/2, satisfies

P
(
τx/2 ≥ t

)
=

√
2
πt

∫ x/2

0
e−u

2/2tdu = Erf
(
x/2√

2t

)
, (3.40)

and a simple calculation shows that this tail distribution agrees with the total vari-

ation distance between the laws of Xt and Yt. This reflection coupling is therefore a

co-adapted maximal coupling. There do exist other maximal couplings for Euclidean

Brownian motion, but these all turn out to be non-co-adapted:

Theorem 3.11 (Hsu and Sturm). Let x, y ∈ Rd. The reflection coupling is the

unique co-adapted maximal coupling of d-dimensional Brownian motions X and Y ,

where (X0, Y0) = (x, y).

The proof of this theorem proceeds by showing that the reflection coupling of

equations (3.38) and (3.39) applied to f(z) = pt(x, z), with a = |x− y| /2, is the

unique maximal coupling of pt(x, z) and pt(y, z) with respect to the Vasershtein

distance. The result then follows from the path continuity of Brownian motion.

Theorem 3.11 was recently generalised a little in Kuwada (2006). This paper

considers diffusions on more general spaces, but only ones for which there is a specific

‘reflection structure’. More precisely, the requirement is that Z is a diffusion on a

space X such that the following two properties hold for any fixed x, y ∈ X :

1. There is a continuous map R : X → X with R◦R = id, such that L(Zx)◦R−1 =

L(Zy);

2. The set of fixed points H = {x ∈ X : R(x) = x} separates X into two disjoint

open sets X1 and X2, with R(X1) = X2.

This structure means that, as for Brownian motion in Rd, a natural reflection cou-

pling exists, and this is again a co-adapted maximal coupling. The main purpose of
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the paper by Kuwada (2006) is to investigate when this reflection coupling is unique

among co-adapted maximal couplings. A sufficient (but unnecessary) condition for

this uniqueness to hold is given: this condition is not particularly pleasant, but the

result does show that the uniqueness (among co-adapted couplings) of reflection cou-

pling for Brownian motions also holds when the processes are defined on a complete

Riemannian manifold.

Let us return now to the case of Brownian motion on R. Suppose that, instead

of fixing starting states x and y for X and Y , we let X0 ∼ µ and Y0 ∼ µ′. Does there

exist a co-adapted maximal coupling for these processes? As pointed out by Hsu

and Sturm, it is not clear that such a coupling does always exist, but the answer is

positive in certain situations where the unique minimisers of the Vasershtein distance

dφV (µ, µ′) = inf
(µ̂,µ̂′)

∫
R×R

φ (|x− y|) µ̂(dx)µ̂′(dy)

(where (µ̂, µ̂′) is a coupling of µ and µ′) are independent of the choice of strictly

concave function φ. This holds, for example, if (µ−µ′)+ is supported on a half space

and (µ− µ′)− is the reflection of (µ− µ′)+ in the other half space (Hsu and Sturm).

Thus if µ and µ′ are Dirac point masses, or two Gaussian distributions of equal

variance, it is possible to produce a co-adapted maximal coupling by drawing (X0, Y0)

using the Vasershtein coupling of (µ, µ′) and then using the reflection coupling as

before.

What happens, however, if we now mix these two examples and fix X0 = x but

draw Y0 ∼ N (0, σ2)? The following (new) result shows that reflection coupling for

these two processes is no longer maximal.

Lemma 3.12. Fix X0 = x ∈ R and let Y0 ∼ N(0, σ2). Then the reflection coupling

for the pair of Brownian motions (X,Y ) is not maximal.

Proof. Let TR and T ∗ be the coupling times under reflection and maximal couplings

respectively. The tail distribution for TR is given by averaging the tail distribution

in equation (3.40) over the possible values of Y0:

P
(
TR > t

)
=
∫ ∞
−∞

pσ2(0, y)
∫ ∞
−∞

((pt(x, z)− pt(y, z)) ∨ 0) dzdy . (3.41)

On the other hand, the tail distribution for T ∗ can be calculated using the formula
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for total variation distance given in equation (1.1):

P (T ∗ > t) =
∫ ∞
−∞

((pt(x, z)− pσ2+t(0, z)) ∨ 0) dz . (3.42)

Now condition upon the state z at which coupling takes place, and consider the

difference between equations (3.42) and (3.41) under this conditioning:

((pt(x, z)− pσ2+t(0, z)) ∨ 0)−
∫ ∞
−∞

pσ2(0, y) ((pt(x, z)− pt(y, z)) ∨ 0) dy

=
(∫ ∞
−∞

pσ2(0, y) (pt(x, z)− pt(y, z)) dy
)
∨ 0

−
∫ ∞
−∞

pσ2(0, y) ((pt(x, z)− pt(y, z)) ∨ 0) dy

= (E [ft,z(Y0)] ∨ 0)− E [ft,z(Y0) ∨ 0] , (3.43)

where ft,z(y) = pt(x, z)− pt(y, z),

=
(

(E [ft,z(Y0) ∨ 0]− E [(−ft,z(Y0)) ∨ 0]) ∨ 0
)
− E [ft,z(Y0) ∨ 0]

< 0 (3.44)

since the random variable sgn(ft,z(Y0)) is not constant.

Thus we see that there is a conditional deficit at location z between the tail

distributions of the two coupling times. Since this deficit holds for all z ∈ R and

t ≥ 0, it follows that reflection coupling is not maximal.

Of course, this proof breaks down when Y0 is deterministic, since then the random

variable sgn(ft,z(Y0)) is constant.

Although reflection coupling is not maximal when the starting state for Y is

randomised as above, it is clear that reflection is an optimal co-adapted coupling

for X and Y when Y0 is randomised using any distribution. This follows from the

observation that any co-adapted coupling must be conditioned at time zero upon the

σ-algebra F0 = σ {Xs, Ys : s ≤ 0}. In particular, the coupling scheme at time zero

is conditioned on the event {Y0 = y0}. So the best that any co-adapted coupling can

do is to match the coupling time of a maximal coupling between X and Y when

(X0, Y0) = (x0, y0), integrated over the distribution of Y0. This bound is achieved

by the reflection coupling (recall equation (3.41)), making it an optimal co-adapted

coupling, as claimed.
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Furthermore, conditional on (X0, Y0) = (x0, y0), we have seen that reflection

coupling is the unique optimal co-adapted coupling of X and Y (Hsu and Sturm).

This observation, combined with the above argument, proves the following corollary:

Corollary 3.13. The reflection coupling is the unique optimal co-adapted coupling

for a pair of d-dimensional Brownian motions (X,Y ). In particular, this result holds

whatever the initial distributions of X0 and Y0.

This brief investigation into reflection coupling for Euclidean Brownian motions

has highlighted some, perhaps surprising, results concerning the differences between

co-adapted and non-co-adapted couplings. In particular, we have seen that, depend-

ing upon the distribution of (X0, Y0), it is possible for an optimal co-adapted, but not

a co-adapted maximal coupling to exist. The original motivation for this study was

provided by an interest in the coupling time for two Ornstein-Uhlenbeck processes,

and it is this topic which forms the focus of the final section of this chapter.

3.4.2 Maximal coupling for the O-U process

Consider an Ornstein-Uhlenbeck process on R. This is the unique solution of the

following stochastic differential equation:

dXt = −αXt dt+ σ
√

2αdBt, X0 = x0 . (3.45)

Here α and σ are positive constants, and (Bt)t≥0 is a standard Brownian motion. It

is simple to show that the distribution of Xt is Gaussian, with

E [Xt] = e−αtx and V ar(Xt) = σ2
(
1− e−2αt

)
.

This process converges to its stationary distribution, N (0, σ2), as t→∞.

Now suppose that X is an O-U process starting at x and Y is an O-U process

with the same parameters α and σ but started at some fixed value y ∈ R. These

may be coupled as follows. Define the process Ŷ by

dŶt = −αŶt dt− σ
√

2αdBt, Ŷ0 = y,

where the noise component Bt is the same as that used in the definition of X. Clearly

Ŷ has the correct transition kernel to be an O-U process started at y.
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Lemma 3.14. For fixed starting values x, y ∈ R, the reflection coupling defined

above is a maximal coupling. That is,

‖L(Xt)− L(Yt)‖ = P
(
TR(x, y) > t

)
, (3.46)

where TR(x, y) is the reflection coupling time of X and Y .

This (unsurprisingly) is the same result as that which holds for Brownian motion

(contained within Theorem 3.11). A direct proof is easy, since the distribution of

the hitting time at zero of the process X − Ŷ is well known. However, in order to

apply the other results of the previous section to O-U processes, it is more convenient

to rewrite the O-U process X as a time- and space-change of a Brownian motion.

This may be done as follows (Chaumont and Yor 2003). Let B̃x =
{
B̃x(t)

}
t

be a

Brownian motion on R with B̃x(0) = x. Then it is simple to check that the following

process has the same distribution as X:

X̃(t) = e−αtB̃x
(
σ2
(
e2αt − 1

))
, X̃(0) = x . (3.47)

In order to couple X̃ with another O-U process Ỹ , it is thus sufficient to consider

the difference process

X̃(t)− Ỹ (t) = e−αt
[
B̃x
(
σ2
(
e2αt − 1

))
− ˜̃By

(
σ2
(
e2αt − 1

))]
, (3.48)

where ˜̃B is the Brownian motion driving Ỹ . The fundamental point to note in

the above expression is that the time- and space-change is identical for X̃ and Ỹ .

Therefore in order to couple these two processes it is sufficient to consider couplings

of the time changed Brownian motions B̃x
(
σ2
(
e2αt − 1

))
and ˜̃By

(
σ2
(
e2αt − 1

))
.

But this, of course, is equivalent to coupling two un-time-changed Brownian motions

(since the time-change is the same for both processes), and this is exactly the problem

studied in the previous section. After making this sequence of observations, the

following collection of results follows easily.

Theorem 3.15. Let X and Y be two Ornstein-Uhlenbeck processes in Rd. Then the

following results all hold.

1. if (X0, Y0) = (x, y) is deterministic:

(i) reflection coupling is the unique co-adapted maximal coupling of X and

Y ;
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(ii) the reflection coupling time satisfies

TR(x, y) = inf
{
t ≥ 0 : Xt = e−αt

(
x+ y

2

)}
.

2. if X0 = x and Y0 ∼ N(0, σ2) (the equilibrium distribution of X):

(i) reflection coupling is no longer maximal;

(ii) however, reflection coupling is the unique optimal co-adapted coupling of

X and Y .

3.5 Future work

The construction of a maximal coupling for two Markov chains due to Pitman (Sec-

tion 3.1.2) was based on the idea of stitching the chains together using randomised

stopping times. RSTs are also used in Greven (1987): given initial distributions µ

and µ′ for two Markov chains X and X ′ with common transition kernel, this paper

constructs RSTs S of X and T of X ′ such that L(XS) = L(X ′T ), with S and T both

finite. Furthermore, S and T may be constructed such that the chains {Xn : n < S}

and {X ′n : n < T} almost surely live in disjoint regions of the state space. Such a

coupling clearly exhibits nice spatial behaviour: it would be of interest to investigate

when this construction also yields a maximal coupling.

More generally, a better understanding of the relationship between maximal cou-

pling and any structural properties of the state space would be useful. For example,

consider the maximal coalescent coupling for N chains, produced in the proof of

Theorem 3.7, for a finite state space X with |X | = N . Suppose that this has the

property that the distribution of the coupling time is equal to that of the maximal

coupling for chains started from two specific states x and y. Does this imply the

existence of a (partial) ordering on X (with x and y the extremal states)?

In Section 3.3 an optimal control approach was used to prove the optimality

of a co-adapted coupling for the random walk on Zn2 . This was carried out with

respect to minimising the expected coupling time. It would be of interest to develop

this analysis further by considering other optimality criteria. For example, it is not

too hard to show that the coupling ĉ defined by equations (3.22) and (3.23) also

maximises the function

Ex
[
e−λT

c
]
, for all λ > 0 .
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This observation motivates the following conjecture:

Conjecture 3.16. The coupling ĉ defined by equations (3.22) and (3.23) results in

a coupling time T̂ which is stochastically smaller than that produced by any other

coupling c ∈ C.

Note that proof of this conjecture would also prove the existence of a coupling-pre-

cutoff for ĉ when each coordinate moves at rate 1/n: this follows from the existence

of a total variation cutoff at time (n/4) log n, and Proposition 2.7 which proved the

existence of a (n/2) log n-coupling-cutoff for the partial-independence coupling. It

would also be interesting to investigate the existence and properties of an optimal

co-adapted coupling for the random walk on Zn2 where each coordinate moves at a

different rate (as studied in Chapter 2). This is likely to be much harder than a proof

of the above conjecture however.

Finally, it was shown in Section 3.4.2 that some interesting results concerning

maximal couplings of O-U processes follow easily from similar work on Brownian

motion. In particular, reflection coupling is not maximal when the starting state of

one process is randomised. Consider now a general diffusion X on Rd driven by a

d-dimensional Brownian motion B:

dXt = b(Xt) dt+ σ(Xt) dBt .

It would be interesting to investigate the range of such processes to which a similar

analysis may be applied. Reflection coupling of multidimensional diffusions was

studied by Lindvall and Rogers (1986): they give conditions on the drift and volatility

which ensure that a reflection coupling is successful, but do not address the issue of

maximality. The proof of Theorem 3.15 relies on the representation of an O-U process

as a time- and space- change of a Brownian motion (equation (3.47)), where these

changes are independent of the starting state. Such a representation will not be

available for a general diffusion X, and so an alternative approach will be needed. In

the light of the results in Section 3.4, it seems natural to conjecture that the reflection

coupling will not be maximal for any diffusion driven by a Brownian motion when

the starting state of one process is non-deterministic.



Dark Helmet: What happened to then?
Colonel Sandurz: We passed then.
Dark Helmet: When?
Colonel Sandurz: Just now. We’re at now, now.
Dark Helmet: Go back to then!
Colonel Sandurz: When?
Dark Helmet: Now.
Colonel Sandurz: Now?
Dark Helmet: Now!
Colonel Sandurz: I can’t.
Dark Helmet: Why?
Colonel Sandurz: We missed it.
Dark Helmet: When?
Colonel Sandurz: Just now.
Dark Helmet: When will then be now?
Colonel Sandurz: Soon.

Spaceballs



4. AN INTRODUCTION TO PERFECT SIMULATION

A common requirement of many problems in a variety of disciplines (such as stochas-

tic geometry, Bayesian inference, statistical physics and computer science) is for a

sample to be drawn from some probability distribution π. It is often the case that

direct methods for doing this do not apply, or are infeasible: for example, the nor-

malisation constant may be inaccessible. One possible solution to this problem is to

use a Markov chain Monte Carlo (MCMC) algorithm. Such an approach involves

the design of an ergodic Markov chain X which has π as its stationary distribution,

and then running a simulation of X until it is near equilibrium.

Since its introduction in Metropolis et al. (1953), MCMC has proved to be an area

of much interest, both theoretically and practically, and it is now a routine simulation

technique in the researcher’s toolbox. However, an obvious drawback with MCMC is

that the user running the simulation does not know how many steps of the algorithm

are needed for X to be close to equilibrium, and so this decision is ultimately up

to the user. Of course, if the wrong choice is made then the algorithm may return

a sample from a distribution that is far from π. A number of methods have been

proposed for determining this burn-in time. These range from simple observation

of algorithm output (such as autocovariance plots), to more analytical techniques

involving bounds obtained from coupling, eigenvalue analysis or Foster-Lyapunov

drift conditions.

An attractive alternative to these solutions, however, is to adapt the MCMC

algorithm to form what is known as a perfect simulation algorithm. Such a procedure

has two very desirable features:

1. the algorithm determines for itself when it should stop;

2. if the algorithm is successful then it returns a sample drawn exactly from the

stationary distribution π.

The first paper showing how the above can be done in practice was that of Propp
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and Wilson (1996). They introduced an algorithm known as Coupling from the Past

(CFTP), and showed how to use such an algorithm in practice by drawing from

the exact equilibrium distribution of the critical Ising model. In this chapter we

describe the CFTP algorithm and note some of the common problems associated

with its implementation. Some variations on this algorithm are then discussed. In

section 4.2 the ideas of read-once CFTP, small-set CFTP and dominated CFTP will

be introduced: all of these are necessary background material for the subsequent

work of this and the final chapter. Finally, Sections 4.3 and 4.4 will discuss the

efficiency and theoretical limitations of CFTP. Much of the discussion of the classic

and dominated CFTP algorithms is based on the material in Connor (2007).

4.1 Coupling from the Past (CFTP)

Before launching into a description of the CFTP algorithm, we begin with some

background information regarding stochastic recursive sequences and coupling.

4.1.1 Stochastic recursive sequences

Let X be a Markov chain with state space X and transition kernel P . The idea of

a stochastic recursive sequence (SRS) (also called a randomising operation (Wilson

2000b)) is that the transitions of X can be defined using an i.i.d sequence of uniform

random variables and a deterministic function f . Thus all the structure of the tran-

sition kernel P can be placed in f , making analysis much simpler. More specifically,

it is possible to construct a probability space (Ω,F ,P), an i.i.d. sequence {ξn}∞n=−∞

of Uniform[0, 1] random variables, and a measurable function f : X × [0, 1] → X

such that X satisfies the recursion

X0 = x0, Xn+1 = f(Xn, ξn), n ≥ 0 ,

and X has transition kernel P (x, ·) (Borovkov and Foss 1993). There are of course

many different possible SRS constructions for any given chain X depending, for

example, on the joint specification of f(x, u) and f(y, u) for different x and y.

The SRS representation provides a useful way to couple chains X and X ′ such

that the two chains stay together for all time once they agree. Define updates for X
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and X ′ by

Xn+1 = f(Xn, ξn), X ′n+1 = f(X ′n, ξn) ,

and let T = inf {n ≥ 0 : Xn = X ′n}. Then it is clear that Xn = X ′n for all n ≥ T ,

and that (assuming X is ergodic) T is almost surely finite. The beauty of the SRS

representation however, is that it enables the coupling of any number of chains in

this way, using the same f and the same randomness {ξn} for all the chains. For this

reason, stochastic recursive sequences are also called grand couplings. As we shall

see, these grand couplings are exactly what is needed in the context of CFTP.

4.1.2 The CFTP algorithm

Coupling from the Past is now ten years old, and so many descriptions of the algo-

rithm have been published in this period that the concept is now well known. In this

section we give a short description of the algorithm - the reader is referred to any

of the following references for further discussion: Propp and Wilson (1996), Wilson

(2000a), Häggström (2002), Kendall (2005).

The basic concept behind CFTP is the following: consider a (hypothetical) copy

of the chain of interest, X̃, which has been running since time −∞, and which is

in equilibrium at time zero, i.e. X̃0 ∼ π. This would be of obvious use if we could

determine X̃0, but clearly we cannot run a chain from time −∞ in practice! However,

it may be possible to determine X̃0 by looking back only a finite number of steps

into the past of X̃: it is this idea that is fundamental to CFTP.

To fully describe the algorithm, recall the SRS representation above. Suppose

that we have available to us an i.i.d. sequence {ξn}0−∞ of Uniform[0, 1] random

variables and a deterministic update function f . For v ≥ −u, define the random

input-output map F(−u,v](x) : X → X by

F(−u,v](x) = f (f (. . . f(f(x, ξ−u), ξ−u+1) . . . , ξv−2) , ξv−1) . (4.1)

Thus if X is begun at time −u with the value X−u = x, then we may set Xv =

F(−u,v](x). We also write Xx,−u
v for the value of the chain X at time v, when X is

started at time −u from state x.
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Definition 4.1. For a given update function f , the backwards coalescence time T ∗

of the chain X is defined by

T ∗ = min
{
n ≥ 0 : F(−t,0](x) = F(−s,0](y), for all x, y ∈ X and for all s, t ≥ n

}
= min

{
n ≥ 0 : Xx,−t

0 = Xy,−s
0 , for all x, y ∈ X and for all s, t ≥ n

}
.

Note that T ∗ is a random variable since its value depends upon the sequence {ξn}.

Now consider starting chains Xx,−n from all states x ∈ X at time −n, and recall

that the chain X̃ is a copy of X which has been running since time −∞. Using

the SRS representation all of these chains may be coupled using the same update

function f and the same source of randomness {ξn}0−∞. The big idea behind CFTP

is that if n is large enough such that n ≥ T ∗, then Xx,−n
0 = X0 (say) is the same

for all x, and so X0 = X̃0 ∼ π. That is, if the chains Xx,−n are started far enough

back into the past that they have all coalesced by time 0, then their common value

at time 0 is an exact draw from π, as required. Of course, we do not know the value

of T ∗, and so the CFTP algorithm simply repeats the above procedure for larger and

larger n until n ≥ T ∗ is achieved:

Algorithm 4.2 (CFTP).

- set n← 1

- while F(−n,0](X ) not constant

n← 2n

- return F(−n,0](X )

The most important aspect of the algorithm to note here is that the random

sequence {ξn} is re-used in each execution of the while loop above. This implies a

possible issue with computer memory in practice, but there are tricks to avoid this,

such as the read-once CFTP algorithm (Section 4.2). The other comment to make

here is the use of the binary search for T ∗ contained within the while loop: we are

free to increase n in any way we like, but the binary search means that the total

number of Markov chain steps simulated is linear in T ∗, whereas if we used n← n+1
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(for example) it would grow quadratically. Furthermore, this strategy means that

the number of simulation steps comes within a factor of 4 of the true value of T ∗

(see Propp and Wilson (1996) and Wilson (2000b) for more details).

The proof that the CFTP algorithm really does return a draw from π is very

simple, and so we include it here for completeness. This was first proved of course

by Propp and Wilson (1996), but here we repeat the version of the proof given in

Kendall (2005).

Theorem 4.3 (Propp and Wilson (1996)). If the backwards coalescence time T ∗ is

almost surely finite then CFTP samples from equilibrium.

Proof. Assume that T ∗ < ∞. Use the input-output map F to couple chains Xx

started from all possible starting states x ∈ X : that is, define

Xx,−u
v = F(−u,v](x) for −u ≤ v .

By definition of T ∗, and the time-homogeneity of X,

Xx,−n
0 = Xx,−T ∗

0 whenever n ≥ T ∗,

and L
(
Xx,−n

0

)
= L

(
Xx,0
n

)
,

for all x. Now, since X converges to its equilibrium distribution π in total variation,∥∥∥L(Xx,−T ∗
0

)
− π

∥∥∥ = lim
n→∞

∥∥∥L(Xx,−n
0

)
− π

∥∥∥
= lim

n→∞

∥∥L (Xx,0
n

)
− π

∥∥ = 0 .

Note that if X is finite then T ∗ is almost surely finite (but very large) for the

independence coupling (where chains evolve independently until they meet, after

which they agree forever). In fact, P (T ∗ <∞) is always either zero or one, whatever

the choice of update function f (this follows from a tail σ-algebra argument: see Foss

and Tweedie (1998) for details). A good CFTP algorithm uses a function f which

has a high probability of making target chains coalesce quickly.
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4.1.3 A simple example

The following example was considered in Thönnes (2000). Consider a symmetric

reflecting random walk X on X = {1, 2, 3, 4}, satisfying π(i) = 1/4 for all i ∈ X :

��
��

��
��

��
��

��
��

1 2 3 4
R R R

I I I

1/2 1/2 1/2

1/2 1/2 1/2

�� �-

�
1/2 1/2

Figure 4.1 shows a realisation of Algorithm 4.2 applied to this random walk. The

update function used is

f(x, u) =

{
(x+ 1) ∧ 4 if u ≤ 1/2
(x− 1) ∨ 1 if u > 1/2 .

(4.2)

The grey arrows indicate the transitions determined by f and the sequence {ξn}. The

algorithm runs chains Xx,−n started from all states x, with n = 1, 2, 4, . . . . When

n = 8 is reached, all of the target chains have the same value at time zero: Xx,−8
0 = 2

for this realisation (for which T ∗ = 7). The red circles highlight the possible values

of the chains Xx,−8 at each step: coalescence occurs the first time that X1,−n hits 4

or X4,−n hits 1.

Fig. 4.1: CFTP for a simple symmetric reflecting random walk.

Implementation of CFTP for this example is trivial, and Figure 4.2(a) shows a

histogram of the results of 10,000 runs of the algorithm. A χ2-test to compare this

output to π yields a value of 1.039 on 3 degrees of freedom, resulting in a p-value

of 0.79: it is clear that the algorithm is drawing from the correct distribution. In

contrast, Figure 4.2(b) shows the output of a wrongly implemented CFTP algorithm,

in which the random sequence {ξn} is not re-used when the chains are restarted
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Fig. 4.2: Output of 10,000 runs of the CFTP algorithm for the random walk X on {1, 2, 3, 4}
described above: (a) a proper implementation, re-using randomness; (b) not re-
using randomness; (c) re-using randomness, but with simulations with ‘long’ run-
times interrupted and discarded.

further into the past. Here a definite departure from uniformity is visible, and

indeed a χ2-test gives a tiny p-value of 2×10−16. For more examples of the bias that

is introduced when not re-using randomness, see Propp and Wilson (1996), Wilson

(2000b), Häggström (2002). Figure 4.2(c) shows another possible source of bias: that

which is introduced by user-impatience. This happens when simulations with long

run-times are interrupted and discarded (whether by an impatient user, or due to

computer breakdown etc.). Since the output of the CFTP algorithm is in general

not independent of the algorithm run time, this introduces a bias. The p-value for

this sample is again very small: p = 2.6× 10−11.

Although this is just a toy example, it does highlight the ease with which CFTP

may be applied to state spaces with a partial order. More specifically, suppose that

the state space X admits a partial order � which is respected by the update function

f . That is,

x � y ⇒ f(x, u) � f(y, u)

for all x, y ∈ X . Furthermore, suppose that X contains maximal and minimal ele-

ments, xmax and xmin, satisfying xmin � x � xmax for all x ∈ X .

With this setup it becomes simple to check for coalescence in Algorithm 4.2, since

the monotonicity of f guarantees that

F(−n,0](x
min) = F(−n,0](x

max) ⇒ F(−n,0](X ) is constant .

This means that, instead of running target chains Xx,−n starting from all states

x ∈ X at time −n, we now only need to simulate chains started from xmin and xmax.

Note that this is the case in the toy example above, where f is clearly monotonic

(using the normal ordering on the integers): coalescence occurs exactly when the two
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chains X1 and X4 meet.

The idea of monotone CFTP was used by Propp and Wilson (1996) to produce a

perfect draw from the equilibrium distribution of the critical Ising model on a finite

lattice. This model has probability mass function proportional to

exp

 1
kT

∑∑
i∼j

σiσj


with indices i, j running through the vertices of a (large, but finite) square lattice.

Here k is Boltzmann’s constant, T is the temperature of the system, i ∼ j indicates

that sites i and j are neighbours, and σi = ±1 is the spin at site i. Propp and

Wilson (1996) used the single-bond heat-bath algorithm (Sweeny 1983) to produce

a Markov chain with the correct stationary distribution. This algorithm treats the

Ising model as a random cluster model (Fortuin and Kasteleyn 1972). The updates of

the algorithm respect a partial order on the state space, and so the monotone CFTP

algorithm is easy to implement (and converges fast - Propp and Wilson claim that

convergence is generally achieved when starting at time -30 for a 512× 512 toroidal

grid at critical temperature). Furthermore, similar perfect simulation algorithms may

be used to draw from the equilibrium of variations on the Ising model, such as when

an external magnetic field is applied to the system: this results in the conditioned

Ising model, which is used in image analysis (see, for example, Besag (1986)).

Note however that monotonicity, whilst useful for CFTP, is not essential. Con-

sider the following modification of the random walk X considered above:

��
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1 2 3 4
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1 1/2 1/2

1/2 1/2 1/2

�� 1/2

This chain, say X̂, is no longer reversible, and there is no monotonic update

function under the usual ordering on the integers (although a different ordering, or

the use of subsampling, may reintroduce monotonicity). However, a CFTP algorithm

for this chain can be constructed using the crossover trick (Thönnes 2000): this first

appeared in Kendall (1998) to deal with anti-monotone chains, and is also used in

Häggström and Nelander (1998).
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A variant of this approach is to use the original monotonic random walk X as an

envelope process for X̂. Suppose we define an update function f̂ as follows:

f̂(1, u) = 2 , and f̂(x, u) =

{
(x+ 1) ∧ 4 if u ≤ 1/2
(x− 1) ∨ 1 if u > 1/2 .

for x = 2, 3, 4 . (4.3)

Note that f̂ is a valid update function for X̂, and that f(x, u) ≤ f̂(x, u) for all x ∈ X

and u ∈ [0, 1] (where f is defined in equation (4.2)). This suggests the following

perfect simulation algorithm:

• run a target chain X1,−n using the update function f and random sequence

{ξi}, until the first time S ≤ 0 that state 4 is hit (if S � 0, increase n and

repeat, reusing {ξi});

• due to the ordering of f and f̂ , X1,−n
S = X̂x,−n

S = 4 for all x, and so all target

chains X̂x,−n have coalesced by time S;

• run the chain X̂4,S up to time zero, using f̂ and the same {ξi}. Return X̂4,S
0 .

The chain X̂ still has a simple equilibrium distribution of course:

π = (1/7, 2/7, 2/7, 2/7) .

The sample distribution obtained from 10,000 runs of the perfect simulation algo-

rithm just described is shown in Figure 4.3. A χ2-test for the output from this

algorithm gave a p-value of 0.68, providing no evidence against the algorithm sam-

pling from the correct distribution.

Fig. 4.3: Output of 10,000 runs of the CFTP algorithm for the random walk X̂ on {1, 2, 3, 4}.

The idea of using an envelope process was studied in more depth, under the

name bounding chains, in Huber (2004): the technique can be used in situations

which are neither monotonic nor anti-monotonic, and can also give bounds on the

expected run-time of CFTP. This trick, along with the crossover trick mentioned
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above, increases the possibility of efficient implementation of CFTP for a variety of

chains. Furthermore, a different kind of simulation algorithm, known as the FMMR

method (after Fill et al. 2000) neither assumes monotonicity nor has (under suitable

implementation) the user-impatience bias observed for CFTP above (Thönnes 1999).

This algorithm, based on Fill’s method (Fill 1999), is based on strong uniform times

(encountered in Chapter 1) and set-valued duals. Although a useful simulation algo-

rithm (see Thönnes 1999 for its application to point process simulation, for example),

FMMR is harder to describe than CFTP, and we do not go into a detailed exposi-

tion of the method here. The reader is referred to any of the following references for

further information: Fill et al. (2000), Dobrow and Fill (2003), Kendall (2005).

4.2 Variants of CFTP

The CFTP algorithm works by ensuring that chains started in the past from all

possible starting states x ∈ X have coalesced by time zero, but in practice CFTP is

unlikely to be as simple to implement as in the above examples. We have seen how to

check for coalescence when |X | is finite, and how this task is simplified when there is

a partial order on X (respected by the update function), but what if X is continuous?

The algorithm also requires the re-use of randomness whenever coalescence at zero is

not achieved and the target chains are started further into the past: this can quickly

lead to issues with computer memory. Furthermore, it turns out that CFTP can

only be applied to chains which converge uniformly to their equilibrium distribution

(Section 4.4): many Markov chains of course do not satisfy this criterion.

In this section we introduce three variants on Algorithm 4.2, which can potentially

be used when faced with one of the problems outlined above. There do exist further

variants on CFTP and other simulation algorithms, which we do not go into here: a

discussion of the following three algorithms is, however, essential preparation for the

rest of the work in this thesis.

4.2.1 Small-set CFTP

We begin with the issue of a continuous state space, with no assumptions about the

existence of a useful partial ordering.
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Definition 4.4. A subset C ⊆ X is a small set (of order m) for the Markov chain

X if the following minorisation condition holds: for some ε ∈ (0, 1] and a probability

measure ν,

Px (Xm ∈ E) ≥ εν(E), for all x ∈ C and measurable E ⊂ X . (4.4)

In this case we say that C is m-small. If X hits the small set C at time n then

with probability ε it can be made to regenerate at time n + m (using the measure

ν).

This is similar to the setup for the Vasershtein coupling of Theorem 3.1: if two

chains X and X ′ both belong to C at time n, then the distributions of Xn+m and

X ′n+m have common component εν. With probability ε we may therefore set Xn+m =

X ′n+m (using a draw from ν), and with probability 1 − ε draw Xn+m and X ′n+m

independently from their residual kernels. Furthermore, if regeneration does occur

then a single draw from ν may be used for any number of copies of X belonging to

C at time n, resulting in their coalescence at time n+m.

This construction is rendered more useful by the fact that small sets (of non-trivial

measure) exist for any ψ-irreducible chain (Meyn and Tweedie 1993). Moreover,

under the assumption of ψ-irreducibility, it is possible to cover the whole state space

with a countable collection of small sets (Meyn and Tweedie (1993), Proposition

5.2.4).

If the whole state space is small, then target chains started from all possible

states can therefore be made to regenerate (and thus coalesce) at the same time.

This leads to the following perfect simulation algorithm (Murdoch and Green 1998).

Starting at time −n, draw i.i.d. random variables U−n, U−(n−1), . . . ∼ Uniform[0, 1]

until the earliest k for which Uk ≤ ε. Draw Xk+m from the distribution ν, and follow

a trajectory of X from this value forwards to time zero: X0 ∼ π, as required. As

usual, if when starting at time −n there does not exist a k ∈ [−n, 0] such that Uk ≤ ε,

then set n← 2n and repeat, ensuring that the path of X over [−n, 0] is constructed

using the residual kernel at each step (i.e. respecting the fact that U−n, . . . , U0 > ε).

Note that we don’t actually need to simulate chains from all starting states in this

algorithm: it is only necessary to follow the trajectory of one chain after a coalescent

event has occurred. However, since ε can typically be very small indeed (and m
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very large), the coupling time as constructed above may be rather large: Green

and Murdoch (1998) discuss ways of producing a faster backward coupling time in

practice, including a method whereby X is partitioned into a number of small sets,

each with a different minorisation condition.

4.2.2 Read-once CFTP

So far all of the perfect simulation algorithms described have required the re-use

of randomness each time chains are started further into the past. This can be

costly when considering computer memory capacity for complicated implementa-

tions. However, Wilson (2000a) noted that CFTP can be formulated as a forwards

time algorithm.

As a simple example of how this may be achieved, consider once again the small

set CFTP algorithm of the last section, in the case when X is a small set. This

algorithm could equally well be implemented forwards in time as follows. Draw

X0 ∼ ν, and V ∼ Geom(ε). Then run X forwards in time until time V − 1, using

the residual kernel at each step, returning XV−1 ∼ π.

This construction may be generalised. Recall that for CFTP to work, we need to

be able to identify when the input-output map F(−n,0] of Algorithm 4.2 is coalescent.

We can view the map F(−nt,0] as the composition of smaller i.i.d. blocks of length t:

F(−nt,0] = F(−t,0] ◦ F(−2t,−t] ◦ . . . ◦ F(−nt,−(n−1)t] .

Now suppose that t is chosen large enough such that there is a positive probability

pt that the map F = F(−t,0] is coalescent. As for the example above, the following

algorithm can be shown to be equivalent to the classic CFTP algorithm:
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Algorithm 4.5 (Read-once CFTP).

- draw independent realisations of F until F coalescent

- set x = F (·)

- draw independent realisations of F

- while F not coalescent

x← F (x)

- return x

Note that the third step of this algorithm is equivalent to composing a Geom(pt)

number of non-coalescent blocks (as for the small-set CFTP example), but using this

construction avoids the problem of calculating the maps F conditioned on coalescence

or non-coalescence. Since this algorithm starts at time zero and runs into the future,

any randomness used does not need to be stored for future use. The read-once

algorithm is also well suited to producing a number of draws from π: as soon as a

coalescent block F is detected in the final step, the result x of the previous (non-

coalescent) block is returned and then F (x) may be used as the starting point for

another run of the algorithm, starting at the second step.

Of course, the time taken for this algorithm to return a draw from the stationary

distribution is highly dependent upon the length t of the block used. Wilson (2000a)

compares the performance of read-once CFTP with Algorithm 4.2. The expected

running time is within a constant factor of that of CFTP, and in some situations

(especially if |X | is continuous) the gains to be made from using Algorithm 4.5 can

be significant.

4.2.3 Dominated CFTP

As mentioned earlier, the classic CFTP algorithm of Propp and Wilson (1996) has

a major drawback: a successful CFTP algorithm for X exists if and only if X is

uniformly ergodic (see Section 4.4.2). However, there does exist a major extension of

CFTP, known as dominated CFTP (domCFTP) or Coupling into and from the Past
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(CIAFTP), which can be applied to chains not satisfying this restriction (Kendall

1997; Kendall and Møller 2000).

Whereas CFTP works by checking for vertical coalescence (target chains started

from all states have coalesced by time zero), domCFTP checks for horizontal coa-

lescence (all sufficiently early starts from a specific state lead to the same result at

time zero). A second chain Y is used to identify how far into the past one has to go

to determine that this coalescence has occurred. To describe the algorithm in the

simplest possible way, we consider here only a monotonic chain X on X = [0,∞):

see Cai and Kendall (2002) for a much more general formulation.

Suppose that copies of X can be coupled such that, for each x, t, u ≥ 0, and

s ≥ −t, we can construct Xx,−t (begun at state x at time −t) satisfying

Xx,−t
s ≤ Xx,−u

s ⇒ Xx,−t
s+1 ≤ X

x,−u
s+1 . (4.5)

Suppose too that we can construct a dominating process Y on X which is stationary,

defined for all time, and may be coupled to the target chains X such that

Xx,−t
s ≤ Ys ⇒ Xx,−t

s+1 ≤ Ys+1 . (4.6)

The domCFTP algorithm then proceeds as follows:

1. Draw Y0 from its stationary distribution;

2. Simulate Y backwards to time −n;

3. Set y = Y−n. Simulate Xy,−n and X0,−n forwards to time zero (coupled to

each other and to Y so that (4.5) and (4.6) are satisfied);

4. If Xy,−n
0 = X0,−n

0 then return this value as a perfect draw from π. If not,

extend the realisation of Y back to time −2n, set n← 2n, and go to step 3.

A proof that this algorithm returns a perfect draw from π (so long as it terminates

almost surely) may be found in Kendall and Møller (2000). A consequence of the

coupling in equation (4.5) is that the target processes are funnelled : the earlier the

two target chains (X0 and Xy) are started, the closer they will be at time zero. As a

simple example of the algorithm in practice, consider a birth-death process X with

transitions x → x + 1 at rate αx ≤ α < ∞, and x → x − 1 at rate µx. This chain
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is clearly monotonic, and may be dominated by the birth-death chain Y which has

births at rate α and deaths at rate µ. It is easy to see that Y is reversible and has

a Poisson(α/µ) equilibrium distribution. A realisation of the domCFTP algorithm

for this chain when αx = 10− log(x+ 1)/(x+ 1) and µ = 1 is shown in Figure 4.4.

Fig. 4.4: Implementation of domCFTP for a birth-death process. The topmost line shows the
evolution of the dominating process into the past, and the shaded regions demon-
strate the funnelling of target processes. In this realisation, all target chains started
beneath the dominating process at time -64 have coalesced by time zero.

This algorithm can also be made to work if multiple simultaneous deaths are

allowed to occur, or if the birth rate µ varies with x, as is the case with many

problems in stochastic geometry (Kendall 1998; Kendall and Møller 2000).

4.2.4 Extended state-space CFTP

A more general theorem for domCFTP is presented in Cai and Kendall (2002). This

involves further abstraction of the original CFTP idea, but results in an algorithm

which has practical applications: Cai and Kendall (2002) use this setup to carry

out perfect simulation for correlated Poisson random variables conditioned to be

positive. We now summarise this abstraction, since it will be useful to us in the

following chapter.

As usual, the target chain X lives on the space X . The main idea of Cai and

Kendall (2002) is to embed X into a partially ordered space (Y,�) such that X is

at the bottom of Y. That is, such that for any x ∈ X and y ∈ Y,

y � x implies y = x . (4.7)
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We then identify a suitable process Y on Y which is eventually absorbed in X , and

which follows the stochastic dynamics of X once this occurs. More specifically, we

actually work with a sequence of processes

Y (n) =
{
Y

(n)
t : −n ≤ t ≤ ∞

}
,

for n = 1, 2, 4, . . . , which are identically distributed up to a shift in time. These

processes Y (n) all live on Y and satisfy the following three conditions:

1. Y (n) is eventually absorbed in X : for any fixed t, as n→∞,

P
(
Y

(n)
t ∈ X

)
→ 1 ; (4.8)

2. Y (n) evolves using the dynamics of X once it hits X ;

3. The processes Y (n) obey the following funnelling condition:

Y
(m)
t � Y (n)

t , for all −m ≤ −n ≤ t ≤ 0. (4.9)

With these conditions in place we are ready to state the theorem of Cai and Kendall

(2002):

Theorem 4.6 (Cai and Kendall (2002)). Let X be an ergodic Markov chain living

on the state space X and with equilibrium distribution π. Suppose that X may be

embedded in the partially ordered space Y such that X is at the bottom of Y, as in

(4.7). Suppose further that the processes Y (n) live on Y and satisfy conditions 1-3

above. Define

T = inf
{
n ≥ 1 : Y (n)

0 ∈ X
}
. (4.10)

Then T is almost surely finite, and Y (T )
0 ∼ π.

Proof. Condition 1 above implies that T < ∞ almost surely, and so it remains to

show that Y (T )
0 ∼ π. By the funnelling in equation (4.9), if n > T then

Y
(n)

0 � Y (T )
0 .

Therefore, since Y (T )
0 ∈ X , the embedding of X at the bottom of Y implies that

Y
(n)

0 = Y
(T )

0 for all n > T , and so

Y
(T )

0 = lim
n→∞

Y
(n)

0
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exists almost surely. Conditions 1 and 2, along with the fact that the Y (n) are

identically distributed up to time shifts, imply that Y (n) has the same equilibrium

distribution as X, and so∥∥∥L(Y (T )
0

)
− π

∥∥∥ = lim
n→∞

∥∥∥L(Y (n)
0

)
− π

∥∥∥
= lim

n→∞
‖L (Xn)− π‖ ,

where X is started at time 0 with the common hitting distribution of the Y (n) on X .

But X has π as its unique equilibrium distribution, and so this final limit is equal

to 0. Thus Y (T )
0 ∼ π, as required.

For obvious reasons, Cai and Kendall (2002) call this algorithm extended state-

space CFTP. Although it appears to be rather more abstract than the perfect simu-

lation algorithms we have encountered above, it has the nice property that it assumes

very little about the state space of X. For example, nothing is assumed about the

existence of a partial order on X , nor about the presence of monotonicity or maximal

and minimal elements if such a partial order does exist.

4.3 Efficiency considerations

In this section we consider the efficiency of CFTP. There are, of course, a number of

ways to define ‘efficiency’, and we begin by considering a couple of these that have

already received attention in the literature.

Propp and Wilson (1996), in their original paper on CFTP, consider the tail

distribution of the backwards coalescence time T ∗ (Definition 4.1). Suppose that X

is a partially ordered space, and let ` be the length of the longest totally ordered

subset of X . Let

d̄(k) = max
x,y

∥∥∥δxP k − δyP k∥∥∥ .
Then, for the monotonic CFTP algorithm, Propp and Wilson (1996) show that

P (T ∗ > k)
`

≤ d̄(k) ≤ P (T ∗ > k) .

and

E [T ∗] ≤ 2τmix(1 + log `) .

Thus monotonic CFTP is within a constant multiplicative factor of being as good as

possible.
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Propp and Wilson also consider different possible methods of recursively ‘search-

ing’ for T ∗ in the CFTP algorithm. They prove that the binary search method

used in Algorithm 4.2 minimises the worst-case number of steps, as well as almost

minimising the expected number of steps required.

A different approach to considering the efficiency of CFTP comes from the paper

of Burdzy and Kendall (2000). They consider the ‘gap’ between the rate at which a

Markov chain approaches equilibrium, and the rate at which co-adapted coupling can

happen for two such chains. Of course, the coupling rate has to be slower than the

convergence rate (Lemma 1.8). The result of Burdzy and Kendall (2000) however,

shows that co-adapted coupling is strictly slower than convergence to stationarity

when it is possible for a pair of co-adapted chains to transpose before coupling. For

such a chain X, a CFTP algorithm using co-adapted coupling will converge at an

exponential rate slower than X converges to equilibrium. (Of course, this does not

apply for monotone chains, where the transposition of coupled chains will not occur.)

This result is not too surprising, given our earlier work on co-adapted and max-

imal coupling: we have seen instances where the optimal co-adapted coupling is not

maximal (e.g. for a random walk on Zn2 , Section 3.3). With this in mind, we now

ask the following question:

Can CFTP be as fast as convergence to equilibrium?

In other words, what is the smallest possible value of T ∗ for a given Markov chain,

and how can we design a CFTP algorithm using this knowledge? This question

motivates the work in the following section.

4.3.1 Impractical CFTP

We will assume throughout this section that the chain of interest X takes values in a

finite state space X = {1, 2, . . . , N}. The run-time of the CFTP algorithm is of course

dependent upon the distribution of the time taken for chains started from each state

1 ≤ i ≤ N to coalesce, which in turn depends upon the input-output maps F used

in the algorithm. This suggests that a fast (but impractical, see Remark 4.9) CFTP

algorithm could be designed using the maximal coalescent coupling of Section 3.1.

Recall that this coupling works by drawing the coupling time and place (T,XT )

from a given distribution, and then constructing the N pre-T processes and the
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single post-T process according to the prescription in Theorem 3.7. We will not be

concerned with the inhomogeneous pre-T chains in this application, since the output

of the CFTP algorithm will depend only on what happens after coalescence. The

apparent problem with trying to use a maximal coupling with CFTP is that the first

of these techniques concerns forwards coupling while the second relies on a backwards

construction. Thus the following (perhaps at first sight reasonable) algorithm will

not return a draw from equilibrium:

Algorithm 4.7 (Incorrect CFTP).

- set n← 1

- draw (T,XT ) from maximal coupling distribution

- while T > n

- n← 2n

- draw (T,XT ) from maximal coupling distribution

- run X from (−(n− T ), XT ) to time zero

- return X0

The problem with this algorithm of course is the independence of the draws from

the maximal coupling distribution. In order for the algorithm to return a draw from

equilibrium, it would be necessary for the draw of the pair (T,XT ) at time −2n to

be conditioned on coalescence not having occurred in the interval [−n, 0].

However, we can produce a perfect simulation algorithm employing the maximal

coalescent coupling by using Wilson’s read-once trick (Section 4.2.2). Recall that

this algorithm circumvents the issue of re-using randomness by running from time

zero into the future, composing i.i.d. blocks F = F(−t,0].

Using the same notation as in Section 4.2.2, equation (3.6) means that the coa-

lescence time T for the maximal coalescent coupling has the following distribution:

P (T ≤ n) =
∑
y∈S

λn(y) = 1− dn. (4.11)
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We also have an explicit form for the distribution of a candidate chain X at time n

conditional upon the event {T ≤ n}, L(Xn | T ≤ n), which is of course independent

of X0 (since T is the coalescence time). Indeed, from equation (3.8) and the fact that

the post-T process is a version of the original homogeneous Markov chain begun at

XT , we see that:

P (Xn = x | T ≤ n) =

∑N
y=1

∑n
k=1 P (T = k,Xk = y)P (Xn = x |Xk = y, T = k)

P (T ≤ n)

= (1− dn)−1
N∑
y=1

n∑
k=1

(λk − λk−1P )(y)Pn−k(y, x) . (4.12)

The (impractical) read-once CFTP algorithm is therefore as follows.

Algorithm 4.8 (Read-once CFTP using maximal coalescent coupling).

- fix t ∈ N and define p∗t = P (T ≤ t) = 1− dt

- draw X0 = x from L(Xt |T ≤ t)

- draw V ∼ Geom(p∗t )

- run X forwards until time (V − 1)t, conditional on the

event that none of the (V − 1) blocks of length t are

coalescent blocks

- return X(V−1)t

Note that in the penultimate step of this algorithm, there is a closed form for the

distribution L(Xt | T > t,X0 = x):

P (Xt = y |T > t,X0 = x) = P (Xt = y, T > t |X0 = x)P (T > t |X0 = x)−1

= βxt (y)(1− p∗t )−1.

(This follows from equation (3.7).) Thus the algorithm can draw values for the chain

at times t, 2t, . . . , (V − 1)t using this distribution iteratively.

Remark 4.9. This explains the use of the word ‘impractical’ in the title of this

section: although it is possible to write out closed form expressions for each of the

distributions used in Algorithm 4.8, it would not be possible in general to sample

from these distributions in practice.



4. An Introduction to Perfect Simulation 107

In order to compare the expected cost of this algorithm with that of the read-

once CFTP algorithm of Section 4.2.2 we make the assumption that, for fixed t ∈ N,

a draw from either of the distributions L(Xt | T ≤ t) and L(Xt | T > t) is about

as expensive as checking to see if the map F = F(−t,0] used in Algorithm 4.5 is

coalescent. It is also assumed that this cost is linear in t.

The ‘standard’ read-once CFTP algorithm proceeds as follows (recall Algorithm

4.5). First of all a block length t is chosen: for a given input-output map F = F(−t,0]

any such block has probability pt of being coalescent, independent of all other blocks.

A sequence of blocks is then generated: after k + 1 coalescent blocks have been

observed the algorithm will have returned k draws from equilibrium. Since the

number of blocks needed to obtain a coalescent block is distributed as Geom(pt), the

expected cost of this algorithm is proportional to

(k + 1)t
pt

.

Similarly, Algorithm 4.8 draws once from L(Xt | T ≤ t) and V − 1 times from

L(Xt | T > t) for each required draw from equilibrium. Since V ∼ Geom(p∗t ), it

follows that the expected cost for k such draws is proportional to

kt

p∗t
.

Now, for any fixed t ∈ N, p∗t ≥ pt for any input-output map F . Therefore, the

expected cost of Algorithm 4.8 is a lower bound on the cost of Algorithm 4.5. If

the maximal coalescent coupling is equivalent to a co-adapted coalescent coupling,

then it is possible for pt to equal p∗t for all t, and hence for the ‘standard’ read-once

algorithm to perform as well as Algorithm 4.8. Furthermore, although the value of

p∗t may be hard to calculate, it can be bounded above by

min
i,j∈X

q∗t (i, j) ,

where q∗t (i, j) is the probability that maximally-coupled chains started at i and j

have coupled by time t. (This maximal pairwise coupling is of course not necessarily

the same as the maximal coalescent coupling.) This may provide a more tractable

lower bound on the cost of any read-once algorithm. These observations show that

the future research identified at the end of Chapter 3 (regarding the relationships



4. An Introduction to Perfect Simulation 108

between co-adapted, coalescent and maximal couplings) may have consequences for

our understanding of the limitations of perfect simulation algorithms.

Algorithm 4.8 is near-optimal, in the sense described above, but it is not neces-

sarily optimal since the cost of the algorithm depends upon the balance between t

and p∗t . Careful choice of the block size t would be required in order to minimise

the ratio t/p∗t and thereby optimise the expected cost of the algorithm. Since pt and

p∗t are of course specific to the Markov chain of interest (and, in the case of pt, to

the choice of F ), it is not possible to determine an optimal value of t which holds in

generality.

Finally note that, since Theorem 3.7 holds for an uncountable number of chains,

Algorithm 4.8 can also be applied to chains on continuous state-spaces.

4.4 Ergodicity considerations

The way in which an ergodic Markov chain approaches its stationary distribution is

a topic of great interest: although Markov chains have been studied for over eighty

years now, this is still an area of active research. We have already seen (in Chapter 2)

that the cutoff phenomenon is one type of possible behaviour which is particularly

interesting when studying random walks on groups. For Markov chains without so

much structure though, we cannot hope to establish such startling results. However,

the speed at which a chain approaches equilibrium is still a very interesting ques-

tion, and one which has important consequences for MCMC and perfect simulation

algorithms.

In this section we present a couple of striking results (due to Foss and Tweedie

(1998) and Kendall (2004)) linking the possibility of perfect simulation for a Markov

chain with the rate at which the chain converges to its equilibrium distribution.

4.4.1 Definitions and notation

Let X = (X0, X1, . . .) be a discrete-time Markov chain on a Polish state space X .

The Markov transition kernel for X is denoted by P , and the n-step kernel by Pn;

Pn(x,E) = Px (Xn ∈ E) ,
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where Px is the conditional distribution of the chain givenX0 = x. The corresponding

expectation operator will be denoted Ex. If g is a non-negative function then we write

Pg(x) for the function
∫
g(y)P (x, dy), and for a signed measure µ we write µ(g) for∫

g(y)µ(dy). The f -norm is defined as ‖µ‖f = supg:|g|≤f |µ(g)|; taking f ≡ 1 yields

the usual total variation norm, for which we continue to write ‖µ‖.

We assume throughout that X is aperiodic (in the sense of Meyn and Tweedie

1993) and Harris-recurrent. The stationary distribution of X shall be denoted by π,

and the first hitting time of a measurable set A ⊆ X by τA = min {n ≥ 1 : Xn ∈ A}.

Being Harris-recurrent, X is ψ-recurrent (for some measure ψ): a set A is called full

if ψ(Ac) = 0 and absorbing if P (x,A) = 1 for all x ∈ A.

Recall from Definition 4.4 the notion of small sets, which will feature heavily

throughout the remainder of this thesis:

A subset C ⊆ X is a small set (of order m) for the Markov chain X

if the following minorisation condition holds: for some ε ∈ (0, 1] and a

probability measure ν,

Px (Xm ∈ E) ≥ εν(E), for all x ∈ C and measurable E ⊂ X . (4.13)

Many results in the literature are couched in terms of the more general idea of petite

sets; however for aperiodic ψ-irreducible chains the two notions are equivalent (Meyn

and Tweedie 1993, Theorem 5.5.7). Small sets belong to a larger class of pseudo-

small sets, as introduced by Roberts and Rosenthal (2001), but such sets only allow

for the coupling of pairs of chains. Implementation of domCFTP (to be considered

below) requires a positive chance of a continuum of chains coalescing when belonging

to a given set C, and so henceforth we shall deal solely with small sets.

4.4.2 Uniform ergodicity and CFTP

Let us now consider two particular types of convergence: those of geometric and

uniform ergodicity.

Definition 4.10. The chain X is said to be geometrically ergodic if there exists a

constant γ ∈ (0, 1) and some function R : X → [0,∞) such that, for all x in a full

and absorbing set,

‖Pn(x, ·)− π(·)‖ ≤ R(x)γn. (4.14)
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If R can be chosen to be bounded then X is said to be uniformly ergodic.

Thus a chain is uniformly ergodic if its convergence rate does not depend upon

its starting state. Uniform ergodicity of X can be shown to be equivalent to the

whole state space X being a small set (Meyn and Tweedie (1993), Theorem 16.2.2).

This fact may be used to prove the following theorem:

Theorem 4.11 (Foss and Tweedie (1998)). There exists a successful (that is, almost

surely finite) backwards coalescence time T ∗ for X if and only if X is uniformly

ergodic.

In other words, there exists a CFTP algorithm for the chain X (in the sense of

Propp and Wilson (1996)) if and only if X is uniformly ergodic.

Proof. (Sketch.) Theorem 6 of Propp and Wilson (1996) shows that T ∗ is submulti-

plicative:

P (T ∗ > m+ n) ≤ P (T ∗ > m)P (T ∗ > n) for any m,n ∈ N. (4.15)

Suppose first that T ∗ is successful. Inequality (4.15) implies that

P (T ∗ > n) ≤ cγn ,

for some c < ∞ and γ < 1. Now define T to be the forward coupling time for the

family of chains {Xx}. Then the time-homogeneity of X implies that

P (T ∗ > n) = P (T > n) .

Therefore the distribution of T also has a geometric tail. But since T is a coupling

time we can now use the coupling inequality (1.4) to deduce that

‖Pn(x, ·)− π‖ ≤ P (T > n) ≤ cγn . (4.16)

Therefore X is indeed uniformly ergodic.

Now suppose that X is uniformly ergodic. As mentioned above, this is equivalent

to the whole state space X being a small set. Thus the small-set CFTP construction

of Section 4.2.1 can be applied to produce a perfect simulation algorithm for X.
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4.4.3 Geometric ergodicity and domCFTP

It may be thought that this result constrains the possible applicability of perfect

simulation. We have seen above however that the classic CFTP of Propp and Wilson

is not the only perfect simulation technique available, and indeed it turns out that

the domCFTP method of Kendall (1998) (Section 4.2.3) can be used for chains which

converge geometrically (but not necessarily uniformly) fast. In fact, Kendall (2004)

proves that there exists a domCFTP algorithm for all geometrically ergodic chains.

We do not reproduce the proof of this result here, but it is helpful to examine

the basis for the construction of a dominating process for a general geometrically

ergodic chain (this is essential preparation for the work in the following chapter in

fact). Before doing this, we need to present a little background theory concerning

geometrically ergodic chains.

The most common way to establish the rate of ergodicity of a chain X is to check

for the existence of a drift and a minorization condition satisfied by X. For example,

the following condition is equivalent to X being positive recurrent:

Condition PR:

There exists a positive constant b <∞, a small set C and a scale function

V : X → [1,∞), bounded on C, such that

E [V (Xn+1) |Xn = x] ≤ V (x)− 1 + b1C(x) . (4.17)

We shall usually refer to such a condition simply as a drift condition - the mi-

norization component is implied by the fact that C is a small set. For simplicity we

also often write inequality (4.17) as PV ≤ V − 1 + b1C . Condition PR states that

the chain V (X) behaves as a supermartingale before X hits C. When the chain hits

C then it can increase in expectation, but only by a bounded amount.

The first hitting time of C is related to drift conditions in the following way

(extracted from Meyn and Tweedie (1993), Theorem 11.3.5):

Theorem 4.12. For an ergodic chain X, the function VC(x) = Ex [τC ] is the point-

wise minimal solution to the inequality

PV (x) ≤ V (x)− 1, x /∈ C . (4.18)
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(Note that (4.18) is simply the drift condition PR for x /∈ C.) This result can be

shown to imply that all sub-level sets are small (Meyn and Tweedie (1993), Lemma

11.3.7), and since V is bounded on C we will henceforth always take C to be a

sub-level set of the form {x ∈ X : V (x) ≤ d}.

The following geometric Foster-Lyapunov condition (Foster 1953) is stronger than

the drift condition PR:

Condition GE:

There exist positive constants β < 1 and b < ∞, a small set C and a

scale function V : X → [1,∞), bounded on C, such that

PV ≤ βV + b1C . (4.19)

Inequality (4.19) will be referred to as GE(V, β, b, C) when we need to be explicit

about the scale function and constants. As with condition PR, a chain X satisfying

GE behaves as a supermartingale (under the scale function V ), but now the drift

towards C is geometric. Under our global assumptions on X, this drift condition

is actually equivalent to X being geometrically ergodic (Meyn and Tweedie 1993,

Theorem 15.0.1). Furthermore, if X satisfies (4.19) then we can take R = V in

equation (4.14).

The following result can be extracted from Meyn and Tweedie (1993), Theorems

15.0.1 and 16.0.1.

Theorem 4.13. Suppose X is ψ-irreducible and aperiodic. Then X is geometrically

ergodic if and only if there exists κ > 1 such that the corresponding geometric moment

of the first return time to C is bounded:

sup
x∈C

Ex [κτC ] <∞. (4.20)

Indeed, given the drift condition (4.19), Theorem 15.2.5 of Meyn and Tweedie

(1993) shows that (4.20) holds for any κ ∈ (1, β−1). Roberts and Tweedie (1999)

also show that under condition GE, the time until X first regenerates according to

ν in (4.13) has an exponential moment, and use this to find bounds on γ in (4.14).
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With this theory to hand, we can now properly state the result of Kendall (2004):

Theorem 4.14 (Kendall 2004). If X satisfies the drift condition

PV ≤ βV + b1C

for 0 < β < 1, then there exists a domCFTP algorithm for X (possibly subject to

sub-sampling) using a dominating process based on the scale V .

To begin to understand this result, it is first necessary to define what is meant

by ‘a dominating process based on the scale V ’. The remainder of this section is a

summary of Kendall (2004).

Definition 4.15. Suppose that V is a scale function for a Harris-recurrent Markov

chain X. We say that the stationary ergodic random process Y on [1,∞) is a domi-

nating process for X based on the scale function V (with threshold h and coalescence

probability ε) if it can be coupled co-adaptively to realisations of Xx,−t (the Markov

chain X begun at x at time −t) as follows:

(a) for all x ∈ X , n > 0, and −t ≤ 0, almost surely

V (Xx,−t
−t+n) ≤ Y−t+n ⇒ V (Xx,−t

−t+n+1) ≤ Y−t+n+1; (4.21)

(b) if Yn ≤ h then the probability of coalescence at time n+ 1 is at least ε, where

coalescence at time n+ 1 means that the set{
Xx,−t
n+1 : −t ≤ n and V (Xx,−t

n ) ≤ Yn
}

(4.22)

is a singleton set;

(c) and finally, P (Yn ≤ h) must be positive.

The most important component of the domCFTP algorithm described in Kendall

(2004) is the construction of a stationary process Y which satisfies equation (4.21).

Since we only have knowledge of the dynamics of V (X) through its moments (via

the drift condition GE), it is natural to ask that

Pz (Y1 ≥ βzy) ≥ sup
x:V (x)≤z

Ex [V (X1)]
βzy

, (4.23)
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and then Markov’s inequality provides the domination required in Definition 4.15(a)

(see chapter IV of Lindvall 2002, for example). It has already been remarked that it

is no restriction to set C = {x : V (x) ≤ d}, and this yields

sup
x:V (x)≤z

Ex [V (X1)]
βzy

≤ sup
x:V (x)≤z

βV (x) + b1[V (x)≤d]

βzy

≤ 1
y

if z ≥ d+
b

β
.

Define U to be the system workload of a D/M/1 queue, sampled just before arrivals,

with arrivals every log(1/β) units of time, and service times being independent and

of unit rate Exponential distribution. If Y = (d+ b/β) exp(U) and y ≥ 1, then

Pz (Y1 ≥ βzy) =
1
y
, if z ≥ d+

b

β
,

and so (4.23) is satisfied. U is positive recurrent only if β < e−1, but a new geometric

drift condition with β replaced by βk−1 can be produced by subsampling X with a

fixed subsampling period k. If k is chosen large enough to fix βk−1 < e−1 then the

above argument produces a stationary dominating process for the subsampled chain.

There is, of course, more to the proof of Theorem 4.14: an explicit coupling between

Y and target chains X which satisfies the regeneration requirement (4.22) must be

constructed, and Y must also be shown to satisfy part (c) of Definition 4.15. It

must also be explained why and how Definition 4.15 delivers a domCFTP algorithm.

Details are provided in (Kendall 2004).

Note that Y is easy both to sample from in equilibrium and to run in reversed-

time, which is essential for implementation of domCFTP. Note too that Y belongs to

a family of universal dominating processes for geometrically ergodic chains, although

this dominator need not generally lead to a practical simulation algorithm. The

main difficulties in application are in implementing practical domination derived

from (4.23), and in determining whether or not regeneration has occurred when Y

visits the set {Y ≤ h}. This task is rendered even less practical if subsampling has

taken place, since then detailed knowledge of convolutions of the transition kernel

for X is required.

Theorem 4.14 leads to an obvious question: does there exist a similar domCFTP

algorithm for chains which converge at a subgeometric rate? This question forms the
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starting point for the work in the next chapter, where the problem of moving from

geometric to subgeometric ergodicity is investigated extensively.



Les hommes ont oublié cette vérité, dit le renard. Mais tu ne dois pas
l’oublier. Tu deviens responsable pour toujours de ce que tu as apprivoisé.

(“Men have forgotten this truth,” said the fox. “But you must not
forget it. You become responsible, forever, for what you have tamed.”)

Le Petit Prince, by Antoine de Saint-Exupéry



5. PERFECT SIMULATION FOR SLOW MARKOV CHAINS

We have seen in Section 4.4.3 that the existence of a (possibly impractical) perfect

simulation algorithm is guaranteed for a Markov chain if it converges at a geometric

rate. In this chapter we extend this result by introducing a new class of positive-

recurrent chains (tame chains) for which domCFTP is possible in principle. Most of

the content of this chapter is based upon the paper by Connor and Kendall (2007)

and the associated research report (Connor and Kendall 2006). (It should be noted

that these articles have recently been found to contain an error: this mistake has

been rectified in what follows. In particular, Lemma 5.8 and consequently the proof

of Theorem 5.17 have been corrected.)

Before we begin, we should state clearly what we are permitting to be a part of

an ‘impractical algorithm’. The Foss and Tweedie (1998) algorithm for uniformly

ergodic chains (Theorem 4.11 of this thesis) requires us to be able to identify when

regeneration occurs for the target Markov chain X sub-sampled every k time-steps:

here k is the order of the whole state-space considered as a small set for X. It also

assumes that it is then possible to draw from the regeneration distribution. For

the geometric ergodicity result of Kendall (2004) (reviewed in Section 4.4.3), a little

more is required: namely that it is possible to couple the target chain X and the

dominating chain Y when sub-sampled every k time-steps, and that this domination

is preserved while so doing. Furthermore, it also assumes that we can implement

the coupling between X and Y in a monotonic fashion even when conditioning on

small-set regeneration occurring or not occurring. For the extension to tame chains

presented in this chapter, it turns out that we do not need to assume any more than

for the geometrically ergodic case, except that now the sub-sampling order k is not

fixed for all time, but can vary according to the current value of the dominating

process.

Finally, note that such an ‘impractical algorithm’ is really more of a strategy
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than an algorithm: we are simply concerned with describing a theoretical method

for producing a perfect sample from a distribution, without any consideration of the

run-time of such an approach.

5.1 Preliminaries

We begin this chapter with a review of the relevant literature, and also present some

drift condition results which will prove useful in the work that follows.

5.1.1 Past research into subgeometrically ergodic chains

Throughout this chapter, X will be a discrete-time Markov chain on (X ,B(X )),

satisfying the same assumptions as in Section 4.4.1. In particular, X is aperiodic

and Harris-recurrent, with stationary distribution π. X is ψ-recurrent, and we write

B+(X ) = {A ∈ B(X ) : ψ(A) > 0} for the set of accessible sets. A set A is full if

ψ(Ac) = 0 and absorbing if P (x,A) = 1 for all x ∈ A.

In the last chapter we met the definition of a geometrically ergodic chain: this

definition was given for the rate of convergence of X in total variation norm. In this

chapter we will consider a more general form of convergence, that of (f, r)-ergodicity:

Definition 5.1. The chain X is said to be (f, r)-ergodic if there exists a rate function

r : N → [1,∞) and a function f : X → [1,∞) such that, for all x in a full and

absorbing set S(f, r),

r(n) ‖Pn(x, ·)− π(·)‖f → 0 as n→∞. (5.1)

A set A ∈ B(X ) is said to be (f, r)-regular if for every B ∈ B+(X ),

sup
x∈A

Ex

[
τB−1∑
n=0

r(n)f(Xn)

]
<∞ . (5.2)

A point x ∈ X is called (f, r)-regular if A = {x} is (f, r)-regular.

If f ≡ 1 then equation (5.1) gives the rate of convergence of X in total variation,

and equation (5.2) provides information about the moments of τB. If r ≡ 1 then it

is usual practice to call X simply f -regular.

The first major piece of work on general (f, r)-ergodicity when r is a subgeo-

metric rate function was that of Tuominen and Tweedie (1994). (Previous work
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concentrated on the cases when f ≡ 1, r ≡ 1 or the geometrically ergodic case,

when r(n) = κn.) The following classes of subgeometric rate function were originally

defined in Nummelin and Tuominen (1983):

Λ0 =
{
r : r is a positive increasing function, with

log r(n)
n

↓ 0 as n→∞
}

;

Λ =
{
r : there exists r0 ∈ Λ0 such that lim inf

n→∞

r(n)
r0(n)

> 0 and lim sup
n→∞

r(n)
r0(n)

<∞
}
.

The class Λ includes polynomial rate functions (where r0(n) = (1 + n)β for some

β > 0) and some functions which increase faster than polynomially, for example,

functions r for which

r0(n) = (1 + log(n))α(n+ 1)βecn
γ

for α, β ∈ R, γ ∈ (0, 1) and c > 0.

It will be convenient for the later work in this chapter to define subsets of Λ as

follows:

Λ(δ) =
{
r ∈ Λ : r(n) ≤ O(nδ) as n→∞

}
and Λ∗ =

⋃
0<δ<1

Λ(δ) .

Thus Λ∗ contains, for example, all rate functions r ∈ Λ with

r0(n) = (1 + log(n))α(n+ 1)β

for α ∈ R and β < 1. In particular, if r ∈ Λ∗ then r(n)/n→ 0 as n→∞.

With this notation in place, we can now state the main result of

Tuominen and Tweedie (1994):

Theorem 5.2 (Tuominen and Tweedie (1994)). Suppose that X is ψ-irreducible and

aperiodic, and let f : X → [1,∞) and r ∈ Λ be given. The following conditions are

equivalent:

(i) there exists a small set C ∈ B(X ) such that

sup
x∈C

Ex

[
τC−1∑
n=0

r(n)f(Xn)

]
<∞ ; (5.3)

(ii) there exists a sequence {Vn} of functions Vn : X → [0,∞], a small set C ∈ B(X )

and b ∈ R+, such that V0 is bounded on C,

V0(x) =∞⇒ V1(x) =∞ ,
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and

PVn+1 ≤ Vn − r(n)f + br(n)1C , n = 0, 1, 2, . . . ; (5.4)

(iii) there exists an (f, r)-regular set A ∈ B+(X );

Any of these conditions implies that for all (f, r)-regular points x,

r(n) ‖Pn(x, ·)− π(·)‖f → 0 as n→∞,

and the set of all (f, r)-regular points is full, absorbing, and contains the set {V0 <∞}.

In fact, more can be said here. Careful examination of the proof of Theorem 5.2

shows that the following bound holds (G. Fort, personal communication):

Corollary 5.3. Suppose X is ψ-irreducible and aperiodic. Let f : X → [1,∞) and

r ∈ Λ be such that

sup
x∈C

Ex

[
τC−1∑
n=0

r(n)f(Xn)

]
<∞ .

Then there exists M <∞ such that

r(n) ‖Pn(x, ·)− π(·)‖f ≤MEx

[
τC−1∑
n=0

r(n)f(Xn)

]
. (5.5)

The chain X is called (f, r)-regular if the conditions of Theorem 5.2 are satisfied

and every point is (f, r)-regular. From these definitions it follows that

X is (f, r)-regular ⇒ X is (f, r)-ergodic.

Although this theorem provides a way of determining (f, r)-ergodicity, the se-

quence of drift conditions contained in inequality (5.4) are extremely hard to check

in practice. As such, these multiple drift conditions are hardly ever used directly.

However, a single drift condition was introduced by Jarner and Roberts (2002) and

shown to imply the existence of the multiple drift conditions when X is polynomially

ergodic. Their drift condition is as follows:
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Condition PE:

There exist constants 0 < b, c < ∞ and α ∈ (0, 1), a small set C, and a

scale function V : X → [1,∞) which is bounded on C, such that

PV ≤ V − cV α + b1C . (5.6)

We will refer to condition PE as PE(V, c, α, b, C) when we need to be explicit

about the scale function and constants. As with condition GE, this drift condition

tells us that V (X) behaves as a supermartingale before X hits C, but now the drift

towards the small set occurs at a subgeometric rate (and hence τC has no exponential

moment).

Condition PE is much easier to check in practice than the multiple drift condi-

tions: at the end of this section an example of how such a drift condition may be

established is provided. Jarner and Roberts (2002) use this condition to prove the

following theorem:

Theorem 5.4 (Jarner and Roberts 2002). Suppose X is ψ-irreducible, aperiodic, and

satisfies drift condition PE. Then X is (Vρ, rρ)-regular for each 1 ≤ ρ ≤ 1/(1 − α),

where

Vρ(x) = V 1−ρ(1−α)(x), and rρ(n) = (n+ 1)ρ−1 . (5.7)

In particular, the following polynomial convergence statements hold for all x:

(n+ 1)ρ−1 ‖Pn(x, ·)− π(·)‖Vρ → 0, as n→∞.

Note that if α = 1 then we regain the geometric drift condition GE, whilst

α = 0 leads to condition PR. This result shows the trade-off between the rate of

convergence and the norm: the larger the latter, the slower the former. The gap

(1− α) is the power lost for each order of convergence gained, with the fastest rate

(r(n) = nα/(1−α)) corresponding to the total variation norm. The V α norm is the

largest norm for which we can establish convergence (at rate r ≡ 1): indeed, given

only the drift condition PE, V α is the largest function that can be guaranteed to

have a finite moment under π (Meyn and Tweedie (1993), Theorem 14.0.1).

The result of Jarner and Roberts (2002) was generalised by Douc et al. (2004),

who introduced the following drift condition:
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Condition SGE:

There exist a constant b < ∞, a small set C, a scale function V : X →

[1,∞) which is bounded on C, and a concave, non-decreasing, differen-

tiable function φ : [1,∞)→ (0,∞) with φ′(t)→ 0 as t→∞, such that

PV ≤ V − φ ◦ V + b1C . (5.8)

We will refer to condition SGE as SGE(V, φ, b, C) when we need to be explicit

about the scale function and constants. Condition PE can easily be recovered from

SGE by taking φ(x) = cxα. Also, as φ′ is non-increasing, if φ′(t) 9 0 then φ ◦ V ≥

(1− β)V for sufficiently large V , and so SGE reduces to condition GE.

Under condition SGE, the (φ◦V )-norm is the largest norm for which convergence

can be proved, and this again corresponds to the slowest rate of convergence (r ≡ 1).

Douc et al. (2004) show that condition SGE again implies the existence of the

multiple drift conditions in inequality (5.4). They also prove a generalised form of

Theorem 5.4, showing how the convergence rate varies with the norm. In order to

state this result, we need a little more notation.

For a concave, non-decreasing, differentiable function φ : [1,∞)→ (0,∞), define

Hφ(v) =
∫ v

1

du

φ(u)
. (5.9)

Hφ is then another concave, non-decreasing, differentiable function on [1,∞), which

increases to infinity. Its inverse therefore exists and is differentiable and, keeping to

the notation of Douc et al. (2004), we define

rφ(v) = (H−1
φ )′(v) = φ ◦H−1

φ (v) . (5.10)

Thus, for example, if φ(x) = cxα (as in the case of a polynomially ergodic chain),

Hφ(v) =
v1−α − 1

1− α
and rφ(v) = [(1− α)v + 1]α/(1−α) .

Finally, we introduce a useful set of functions, Υ. This is the set of pairs of ulti-

mately non-decreasing functions (Ψ1,Ψ2) defined on [1,∞), such that limx→∞Ψ1(x) =

∞ or limx→∞Ψ2(x) =∞, and

Ψ1(x)Ψ2(y) ≤ x+ y for all x, y ≥ 1.
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Υ includes the pair (x, 1) of course, but also more interesting examples such as

((px)1/p, (qy)1/q) where 1/p+ 1/q = 1.

The main result of Douc et al. (2004) is then as follows:

Theorem 5.5 (Douc et al. (2004)). Suppose X is ψ-irreducible, aperiodic, and

satisfies drift condition SGE(V, φ, b, C). Let (Ψ1,Ψ2) ∈ Υ. Then X is (Ψ2(φ ◦

V ),Ψ1(rφ))-regular:

Ex

[
τC−1∑
n=0

Ψ1(rφ(n))Ψ2(φ ◦ V (Xn))

]
≤MV (x) , (5.11)

for some constant M <∞. In particular, the following convergence statements hold

for all x in the full set {V <∞}:

Ψ1(rφ(n)) ‖Pn(x, ·)− π(·)‖Ψ2(φ◦V ) → 0, as n→∞.

Once again, this reduces to the result of Jarner and Roberts (2002) when φ(x) =

cxα and (Ψ1,Ψ2)(x) = (((1− p)x)1−p, (px)p) for some p ∈ (0, 1).

This concludes the review of past research into subgeometrically ergodic chains.

All work on these chains has to date been concerned with three general notions:

establishing precise rates of ergodicity under different norms (Tuominen and Tweedie

(1994), Jarner and Roberts (2002), Douc et al. (2002), Jarner and Tweedie (2003),

Douc et al. (2004)); showing the drift conditions PE and SGE hold for different

examples of chains (those papers just cited, as well as Fort and Moulines (2000),

Fort and Moulines (2003)); or proving the existence of central limit theorem results

arising from the drift conditions (Jarner and Roberts (2002)). All such work, by

definition, deals solely with establishing the long-term behaviour of a chain, given

knowledge of its one-step transitions via a drift condition. In the subsequent work of

this chapter, we will primarily be using drift conditions to study the behaviour of a

chain X over a fixed finite period. Therefore previous research involving asymptotic

behaviour, other than the results reviewed in this section, will not in general be of

great use in what follows.

We end this introduction to subgeometric drift conditions with an example of how

drift conditions are proved to hold in practice. The following example is probably

the simplest possible polynomially ergodic chain.
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Example 5.6 (Forward recurrence time chain). Let {Y0, Y1, . . . } be a sequence of

i.i.d. random variables, with common distribution p, taking values on Z+. Define

Zn =
n∑
i=0

Yi ,

so that {Zn} forms a discrete-time renewal process. The forward recurrence time

chain X is defined by

Xn = inf (Zm − n : Zm > n) , n ≥ 0 . (5.12)

(See Meyn and Tweedie (1993), page 44.) The dynamics of X are extremely simple.

If Xn = k > 1 then at time n+ 1 the forward recurrence time to the next renewal of

Z has come down to k− 1, and thus Xn+1 = k− 1. If Xn = 1 then a renewal occurs

at time n+ 1, and so Xn+1 is distributed exactly according to p.

C = {1} is a regenerative atom for this chain and X is δ1-irreducible. By con-

struction,

E1 [κτ1 ] =
∑
n

κnP1 (τ1 = n) =
∑
n

κnp(n) . (5.13)

Therefore, by Theorem 4.13, X is geometrically ergodic if and only if the distribution

p(n) has geometrically decreasing tails. Let us now assume that this is not the case,

and that
∑

n κ
np(n) =∞ for all κ > 1, but that

b =
∑
n

n1+εp(n) <∞ (5.14)

for some 0 < ε < 1. Under this assumption, X satisfies condition PE: for x > 2,

Ex
[
X1+ε

1

]
= (x− 1)1+ε

≤ x1+ε − (1 + ε) (x− 1)ε

≤ x1+ε − (1 + ε) (xε − 1)

≤ x1+ε − εxε .

Combining this bound with that in equation (5.14) we obtain the PE drift condition

Ex [V (X1)] ≤ V (x)− εV (x)α + b1[x≤2] , (5.15)

where V (x) = x1+ε, α = ε/(1 + ε), and b is defined in equation (5.14). Of course,

a variant of this example satisfying the more general drift condition SGE can be

produced simply by changing the moment condition in equation (5.14) appropriately.
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5.1.2 Useful drift condition results

We now present a few simple results arising from the drift conditions for geometrically

and subgeometrically ergodic chains, which for ease of reference are repeated here:

Condition GE:

There exist positive constants β < 1 and b < ∞, a small set C and a

scale function V : X → [1,∞), bounded on C, such that

PV ≤ βV + b1C . (4.19)

Condition SGE:

There exist a constant b < ∞, a small set C, a scale function V : X →

[1,∞) which is bounded on C, and a concave, non-decreasing, differen-

tiable function φ : [1,∞)→ (0,∞) with φ′(t)→ 0 as t→∞, such that

PV ≤ V − φ ◦ V + b1C . (5.8)

Recall that the drift condition PE for polynomially ergodic chains is simply condition

SGE with φ(x) = cxα for some α ∈ (0, 1).

The first result demonstrates how the scale function V in inequality (4.19) may

be changed to obtain a new drift condition using the same small set:

Lemma 5.7. If the chain X satisfies condition GE(V, β, b, C), then for any ξ ∈ (0, 1],

PV ξ ≤ (βV )ξ + bξ1C .

Thus GE(V, β, b, C) implies GE(V ξ, βξ, bξ, C).

Proof. Calculus shows that (x+ y)ξ ≤ xξ + yξ for x, y ≥ 0 and 0 < ξ ≤ 1. The result

follows by Jensen’s inequality for (PV )ξ, using inequality (4.19) above.

The next Lemma shows that the geometric drift condition for the chain subsam-

pled at time n ∈ N may be made independent of n.
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Lemma 5.8. Suppose X satisfies condition GE(V, β, b, C). Then for any positive

time n ∈ N:

Ex [V (Xn)] ≤ βV (x) + b11C1(x) ,

where b1 = b/(1− β) and C1 =
{
x : V (x) ≤ b/(β(1− β)2)

}
∪ C.

The same β, b1 and C1 work for all values of n, since the constant b1 swallows

up the higher order terms in β below.

Proof. Iterate the drift condition (4.19) and treat the cases {n = 1} and {n > 1}

separately:

Ex [V (Xn)] ≤ Ex

βnV (x) + b
n∑
j=1

βj−11C(Xn−j)


≤ (βV (x) + b1C(x)) 1[n=1] +

(
β2V (x) +

b

1− β

)
1[n>1]

≤ (βV (x) + b1C(x)) 1[n=1] + (βV (x) + b11C1(x)) 1[n>1]

≤ βV (x) + b11C1(x) .

The following result shows that subgeometrically ergodic chains satisfy a result

analogous to Lemma 5.7. However, there is no analogue to Lemma 5.8 when X is

subgeometrically ergodic, since the geometric ergodicity case makes essential use of

the convergence of the series
∑
βj .

Lemma 5.9. If the chain X satisfies condition SGE, then for any concave, non-

decreasing, differentiable function ϕ : [1,∞)→ (0,∞), there exists 0 < b1 <∞ such

that

P (ϕ ◦ V ) ≤ ϕ ◦ V − (φ ◦ V )(ϕ′ ◦ V ) + b11C . (5.16)

Proof. Since ϕ′ is necessarily non-increasing, it follows that

ϕ(z − y) ≤ ϕ(z)− yϕ′(z) (5.17)

for all 0 ≤ y ≤ z. As usual we write C = {x : V (x) ≤ d}.

First consider the case when x /∈ C. By Jensen’s inequality:

P (ϕ ◦ V ) ≤ ϕ(PV ) ≤ ϕ(V − φ ◦ V )

≤ ϕ ◦ V − (φ ◦ V )(ϕ′ ◦ V ) ,
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using inequality (5.17), since V − φ ◦ V ≥ 0 by condition SGE.

Secondly, for x ∈ C:

P (ϕ ◦ V ) ≤ ϕ(PV ) ≤ ϕ(V − φ ◦ V + b)

= ϕ ◦ V − (φ ◦ V )(ϕ′ ◦ V ) +
(
ϕ(V − φ ◦ V + b)− ϕ ◦ V + (φ ◦ V )(ϕ′ ◦ V )

)
≤ ϕ ◦ V − (φ ◦ V )(ϕ′ ◦ V ) +

(
ϕ(d+ b) + φ(d)ϕ′(1)

)
.

Therefore inequality (5.16) is satisfied, with b1 = ϕ(d+ b) + φ(d)ϕ′(1) <∞.

Note that, as in Lemma 5.7, the same small set C appears in the new drift

condition when the scale function is changed in this way. When φ(x) = cxα and

ϕ(x) = xξ for some α, ξ ∈ (0, 1), this result reduces to Lemma 3.5 of Jarner and

Roberts (2002).

Recall the definition of the function Hφ, introduced in Section 5.1.1:

Hφ(x) =
∫ x

1

du

φ(u)
.

Corollary 5.10. Suppose X satisfies condition SGE. Then, for x /∈ C,

Ex [τC ] ≤ Hφ ◦ V (x).

Proof. By definition of Hφ, (φ◦V )(H ′φ◦V ) = 1. Furthermore, Hφ is a non-decreasing

concave differentiable function on [1,∞). Lemma 5.9 yields

P (Hφ ◦ V ) ≤ Hφ ◦ V − 1

for x /∈ C, and the result then follows by Theorem 4.12.

Finally, we have the following Lemma, which follows from the results of the last

section and which will prove useful in Section 5.2.5.

Lemma 5.11. Suppose X is ψ-irreducible, aperiodic and satisfies condition SGE.

Let (Ψ1,Ψ2) ∈ Υ. Then for any fixed n ∈ N, there exist constants c,M < ∞ such

that

Ex [Ψ2(φ ◦ V (Xn))] ≤ MV (x)
Ψ1(rφ(n))

+ c . (5.18)
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Proof. Since V is bounded on the small set C, Theorem 5.5 asserts that

sup
x∈C

Ex

[
τC−1∑
k=0

Ψ1(rφ(k))Ψ2(φ ◦ V (Xk))

]
<∞ .

It follows that, for some constants R,M <∞,

Ψ1(rφ(n)) ‖Pn(x, ·)− π(·)‖Ψ2(φ◦V ) ≤ REx

[
τC−1∑
k=0

Ψ1(rφ(k))Ψ2(φ ◦ V (Xk))

]
≤MV (x) ,

where the first inequality follows from Corollary 5.3 and the second by Theorem 5.5

once again. Finally, since X satisfies condition SGE, Theorem 14.3.7 of Meyn and

Tweedie (1993) confirms that π(φ ◦ V ) < ∞, and so c = π(Ψ2(φ ◦ V )) < ∞. This

completes the proof.

5.2 Tame chains

We now turn our attention to the question posed at the end of the last chapter:

what can be said about the existence of a perfect simulation algorithm for a chain

that converges at a subgeometric rate? Note that if we try to directly produce a

dominating process for a subgeometrically ergodic chain by replacing drift condition

GE with SGE in the proof of Theorem 4.14, then the resulting process is transient.

(In fact, this process is a D/M/1 queue with unit rate Exponential service times

again, but now with the arrival rate increasing (and unbounded) as the number of

people in the queue increases!) Therefore another approach is needed.

The principal idea behind the subsequent work is to investigate when it is possible

to subsample a subgeometrically ergodic chain X to produce a geometrically ergodic

chain. For non-geometrically ergodic chains a fixed subsampling interval will not

work and so we seek an appropriate simple adaptive subsampling scheme. A similar

scheme can then be used to delay the dominating process Y for geometrically ergodic

chains (constructed in Section 4.4.3), and to show that this new process D dominates

the chain V (X) at the times when D moves.

Several issues must be addressed in order to derive a perfect simulation algorithm

using this idea:
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1. what is an appropriate adaptive subsampling scheme?

2. when does such a scheme exist?

3. how does the dominating process D dominate V (X) when D moves?

4. can we simulate D in equilibrium, and in reversed-time?

The answers to these questions are quite subtle.

5.2.1 Adaptive subsampling

We begin by defining more carefully what we mean by an adaptive subsampling

scheme.

Definition 5.12. An adaptive subsampling scheme for the chain X, with respect to

a scale function V , is a sequence of stopping times {θn} defined recursively by

θ0 = 0; θn+1 = θn + F (V (Xθn)), (5.19)

where F : [1,∞)→ {1, 2, . . .} is a deterministic function.

Remark 5.13. Note that a set of stopping times {θn} such that {Xθn} is uniformly

ergodic can be produced as follows. Using the Athreya-Nummelin split-chain con-

struction (Meyn and Tweedie 1993) we may suppose there is a state ω with π(ω) > 0.

Define

F (V (x)) = min
{
m > 0 : Px (Xm = ω) >

π(ω)
2

}
. (5.20)

Then the time until {Xθn} hits ω from any starting state x is majorised by a Ge-

ometric random variable with success probability π(ω)/2. This implies that the

subsampled chain is uniformly ergodic, as claimed. F as defined in equation (5.20)

depends upon knowledge of π however, and this is obviously unavailable (it is the

distribution from which we are trying to sample!). This example shows that adaptive

subsampling can have drastic effects on X. However, construction of a domCFTP

algorithm for X using this subsampling scheme (in the manner to be described in

Section 5.2.3) turns out to be impossible unless X is itself uniformly ergodic.

Reverting to the previous discussion, suppose that there is an explicit adaptive

subsampling scheme such that the chain X ′ = {Xθn} satisfies condition GE with
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Fig. 5.1: Construction of the delayed dominating process. The chain V (X) (blue) is domi-
nated by Y at times {σn} (marked with stars). The process D (red) uses the jumps
of Y (thus maintaining domination at times {σn}) and is defined to be constant on
the intervals [σn, σn+1).

drift parameter β < e−1. Then a candidate dominating process D can be produced

for V (X) in the following way. Begin with an exponential queue workload process Y

that dominates V (X ′) (as in Section 4.4.3). Then slow down Y by generating pauses

using the function F to produce the process D. That is, given D0 = Y0 = z, pause

D by setting

D1 = D2 = . . . = DF (z)−1 = z.

Then define the law of DF (z) by L(DF (z) | DF (z)−1 = z) = L(Y1 | Y0 = z). Iteration

of this construction leads to a sequence of times {σn} at which D moves, defined

recursively by

σn+1 = σn + F (Dσn),

with D constant on each interval of the form [σn, σn+1) (see Figure 5.1).

Such a process D is a plausible candidate for a dominating process. To be suit-

able for use in a domCFTP algorithm however, it must be possible to compute its

equilibrium distribution. Now, D as we have just defined it is only a semi-Markov

process: it is Markovian at the times {σn}, but not during the delays between jumps.

To remedy this, augment the chain by adding a second coordinate N that measures

the time until the next jump of D. (In fact, N is an example of a forward recur-

rence time chain - recall Example 5.6.) This yields the Markov chain {(Dn, Nn)} on
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[0,∞)× {1, 2, . . .} with transitions controlled by:

P (Dn+1 = Dn, Nn+1 = Nn − 1 | Dn, Nn) = 1 , if Nn ≥ 2;

P (Dn+1 ∈ E | Dn = z, Nn = 1) = P (Y1 ∈ E | Y0 = z) ,

for all measurable E ⊆ [1,∞);

P (Nn+1 = F (Dn+1) | Dn, Nn = 1, Dn+1) = 1.

Using the standard equilibrium equations, if π̃ is the equilibrium distribution of

(D,N) then

π̃(z, 1) = π̃(z, 2) = . . . = π̃(z, F (z)),

and thus πD(z) = π̃(z, ·) ∝ πY (z)F (z). Hence the equilibrium distribution of D is

the equilibrium of Y re-weighted using F . It is a classical probability result (see

Appendix) that the equilibrium distribution of the queue workload U is a mixture

of an atom at zero with an Exponential distribution of rate (1 − η), where η is the

smallest positive root of

η = β1−η.

(Note that 0 < η < 1 since β < e−1.) Since Y ∝ exp(U), the equilibrium density of

Y , πY , satisfies

πY (z) ∝ z−(2−η). (5.21)

Re-weighting Y using F yields the equilibrium density of D:

πD(z) ∝ F (z)z−(2−η). (5.22)

A suitable function F must therefore satisfy F (z) < z1−η in order to obtain a prob-

ability density in (5.22): in particular, this means that F (z)/z → 0 as z →∞.
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5.2.2 Tame and wild chains

The above discussion motivates the following definition of a tame chain.

Definition 5.14. A Markov chain X is tame with respect to a scale function V if

the following two conditions hold:

(a) there exists a small set C ′ = {x : V (x) ≤ d′}, and a non-decreasing taming

function F : [1,∞)→ {1, 2, . . .} of the form

F (z) =

{
dg(z)e z > d′

1 z ≤ d′
(5.23)

for some increasing function g ∈ Λ(δ), δ ∈ (0, 1), such that the chain X ′ =

{Xθn} possesses the drift condition

PV ≤ βV + b′1C′ , (5.24)

where {θn} is an adaptive sampling scheme defined using F , as in (5.19);

(b) the constants δ and β above satisfy

log β < δ−1 log(1− δ). (5.25)

We say that X is tamed (with respect to V ) by the function F . We may also

simply say that X is tame, without mention of a specific scale function. A chain that

is not tame is said to be wild.

Thus a tame chain is one for which it is possible to exhibit an explicit adaptive

subsampling scheme using a function F of the form in equation (5.23), and for which

the subsampled chain so produced is geometrically ergodic with sufficiently small β.

Note that all geometrically ergodic chains are trivially tame: if X satisfies condition

GE(V, β, b, C) then X is tamed by the function

F (z) = k for z > sup
y∈C

V (y),

for any integer k > 1− 1/ log β.

Definition 5.14 is strongly motivated by the discussion in Section 5.2.1. From

equation (5.23) we see that F produces a simple adaptive subsampling scheme as

in Definition 5.12. F is also a non-decreasing function, which accords with our
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intuition: if V (X) is large then we expect to wait longer before subsampling again,

to create enough drift in the chain to produce a geometric Foster-Lyapunov condition.

Requirement (b) of Definition 5.14 is made for two reasons. Firstly, it ensures that

β < e−1, and so delivers ergodicity of the D/M/1 queue workload U used in the

construction of Y . Secondly, it ensures that the weighted equilibrium distribution of

Y using F (as described at the end of Section 5.2.1), is a proper distribution; this

will be shown in the proof of Theorem 5.17.

Kendall (2004) shows that a dominating process exists for V (X ′) even if β > e−1,

but recall that this involves a further subsampling of X ′ with a fixed period k.

Here β < e−1 is made a requirement of the adaptive subsampling process to avoid

this situation, since further subsampling of X ′ would result in a composite non-

deterministic subsampling scheme.

Example 5.15 (Example 5.6 revisited). Recall the definition of the forward recur-

rence time chain:

Xn = inf (Zm − n : Zm > n) , n ≥ 0 ,

where {Zn} is a discrete-time renewal process. In equation (5.15) it was shown that,

under a mild condition, X satisfies the PE drift condition

Ex [V (X1)] ≤ V (x)− εV (x)α + b1[x≤2] , (5.26)

where 0 < ε < 1, V (x) = x1+ε, α = ε/(1 + ε), and b <∞.

Due to its very simple dynamics, it is trivial to show that X is tame. Define

δ = (1 + ε)−1, and fix β such that log β < δ−1 log(1− δ). Now let

λ = 1− β1/(1+ε) ,

and define the taming function F by

F (z) =

{⌈
λ zδ

⌉
z > 2

1 z ≤ 2 .
(5.27)

Due to the choice of δ and β above, part (b) of Definition 5.14 is automatically

satisfied.

Suppose that X0 = x > 2. Using F to construct an adaptive sampling scheme as

in Definition 5.12 we see that

θ1 = F (V (x)) = dλxe ,
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and so

Ex [V (Xθ1)] = (x− θ1)1+ε

≤ (1− λ)1+εV (x)

= βV (x) .

Finally, if x ≤ 2,

Ex [V (X1)] ≤ βV (x) + b′ ,

for b′ = 2(1 − β) + b < ∞. Therefore X is tame, as claimed. Note that, in proving

this chain to be tame, the behaviour of Xθ1 when x ∈ C ′ = [1, 2] was trivial to deal

with. This will always be the case, since the small set C ′ is a sub-level set (and so

it is always possible to deal with the drift condition on C ′ by making the constant

b′ in (5.24) large enough). In the future therefore, we may simply restrict attention

to proving the geometric drift condition (5.24) for the subsampled chain X ′ when

X ′0 /∈ C ′.

The main theorem of this chapter is the following:

Theorem 5.16. Suppose X is tame with respect to a scale function V . Then there

exists a domCFTP algorithm for X using a dominating process based on V .

Theorem 5.16 is true for all geometrically ergodic chains by the result of Kendall

(2004). As with the results of Foss and Tweedie (1998) and Kendall (2004), there is

no reason to suppose this algorithm to be implementable in practice. The proof of

Theorem 5.16 results directly from Theorem 5.17 and the discussion in Section 5.2.3

below, where a description of the algorithm is given.

Theorem 5.17. Suppose X satisfies the weak drift condition PV ≤ V + b1C , and

that X is tamed with respect to V by the function

F (z) =

{
dg(z)e z > d′

1 z ≤ d′,

for some increasing function g ∈ Λ(δ) with the resulting subsampled chain X ′ satis-

fying a drift condition PV ≤ βV + b′1[V≤d′], with log β < δ−1 log(1− δ). Then there

exists a stationary ergodic process D which dominates V (X) at the times {σn} when

D moves.
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Proof. Since g ∈ Λ(δ), we may prove this result assuming that g(z) = λzδ: the more

general result follows by increasing the size of the small set C∗ that is constructed

below.

As mentioned earlier, D will be constructed by starting with a process Y and

pausing it using F . First choose β∗ > β such that

log β < log β∗ < δ−1 log(1− δ). (5.28)

(That this is possible is a result of the definition of tameness.)

Suppose that Dσn = z, and that V (Xσn) = V (x) ≤ z. We wish to show that

Dσn+1 can be made to dominate V (Xσn+1), where σn+1 = σn + F (z) is the time at

which D next moves. Domination at successive times {σj} at which D moves then

follows inductively. For simplicity in the calculations below we set σn = 0.

Our aim is to control Ex
[
V (XF (z))

]
, recalling that F (z) is deterministic and that

F (V (x)) ≤ F (z).

Ex
[
V (XF (z))

]
= Ex

[
V (XF (V (x)))

]
+ Ex

[
V (XF (z))− V (XF (V (x)))

]
= Ex

[
V (X ′1)

]
+ Ex

[
V (XF (z))− V (XF (V (x)))

]
≤ βV (x) + b′1[V (x)≤d′] + b [F (z)− F (V (x))]

≤ βz + b′ + b(λ+ 1)zδ

≤ β∗z, for z ≥ h∗, (5.29)

where h∗ < ∞ is a constant chosen sufficiently large for inequality (5.29) to hold.

The first inequality in this sequence holds due to the drift conditions satisfied by

X ′ and X. The second follows from the definition of F and the assumption that

V (x) ≤ z.

Now define the process Y = h∗ exp(U), where U is the system workload of a

D/M/1 queue with arrivals every log(1/β∗) time units and service times being inde-

pendent and of unit Exponential distribution. Positive recurrence of U follows from

inequality (5.28). Pause Y using F (as described on page 130) and call the resulting

process D. The stationary distribution of D, as shown at the end of Section 5.2.1,

is given by

πD(z) ∝ F (z)z−(2−η)

∝ z−(2−η−δ) (for z > h∗), (5.30)
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where η < 1 is the smallest positive solution to the equation

η = β∗(1−η).

Now, by the choice of β∗ above,

(1− η)−1 log η = log β∗ < δ−1 log(1− δ),

and so η < 1− δ. Hence 2− η− δ > 1, and so it is evident from equation (5.30) that

πD is a proper density.

Finally, observe that D takes values in [h∗,∞). Inequality (5.29) therefore shows

that if D0 = z and X0 = x with V (x) ≤ z, then

Ex
[
V (XF (z))

]
≤ β∗z .

As in the proof of Theorem 4.14, it follows that V (XF (z)) can be dominated by DF (z)

(Lindvall 2002), as required.

Note that questions 1 and 3 of page 129 have now been answered: we have defined

what is meant by an adaptive subsampling scheme and shown that, if this takes a

particular (power function) form, a stationary process D that dominates V (X) at

times {σn} can be produced.

5.2.3 The domCFTP algorithm for tame chains

In this section we describe the domCFTP algorithm for tame chains, and hence

complete the proof of Theorem 5.16. We begin this by answering question 4 of

page 129, by showing how to simulate (D,N) in equilibrium, and in reversed-time.

Furthermore this simulation is quite easy to implement when F =
⌈
λzδ
⌉
, which we

shall assume in what follows for simplicity.

The first point to make here is that one can simulate easily from πD using rejection

sampling (Robert and Casella 2004): using equation (5.22), for some constant γ > 0,

πD(z) = γ

(
1
2

⌈
λ zδ

⌉
λ zδ

)
1

z2−η−δ

= γ p(z)g(z),

where p(z) ∈ [1/2, 1], and g(z) is a Pareto density (since 2 − η − δ > 1, as in the

proof of Theorem 5.17). Now, given D0 = z0 as a draw from πD, set N0 = n0,
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where n0 ∼ Uniform {1, 2, . . . , F (z0)}. It follows from the construction of (D,N) in

Section 5.2.1 that (D0, N0) ∼ π̃, as required. The chain (D,N) may then be run in

reversed-time using the following algorithm (see Figure 5.2):

Algorithm 5.18 (Dominating process (D,N) in reversed-time).

set j ← −1

for i = 0,−1,−2, . . . :

if Ni < F (Di) :

Di−1 = Di ;

Ni−1 = Ni + 1 ;

else

set σj = i and j ← j − 1 ;

draw Di−1 from the reverse kernel q(Di ; dz), where

q(z′ ; dz)πY (z′)dz′ = p(z ; dz′)πY (z)dz,

and p(z ; dz′) is the transition kernel for Y = exp(U);

Ni−1 ← 1

We now show that D is a dominating process for X (at the times when D moves)

based on the scale function V , with threshold h∗ (recall Definition 4.15). We define

the sub-level set C∗ by C∗ = {x : V (x) ≤ h∗}: this set is m-small (say).

Fig. 5.2: Construction of D in reversed-time.
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Firstly, the proof of Theorem 5.17 shows that the link between stochastic domi-

nation and coupling (Lindvall 2002) may be exploited to couple the various Xx, σ−M

with D such that for all n ≤M ,

V (Xx, σ−M
σ−n ) ≤ Dσ−n ⇒ V (Xx, σ−M

σ−(n−1)
) ≤ Dσ−(n−1)

. (5.31)

We now turn to part (b) of Definition 4.15. Since C∗ is m-small, there exists a

probability measure ν and a scalar ε ∈ (0, 1) such that for all Borel sets B ⊂ [1,∞),

whenever V (x) ≤ h∗

P (V (Xm) ∈ B | X0 = x) ≥ εν(B).

Suppose first of all that F (h∗) ≥ m. In this case,

P
(
V (XF (h∗)) ∈ B | X0 = x

)
≥ εPF (h∗)−m

ν (B), (5.32)

and so C∗ is F (h∗)-small. Furthermore, the stochastic domination which has been

arranged in the construction of D means that for all u ≥ 1, whenever V (x) ≤ y,

P
(
V (XF (y)) > u | X0 = x

)
≤ P (Y1 > u | Y0 = y) .

We can couple in order to arrange for regeneration if a probability measure ν̃ can be

identified, defined solely in terms of PF (h∗)−m
ν and the dominating jump distribution

P (Y1 ≥ u | Y0 = y), such that for all u ≥ 1, whenever V (x) ≤ y:

Px
(
V (XF (y)) > u

)
− εPF (h∗)−m

ν ((u,∞)) ≤ Py (Y1 > u)− εν̃((u,∞));

PF (h∗)−m
ν ((u,∞)) ≤ ν̃((u,∞));

and Py (Y1 ∈ E) ≥ εν̃(E), (5.33)

for all measurable E ⊆ [1,∞).

Recall the following result, a proof of which is provided in Kendall (2004):

Lemma 5.19. Suppose U , V are two random variables defined on [1,∞) such that

(a) The distribution L(U) is stochastically dominated by the distribution L(V ):

P (U > u) ≤ P (V > u) for all u ≥ 1;
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(b) U satisfies a minorization condition: for some β ∈ (0, 1) and probability mea-

sure ψ,

P (U ∈ E) ≥ βψ(E) for all Borel sets E ⊆ [1,∞).

Then there is a probability measure µ stochastically dominating ψ and such that βµ

is minorised by L(V ). Moreover, µ depends only on βψ and L(V ).

Therefore, using Lemma 5.19, L(Xσ−(n−1)
| Xσ−n = x) may be coupled to

L(Dσ−(n−1)
| Dσ−n = y) whenever V (x) ≤ y, in a way that implements stochastic

domination and ensures that all the Xσ−(n−1)
can regenerate simultaneously whenever

Dσ−n ≤ h∗.

If F (h∗) < m however, part (b) of Definition 4.15 is harder to satisfy. It then

becomes necessary, when D0 = h∗, for D to dominate V (X) not at time σ1 = F (h∗)

but at time

σk = inf
j≥2
{σj : σj ≥ m} .

This involves running the chain D from time zero until the first time after m that it

jumps (σk): since σk ≥ m it follows as for inequality (5.32) that C∗ is σk-small. In

order to couple the chains in a way that implements domination and which allows

all the target chains to regenerate, it then becomes necessary to satisfy the three

inequalities in (5.33), but now with F (y) = F (h∗) = σk and Y1 = Yk, for any k ≥ 1.

This unfortunately renders the algorithm less practical, which is an issue that we are

currently trying to resolve. For simplicity of exposition in what follows, it is assumed

henceforth that F (h∗) ≥ m.

Finally, it is easy to see that part (c) of Definition 4.15 is satisfied: the system

workload U of the queue will hit zero infinitely often and therefore D will hit level

h∗ infinitely often.

We can now describe a perfect simulation algorithm based on X which yields a

draw from the equilibrium distribution, the final step of which is depicted in Fig-

ure 5.3.
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Algorithm 5.20 (Perfect simulation algorithm for tame chains).

simulate D backwards in time (as a component of the

stationary process (D,N), using Algorithm 5.18) until the most

recent σ−M < 0 for which Dσ−M ≤ h∗;

while coalescence does not occur at time σ−M:

extend D backwards till the most recent σ−M ′ < σ−M for

which Dσ−M′ ≤ h
∗;

M ←M ′;

simulate the coupled X forwards at times σ−M , σ−(M−1), . . . , σ−1,

starting with the unique state produced by the coalescence

event at time σ−M; (see Figure 5.3)

run X forward (from its unique state) from time σ−1 to time 0

(without reference to D);

return X0.

Lemma 5.21. The output of the above algorithm is a draw from the stationary

distribution of the target chain X.

Proof. The stochastic domination of equation (5.31) and Theorem 2.4, Ch. IV of

Lindvall (2002) guarantee the existence of a joint transition kernel PX,D that provides

Fig. 5.3: Final stage of the domCFTP algorithm: D (black circles •) dominates V (X) (red
triangles N) at times {σ−n}. To obtain the draw from equilibrium, X0, X can be
run from time σ−1 to 0 without reference to D after time σ−1.
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domination of X by D when D moves, and such that the marginal distributions of

X and D are correct. That is, for x ≤ y, with n = F (y), for all z ≥ 1:

PnX,D
(
x, y ; V −1((z,∞)), [1, z]

)
= 0 ;∫

V −1([1,z])

∫ ∞
1

PnX,D (x, y ; du, dv) = PnX
(
x ; V −1([1, z])

)
;∫

X

∫ z

1
PnX,D (x, y ; du, dv) = PnD (y ; [1, z]) .

The chains X and D (run forwards) may therefore be constructed in either of two

ways.

1. Given Dσ−m and Xσ−m ≤ Dσ−m , with n = F (Dσ−m):

• draw Dσ−(m−1)
from the probability kernel

PnD
(
Dσ−m ; ·

)
;

• draw Xσ−(m−1)
from the regular conditional probability

PnX,D

(
Xσ−m , Dσ−m ; · , Dσ−(m−1)

)
PnD

(
Dσ−m ; Dσ−(m−1)

) ;

• draw Xσ−m+1, Xσ−m+2, . . . , Xσ−(m−1)−1 as a realisation of X conditioned

on the values of Xσ−m and Xσ−(m−1)
(that is, as a Markov bridge between

Xσ−m and Xσ−(m−1)
).

2. Given Dσ−m and Xσ−m ≤ Dσ−m , with n = F (Dσ−m):

• draw Xσ−m+1, Xσ−m+2, . . . , Xσ−(m−1)
using the normal transition kernel

for X. Note that the distribution of Xσ−(m−1)
is exactly the same as if it

were drawn directly from PnX
(
Xσ−m ; ·

)
;

• draw Dσ−(m−1)
from the regular conditional probability

PnD|{X}

(
· | Dσ−m , Xσ−m , Xσ−m+1, . . . , Xσ−(m−1)

)
=
PnX,D

(
Xσ−m , Dσ−m ; Xσ−(m−1)

, ·
)

PnX

(
Xσ−m ; Xσ−(m−1)

) .
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Each of these two methods produces chains X and D which satisfy the stochastic

domination of equation (5.31). Method 1 is that which is effectively used by the

algorithm, although there is no need for the final superfluous step (the Markov bridge)

when implementing the algorithm. Method 2, however, makes it clear that X has the

correct Markov transition kernel to be the required target chain. Furthermore, the

equivalence of the two schemes proves the validity of the final step of the algorithm,

where the chain X is run from time σ−1 to 0 without reference to D.

Finally, the proof that the algorithm returns a draw from equilibrium follows a

common renewal theory argument. Consider a stationary version of the chain X,

X̂ say, run from time −∞ to 0. The regenerations of X̂ (when it visits the small

set C∗), and those of D (when it hits level h∗) form two positive recurrent renewal

processes (with that of X̂ being aperiodic). Therefore, if D is started far enough in

the past, there will be a time −T at which both X̂ and D regenerate simultaneously.

Now consider the process X̃n = X̂n1[n<−T ] + Xn1[n≥−T ]. Clearly, X̃ is stationary

and follows the same transitions of X from time −T to 0. Thus X0 = X̃0 ∼ π,

and so the output of the algorithm is indeed a draw from the required equilibrium

distribution.

This concludes the proof of Theorem 5.16: we have produced a perfect simulation

algorithm based on the scale function V for the tame chain X.

5.2.4 Extended state-space CFTP for tame chains

In the previous section, a perfect simulation algorithm for tame chains was described,

and shown to sample from the correct distribution. This algorithm was based upon

the domCFTP algorithm of Kendall (2004) for geometrically ergodic chains. How-

ever, the algorithm for tame chains as presented is not strictly a domCFTP algorithm.

Recall that the idea behind domCFTP is that of horizontal coupling : all sufficiently

early starts (i.e. at times −n,−(n + 1), . . . , for large enough n) from a given state

x lead to the same result at time 0. The construction of Algorithm 5.20 only insists

upon sufficiently early starts at times σ−n when the dominating process D moves

leading to the same state at time 0. Thus chains started within a time interval of

the form (σ−n, σ−(n−1)) are not guaranteed to lead to the same state at time 0, no

matter how large n is, since such chains will not be dominated by D. This is why
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it was necessary to explicitly prove the correctness of the algorithm in Lemma 5.21,

rather than by simply appealing to usual domCFTP arguments.

However, it is possible to modify Algorithm 5.20 so that it does fit into the

more normal dominated CFTP framework, by using the extended state-space CFTP

construction of Cai and Kendall (2002), presented in Section 4.2.3. In this section

we show how to do this.

In order to use the extended state-space CFTP construction we need to define an

embedding of the space of interest within another, partially ordered, space. To do

this, we shall not work directly with X , but with the space X̃ , defined below. In the

following we shall write Vt for V (Xt). Recall that F is the (deterministic) function

used in the construction of the dominating process (D,N) in the last section.

Definition 5.22. Define X̃ and Ỹ, with X̃ ⊂ Ỹ, as follows:

X̃ = {(d, n, 2, z) : 1 ≤ d <∞, n ∈ N, and z is a (F (d) + 1− n)-tuple} ,

Ỹ = {(d, n, w, z) : 1 ≤ d <∞, n ∈ N, w ∈ {0, 1, 2} , and z is a (F (d) + 1− n)-tuple} .

The partial ordering � on Ỹ is defined by

x =
(
d(1), n(1), w(1), z(1)

)
�
(
d(2), n(2), w(2), z(2)

)
= y

if and only if one of the following two conditions holds:

• either x = y ;

• or d(1) = d(2), n(1) = n(2), and w(1) > w(2) .

Note that X̃ is embedded at the bottom of Ỹ in the manner of section 4.2.3, since

if x ∈ X̃ , y ∈ Ỹ and y � x then x = y.

We now identify chains Ỹ (n) on Ỹ which are identically distributed up to a shift in

time (recall from Section 4.2.3 that Ỹ (n) is a chain started at time−n < 0). To do this

we use the dominating process (D,N): let {(Dt, Nt) , −∞ < t ≤ 0} be a realisation

of this chain constructed by drawing (D0, N0) from its equilibrium distribution π̃

(see page 131) and running (D,N) backwards in time (using Algorithm 5.18). Then

initially, at time −n, we set

Ỹ
(n)
−n =

(
D−n, N−n, 0,

−−→
D−n

)
, (5.34)
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where
−−→
D−n is a vector of length (F (D−n) + 1 − N−n), with each element equal to

D−n.

Then, for −n < t ≤ 0 we define

Ỹ
(n)
t = (Dt, Nt,Wt, Zt) ,

where Dt and Nt are just the components of (D,N) at time t, and the processes W

and Z are defined together (in a Markovian way) according to the following set of

transition rules:

1) if Wt−1 6= 2 and Nt−1 > 1:

(Wt, Zt) =
(
Wt−1,

−→
Dt

)
,

where
−→
Dt is of length (F (Dt) + 1−Nt);

2) if Wt−1 = 0 and Nt−1 = 1:

• if Dt−1 > h∗:

(Wt, Zt) = (0, (Dt)) ;

• else, if Dt−1 ≤ h∗:

– with probability ε > 0,

(Wt, Zt) = (1, (Dt)) ,

where ε > 0 is the constant in the minorisation condition (5.32) sat-

isfied by X on the small set C∗ = {x : V (x) ≤ h∗};

– with probability 1− ε,

(Wt, Zt) = (0, (Dt)) ;

3) if Wt−1 = 1, Nt−1 = 1:

(Wt, Zt) = (2, (Vt)) ,

where Vt is the unique state produced by the coalescent event for a set of chains

V (X), which necessarily occurs at time t (see below);

4) else, if Wt−1 = 2:

(Wt, Zt) =
(
2,
(
Vt−(F (Dt)−Nt), . . . , Vt

))
.
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Although these updates look complicated, they can be described simply as follows:

• W = 0 until the first time after −n, say σ−k, that D drops down to level h∗

and a regeneration is approved (this occurs with probability ε): W then equals

1 until time σ−(k−1) when D next moves, at which point W is set equal to 2.

Wt is then equal to 2 for all t ≥ σ−(k−1);

• Zt is equal to a vector of length F (Dt) + 1 − Nt, with each element equal to

Dt, until time σ−(k−1): at this time all chains V (X) currently dominated by

Dσ−(k−1)
regenerate (as identified by Wσ−(k−1)

= 2) using the measure on the

right-hand-side of inequality (5.32), and then Zσ−(k−1)
= Vσ−(k−1)

(the unique

state produced by the coalescent event). At this point the chain Ỹ (n) enters X̃ .

Zt is then equal to a vector of length F (Dt) + 1−Nt, recording the trajectory

of the coalesced chain V (X) over the time interval [t− (F (Dt)−Nt), t];

From equation (5.34) it is evident that the chains Ỹ (n) are identically distributed

up to a shift in time. Furthermore, Ỹ (n) hits X̃ when all the target chains lying below

D regenerate: this happens in finite time almost surely. Once Ỹ (n) hits X̃ it stays

within this space until time 0, with its final component following the trajectory of

V (X) between the jump times ofD. Finally, we see that the funnelling requirement of

Theorem 4.6 (condition 3) is satisfied for the chains Ỹ (n), as the following statements

hold for −m ≤ −n ≤ t ≤ 0:

• by construction, D(m)
t = D

(n)
t and N

(m)
t = N

(n)
t for all −n ≤ t ;

• if Y (m)
t � Y (n)

t for some t ≥ −n then this equality persists up until time 0 ;

• if there are no coalescent events in the interval [−m,−n) then Y
(m)
−n = Y

(n)
−n ;

• if there is a coalescent event in the interval [−m,−n) then W
(m)
−n > 0 = W

(n)
−n ,

and so Y (m)
−n � Y

(n)
−n .

Accordingly, Y (m)
t � Y (n)

t for all −n ≤ t ≤ 0.

Thus, by Theorem 4.6, setting

T = inf
{
n ≥ 1 : Y (n)

0 ∈ X
}
,
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we see that T <∞ almost surely, and that

Ỹ
(T )

0 =
(
D0, N0, 2,

(
V−(F (D0)−N0), . . . , V0

))
is a draw from the joint equilibrium distribution of the dominating process D, the

time N since the last jump of D, and the trajectory of V (X) from σ−1 (the time of

the last jump of D before 0) until time 0. This is much more than we were actually

trying to achieve! A draw from the equilibrium distribution of X (our original aim)

can of course be recovered from Ỹ
(T )

0 by margining out the distribution of V0.

5.2.5 When is a chain tame?

As a consequence of Theorem 5.16, question 2 of page 129 can be rephrased as: when

is a chain tame? Note that a tame chain will not necessarily be tamable with respect

to all scale functions.

In this section we present an equivalent definition of tameness, and prove some

sufficient conditions for a chain to be tame. The following theorem shows that

tameness is determined precisely by the behaviour of the chain until the time that it

first hits the small set C.

Theorem 5.23. Suppose X satisfies the weak drift condition PV ≤ V + b1C . Then,

for n(x) = o(V (x)), the following two conditions are equivalent:

(i) there exists β ∈ (0, 1) such that Ex
[
V (Xn(x))

]
≤ βV (x), for V (x) sufficiently

large;

(ii) there exists β′ ∈ (0, 1) such that Ex
[
V (Xn(x)∧τC )

]
≤ β′V (x), for V (x) suffi-

ciently large.

Furthermore, if V (x) is large enough, we may take |β − β′| < ε for any ε > 0.

Proof. Since C = {x : V (x) ≤ d} is a sub-level set, it is possible to split the expec-

tation of V (Xn(x)∧τC ) according to whether τC ≤ n(x) or not, to show

Ex
[
V (Xn(x)∧τC )

]
≤ sup

y∈C
V (y) + Ex

[
V (Xn(x)) ; τC > n(x)

]
≤ sup

y∈C
V (y) + Ex

[
V (Xn(x))

]
,

and so (i) implies (ii).
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Now consider the reverse implication. Using the weak drift condition for X, and

recalling that n(x) is deterministic:

Ex
[
V (Xn(x)) ; τC ≤ n(x)

]
=

n(x)∑
k=1

Ex
[
EXk

[
V (Xn(x)−k)

]
; τC = k

]
≤

n(x)∑
k=1

sup
y∈C

Ey
[
V (Xn(x)−k) |Xk = y

]
Px (τC = k)

≤
n(x)∑
k=1

sup
y∈C

(V (y) + b(n(x)− k))Px (τC = k)

≤ d+ n(x)b.

Assuming (ii), it follows that

Ex
[
V (Xn(x))

]
≤ Ex

[
V (Xn(x)∧τC )

]
+ Ex

[
V (Xn(x)) ; τC ≤ n(x)

]
≤ β′V (x) + d+ n(x)b

≤ βV (x),

for all large enough V (x), since n(x) = o(V (x)).

Finally, due to the restriction upon the size of n(x), it is clear that β and β′

may be made arbitrarily close simply by restricting attention to x for which V (x) is

sufficiently large.

Example 5.24 (Epoch chain). Consider the Markov chain X on {0, 1, 2, . . .} with

the following transition kernel: for all x ∈ {0, 1, 2, . . .},

P (x, x) = θx; P (0, x) = ζx;
P (x, 0) = 1− θx.

Thus X spends a random length of time (an epoch) at level x before jumping to

0 and regenerating. Meyn and Tweedie (1993) (page 362) show that this chain is

ergodic if ζx > 0 for all x, and

∑
x

ζx(1− θx)−1 <∞. (5.35)

Furthermore, they show that the chain is not geometrically ergodic if θx → 1 as

x→∞, no matter how fast ζx → 0.

Suppose that θx = 1 − κ(x + 1)−γ , for some suitable κ, γ > 0. We now slightly

strengthen condition (5.35) on {ζx} to obtain a polynomial drift condition: we require
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that there exists ε > 0 such that
∑

x ζxx
(1+ε)γ < ∞. Under this assumption, with

C =
[
0, κ1/γ

]
, the following drift condition holds:

Ex [V (X1)] ≤ V (x)− κV α(x) + b1C(x), (5.36)

where V (x) = (x+ 1)m, m = (1 + ε)γ, and α = ε/(1 + ε).

We now show that X is tame, using Theorem 5.29. Define the taming function

F by

F (z) =
⌈
λz1/(1+ε)

⌉
for some λ satisfying

λ >
1 + ε

κ
log
(

1 + ε

ε

)
. (5.37)

Write Fx = F (V (x)) for simplicity. Then,

Ex [V (XFx∧τ0)] ≤ V (x)θFxx + 1

∼ V (x)
(

1− κ

(x+ 1)γ

)Fx
≤ V (x)

(
1− κ

(x+ 1)γ

)λ(x+1)γ

≤ βV (x) ,

where β = e−κλ satisfies

log β < (1 + ε) log
(

ε

1 + ε

)
,

by inequality (5.37). Therefore X is tame, by Theorem 5.29.

Suppose that we now modify the behaviour of a tame chain X when it is in the

small set C. The following simple corollary of Theorem 5.23 shows that, so long as

the resulting chain still satisfies a weak drift condition, tameness is preserved under

such modification.

Corollary 5.25. Suppose X satisfies the weak drift condition PV ≤ V + b1C and

that X is tamed by the function F , to produce a chain X ′ satisfying GE(V, β, b′, C ′).

Let X̂ be a new chain produced by modifying the behaviour of X when in C, such

that X̂ satisfies PV ≤ V + b̂1C . Then F also tames X̂, and the resulting chain X̂ ′

satisfies GE(V, β̂, b̂′, Ĉ ′), for any β̂′ ∈ (β, 1).
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Proof. Write Fx = F (V (x)). Since X is tame, Theorem 5.23 states that for V (x)

large enough,

Ex [V (XFx∧τC )] ≤ β̃V (x),

for any β̃ ∈ (β, 1). Now, since

X̂1[τ̂C≥Fx]
D= X1[τC≥Fx]

by definition,

Ex
[
V (X̂Fx∧τ̂C )

]
≤ β̃V (x).

Furthermore, since X̂ satisfies the drift condition PV ≤ V +b̂1C , a second application

of Theorem 5.23 yields

Ex
[
V (X̂Fx)

]
≤ β̂V (x),

where β̂ ∈ (β̃, 1) may be chosen arbitrarily close to β̃ (and hence to β). Thus the

same function F also tames X̂.

It has already been remarked that all geometrically ergodic chains are tame:

the rest of this section investigates conditions which imply that a subgeometrically

ergodic chain is tame.

Theorem 5.26. Any chain satisfying drift condition PE may be adaptively subsam-

pled, using a taming function F of the form

F (z) =
⌈
λzδ
⌉
, δ > 0 ,

to produce a chain X ′ which is geometrically ergodic.

A similar result (with a different form for the function F ) holds for chains satis-

fying condition SGE.

Proof. Recall from Lemma 5.11 that for fixed n ∈ N,

Ex [Vρ(Xn)] ≤ MV (x)
nρ−1

+ c , (5.38)

for some constants c,M < ∞, where 1 < ρ < (1 − α)−1 and Vρ = V 1−ρ(1−α). By

Lemma 5.9,

PVρ ≤ Vρ − V α′
ρ + b11C ,
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for some α′ < 1 and b1 <∞. We shall seek a time change that produces a geometric

Foster-Lyapunov condition on this scale, Vρ.

We wish to control Ex [Vρ(XFx)] where Fx = F (Vρ(x)). By inequality (5.38),

Ex [Vρ(XFx)] ≤ MV (x)

F ρ−1
x

+ c. (5.39)

Therefore if F is defined such that

Fx ≥ (λV (x))δ (5.40)

where

δ =
ρ(1− α)
ρ− 1

∈
(

1− α
α

,∞
)
, (5.41)

we obtain

Ex [Vρ(XFx)] ≤ MV (x)
(λV (x))δ(ρ−1)

+ c ≤ βVρ(x) + c , (5.42)

where β may be made as small as desired simply by increasing λ. Since c < ∞

and Vρ is bounded on small sets, inequality (5.42) is equivalent to condition GE, as

required.

This theorem highlights the importance of part (b) in the definition of tameness.

The above result shows that any subgeometrically ergodic chain can be subsampled

using a taming function F to produce a geometrically ergodic chain. However, this

is not enough for our needs in Section 5.2.2, where tight control over the form of F is

necessary in order for the constructed dominating process to have a proper equilib-

rium distribution. For example, from equation (5.41) it is evident that polynomially

ergodic chains with a small drift exponent α need a large amount of time between

subsampling instants, and this is where part (b) of Definition 5.14 may fail.

In the following two results attention is restricted to polynomially ergodic chains,

and the range of α for which the definition of tameness is completely satisfied is

investigated. Note that tameness is monotonic in the drift exponent α, because chains

satisfying PE(V, c, α, b, C) also satisfy PE(V, c, α′, b, C) for all α′ ≤ α. Similarly,

any chain satisfying SGE(V, φ, b, C) with drift φ(x) ≥ cxα also satisfies condition

PE(V, c, α, b, C). The first result follows directly from the proof of Theorem 5.26.

Theorem 5.27. Let X be a chain satisfying the drift condition PV ≤ V −cV α+b1C ,

with α > 3/4. Then X is tame.
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Proof. Let Vρ be as in the proof of the last theorem. There we saw that X can be

tamed by the function F , where

Fx = F (Vρ(x)) ∝ V (x)δ, and δ =
ρ(1− α)
ρ− 1

.

In other words, F must satisfy

F (z) ∝ z
δ

1−ρ(1−α) .

In order to completely satisfy Definition 5.14 therefore, we require

δ

1− ρ(1− α)
< 1 ,

so that F (z)/z → 0 as z →∞. Writing ρ = ε/(1− α), for some 1− α < ε < 1, this

reduces to the requirement that

ε2 − ε+ (1− α) < 0 . (5.43)

This inequality does not hold for the full range of ε ∈ (1−α, 1), and so it is necessary

for the quadratic to have a positive discriminant if inequality (5.43) is to hold for

some choice of ε. Since the discriminant is equal to 1 − 4(1 − α), this means that

inequality (5.43) can only be satisfied for α > 3/4. This completes the proof.

The proof of Theorem 5.27 cannot be improved upon directly: no information is

lost through the use of loose inequalities. The only place where an improvement could

possibly be found is in inequality (5.39), which was the starting point for the proof

of the last result. The following theorem uses a different approach and provides a

slightly better bound than inequality (5.39): this in turn leads to an improved bound

for α.

Theorem 5.28. Let X be a chain satisfying the drift condition PV ≤ V −cV α+b1C

with α > α∗, where α∗ = 0.704... is the only real root of the cubic equation a3−4a2 +

8a− 4 = 0. Then X is tame.

Proof. Recall Holder’s inequality: if p, q > 0 satisfy 1/p + 1/q = 1, then for non-

negative random variables Y and Z,

E [Y Z] ≤ E [Y p]
1
p E [Zq]

1
q .
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Let Vρ = V 1−ρ(1−α) as before, where 1 < ρ < (1−α)−1. As in the last two proofs,

we seek a function F which tames X with respect to Vρ, and by Theorem 5.23 it

suffices to control

Ex
[
Vρ(XFx)1[Fx<τC ]

]
,

where Fx = F (Vρ(x)) again.

We now apply Holder’s inequality to this expression, with

p =
α

1− ρ(1− α)
> 1 ,

and writing c for a generic constant (which may change between successive lines).

This yields (see the following notes for a step-by-step argument):

Ex
[
Vρ(XFx)1[Fx<τC ]

]
≤ Ex [V α(XFx)]

1
p Px (Fx < τC)1− 1

p

≤ (cV (x))
1
p

Ex
[
τ

1/(1−α)
C

]
F

1/(1−α)
x

1− 1
p

(5.44)

≤ cV (x)

(
1

F
1/(1−α)
x

)1− 1
p

(5.45)

=
cV (x)

F
(ρ−1)/α
x

. (5.46)

Inequality (5.44) follows from Markov’s inequality and Lemma 5.11: with Ψ1(x) =

1 and Ψ2(x) = x, this Lemma yields:

Ex [V α(XFx)] ≤ cV (x) .

The next line follows from Theorem 5.5 with Ψ1(x) = x and Ψ2(x) = 1: for any

1 ≤ γ ≤ 1/(1− α),

Ex

[
τC−1∑
k=0

kγ−1

]
≤MV (x)

for some M <∞. Taking γ = 1/(1− α) results in

Ex
[
τ

1/(1−α)
C

]
≤MV (x) ,

which proves the validity of inequality (5.45). Finally, equation (5.46) simply follows

by definition of p.

Note that inequality (5.46) is an improvement upon the bound in inequality (5.39),

since α < 1. Therefore a candidate taming function for X is given by a function F
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satisfying

Fx = F (Vρ(x)) ∝ V δ(x), where δ =
ρα(1− α)
ρ− 1

.

As in the proof of Theorem 5.27 however, F must also satisfy F (z)/z → 0 as z →∞,

and this is equivalent to showing that the following holds for some value of ρ ∈

(1, (1− α)−1):

(1− α)ρ2 − ((1− α)2 + 1)ρ+ 1 < 0 .

As before, we need this quadratic to have a positive discriminant, and this in turn

requires α to solve the following inequality:

α3 − 4α2 + 8α− 4 > 0 .

This concludes the proof.

Although this result only appears to be a slight improvement upon that of The-

orem 5.27, it is possible that the proof could be improved upon to further lower the

bound on α. This possibility follows from two observations:

1) the final bound obtained in inequality (5.46) is still not tight: by Theorem 5.5

we know that
∞∑
n=0

nρ−1Ex
[
Vρ(Xn)1[n<τC ]

]
<∞ .

However, the bound in (5.46) only tells us that

∞∑
n=0

nρ−1Ex
[
Vρ(Xn)1[n<τC ]

]
≤
∞∑
n=0

n(ρ−1)(1−1/α)V (x)

=∞, since ρ ≤ 1
1− α

.

2) unlike in the proof of Theorem 5.27, there are a number of places in the proof

of Theorem 5.28 (inequalities (5.44) to (5.46)) where information is lost (and

thus where improvements might possibly be made).

The sufficient condition of Theorem 5.28 is far from necessary, as shall be demon-

strated by example in the next section. Showing tameness for chains with α < 0.704

is therefore still an open question, and one which is the subject of current research.

We conclude this discussion with a simple, but slightly restrictive, sufficient con-

dition for a subgeometrically ergodic chain to be tame.



5. Perfect Simulation for Slow Markov Chains 154

Theorem 5.29. Let X be a chain satisfying a drift condition PV ≤ V −φ◦V + b1C

for which Hφ ∈ Λ∗ and for which V (X) has bounded upward jumps whenever X /∈ C.

That is, V (X1) ≤ V (X0) + K whenever X0 /∈ C, for some constant K < ∞. Then

X is tame.

Note that if X satisfies condition PE, that is if φ(x) ∝ xα for some α ∈ (0, 1),

then

Hφ(x) =
∫ x

1

du

φ(u)
∝ x1−α ∈ Λ(1− α) .

Thus this theorem applies to all chains satisfying condition PE.

Proof. From Theorem 5.23 we see that it is sufficient to show that by choosing an

appropriate taming function F it is possible to obtain the bound

Ex [V (XFx) ; Fx < τC ] ≤ βV (x) , (5.47)

for all sufficiently large V (x), where Fx = F (V (x)).

Fix α ∈ (0, 1) such that Hφ ∈ Λ(1 − α). Thus there exists dα < ∞ such that

Hφ(z) ≤ cz1−α for all z > dα. Choose β sufficiently small to satisfy

log β < (1− α)−1 logα , (5.48)

and then choose 0 < λ < β. Define the constant dλ by

dλ = max
{
y : y <

K

β − λ
Hφ(y)

}
<∞ ,

and let Cλ = {x : V (x) ≤ dλ}. Note that, if x /∈ Cλ,

(β − λ)V (x) ≥ KHφ ◦ V (x) . (5.49)

Finally, set d′ = max {d, dα, dλ}, and let C ′ = {x : V (x) ≤ d′}.

Now define the taming function F by

F (z) =

{⌈
λ−1Hφ(z)

⌉
for z > d′

1 for z ≤ d′,
(5.50)

and note that our choice of β and F satisfy part (b) of the definition of tame chains.

Then, for x /∈ C ′, since the upward jumps of V (X) before time τC are bounded above
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by K:

Ex [V (XFx) ; Fx < τC ] ≤ (V (x) +KFx)Px (τC > Fx)

≤ (V (x) +KFx)
Ex [τC ]
Fx

, by Markov’s inequality,

≤ (V (x) +KFx)
Hφ ◦ V (x)

Fx
, by Corollary 5.10,

≤ λV (x) +KHφ ◦ V (x) using equation (5.50),

≤ βV (x), by inequality (5.49).

Finally, for x ∈ C ′, we have

Ex [V (XFx)] = Ex [V (X1)] ≤ V (x) + b

≤ βV (x) + (1− β)d′ + b

= βV (x) + b′,

where b′ = (1− β)d′ + b <∞. Hence (5.47) is satisfied and X is tame.

Neither of the sufficient conditions presented above are necessary for a subgeo-

metrically ergodic chain to be tame: in the next section we include an example of a

chain that satisfies condition PE with drift coefficient α = 1/2, and which does not

have bounded jumps for X /∈ C, and show explicitly that it is tame.

5.3 Examples

We have already met two examples of polynomially ergodic chains (the Forward re-

currence time chain of Examples 5.6 and 5.15 and the Epoch chain of Example 5.24)

that have been shown to be tame. We now present four more examples of polyno-

mially ergodic chains, and show that they are tame. The first of these is tame by

Theorem 5.29, and the next two by Theorem 5.27. The final example shows that the

sufficient conditions of Theorems 5.28 and 5.29 are not necessary for X to be tame.

We conclude this section by presenting a subgeometrically (but not polynomially)

ergodic chain: we show explicitly that this chain is wild.

Example 5.30 (Delayed death process). Consider the Markov chain X on {0, 1, . . .}
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with the following transition kernel:

P (x, x) = θx, x ≥ 1

P (x, x− 1) = 1− θx, x ≥ 1

P (0, x) = ζx > 0, x ∈ {0, 1, 2, . . .} ,

where θx > 0 for all x ≥ 1 and θx → 1 as x → ∞. We also assume that the mean

jump from zero, µ0, is finite. This chain is clearly aperiodic and δ0-irreducible. The

expected return time to zero is given by

E0 [τ0] = 1 +
∞∑
j=1

ζj

j∑
k=1

(1− θk)−1, (5.51)

and so we assume that ζj → 0 fast enough for (5.51) to be finite, which makes X

ergodic.

X is not geometrically ergodic, however. To see this, define random variables

Vk ∼ Geom(1−θk). We aim to show that E0 [rτ0 ] =∞ for all r > 1, and then appeal

to Theorem 4.13. First note that for fixed r > 1,

E
[
rVk
]

=

{
r(1−θk)
1−rθk if r < θ−1

k

∞ otherwise.

Therefore:

E0 [rτ0 ] = r
∑
x

ζxEx [rτ0 ]

≥ r
∑
x

ζxE
[
rVx
]

= ∞,

since θx → 1 as x→∞, and so r ≥ θ−1
x for large enough x.

Now suppose that θx = 1− κ(x+ 1)−λ, for some κ > 0, λ > 1, and that {ζx} are

defined so that
∞∑
j=1

ζjj
1+λ+ε <∞, (5.52)

for some ε > 0. (Note that this is more than sufficient for E0 [rτ0 ] to be finite.) A

polynomial drift condition is easy to obtain here, by letting V (x) = (x + 1)m, for
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some m > 1:

Ex [V (X1)] = Ex [(X1 + 1)m]

= (x+ 1)mθx + xm(1− θx)

= (x+ 1)m − κ

(x+ 1)λ
((x+ 1)m − xm)

≤ (x+ 1)m − κ(x+ 1)m−1−λ

= V (x)− κV α(x),

where α = (m − 1 − λ)/m. To satisfy the drift condition (5.6) completely, it is

necessary to choose m such that α > 0 and the drift when X hits the small set C

is bounded (here we can take C = [0, κ1/(1−α)]). Due to the assumption in (5.52),

both of these requirements are met when m = 1 + λ+ ε. Thus X satisfies the drift

condition

Ex [V (X1)] ≤ V (x)− κV α(x) + b1C(x), (5.53)

where V (x) = (x + 1)1+λ+ε, α = ε/(1 + λ + ε), and b < ∞. Since the upward

jumps of V (X) when X is large are clearly bounded for this chain, X is tame by

Theorem 5.29.

Example 5.31 (Delayed simple random walk). Similarly, a delayed reflected simple

random walk can be defined by the following transition probabilities:

P (x, x+ 1) = κ(1− p)(x+ 1)−1 (x ≥ 1), P (0, 1) = κ(1− p),
P (x, x) = 1− κ(x+ 1)−1 (x ≥ 1), P (0, 0) = 1− κ(1− p),
P (x, x− 1) = κp(x+ 1)−1 (x ≥ 1),

for suitable κ > 0, and with p > 1/2 to ensure that X is ergodic. X is not geometri-

cally ergodic however, since the time to hit 0 from any point x dominates that taken

by the delayed death process (with λ = 1) in Example 5.30.

To find a drift condition for X, again take V (x) = (x + 1)m, for some m > 2.

(Note that E0 [V (X1)] <∞ for any m > 0.) Now,

Ex [(X1 + 1)m] = (x+ 1)m − κ

x+ 1
((x+ 1)m − pxm − (1− p)(x+ 2)m)

≤ (x+ 1)m − κm(2p− 1)(x+ 1)m−2 +Kxm−3,

for some constant K > 0,

≤ (x+ 1)m − κ(2p− 1)(x+ 1)m−2, for large x.
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Thus X satisfies condition PE(V, c, α, b, C) with V (x) = (x + 1)m and α =

(m − 2)/m for any integer m > 2. Although the bound |Xn+1 −Xn| ≤ 1 holds,

it is not possible to apply Theorem 5.29 since that requires a uniform bound on

|V (Xn+1)− V (Xn)|. However, choosing m > 10 means that Theorem 5.27 may be

applied to show that X is tame.

Example 5.32 (Random walk Metropolis-Hastings). For a more practical example,

consider a random walk Metropolis Hastings algorithm on Rd, with proposal density q

and target density p. Fort and Moulines (2000) consider the case when q is symmetric

and compactly supported, and log p(z) ∼ − |z|s, 0 < s < 1 as |z| → ∞. (When d = 1,

this class of target densities includes distributions with tails typically heavier than

the Exponential, such as the Weibull distributions.) They show that, under these

conditions, the Metropolis-Hastings algorithm converges at any polynomial rate. In

particular, it is possible to choose a scale function V such that the chain satisfies

condition PE with α > 3/4. Therefore, by Theorem 5.27 this chain is tame.

Example 5.33 (Random walk on a half-line). For our final example of a tame chain,

consider Example 5.1 of Tuominen and Tweedie (1994). This is the random walk on

[0,∞) given by

Xn+1 = (Xn + Zn+1)+ , (5.54)

where {Zn} is a sequence of i.i.d. real-valued random variables. We suppose that

E [Z] = −µ < 0 (so {0} is a positive-recurrent atom) and that E [(Z+)m] = µm <∞

for some integer m ≥ 2.

We also assume that E
[
rZ

+
]

=∞ for all r > 1, and claim that this forces X to

be subgeometrically ergodic. To see this, consider the chain X̂ which uses the same

downward jumps as X but stays still when X increases. That is,

X̂n+1 =
(
X̂n − Z−n+1

)+
.

Let τ0 be the first time that X hits 0, and τ̂0 be the corresponding hitting time for

X̂. Note that, for all n > 0,

Ex
[
X̂n∧τ̂0

]
≥ x− Ex [n ∧ τ̂0] µ̂, (5.55)

where µ̂ = −E [Z ; Z ≤ 0] > 0. Now, the left hand side of (5.55) is dominated by x,
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and Ex [τ̂0] <∞, so letting n→∞ yields

Ex [τ0] ≥ Ex [τ̂0] ≥ x/µ̂. (5.56)

Thus, for r > 1:

E0 [rτ0 ] = rE0 [EX1 [rτ0 ]]

≥ rE0

[
rEX1

[τ0]
]

≥ rE0

[
rX1/µ̂

]
=∞, by assumption.

Therefore, by Theorem 4.13, X is not geometrically ergodic.

Now, Jarner and Roberts (2002) show that if m ≥ 2 is an integer, then X satisfies

condition PE with V (x) = (x+ 1)m and α = (m− 1)/m. Clearly the upward jumps

of V (X) when X /∈ C are not necessarily bounded, and so Theorem 5.29 cannot

be applied. Furthermore, if m ≤ 3 then α ≤ 2/3 and so Theorem 5.28 cannot be

applied. However, we now show that X is still tame when m = 2 (and thus tame for

all m ≥ 2).

(i) First assume that the law of Z is concentrated on [−z0,∞) for some z0 > 0,

and so E
[
Z2
]
<∞. Then, if x ≥ z0:

Ex
[
(X1 + 1)2

]
= E

[
(x+ 1 + Z)2

]
= (x+ 1)2 + 2(x+ 1)E [Z] + E

[
Z2
]

≤ (x+ 1)2 − 2µ(x+ 1) + (µ2 + z2
0).

Thus, for any 0 < β < 1 there exists zβ > z0 and bβ < ∞ such that, with

V (x) = (x+ 1)2 and α = 1/2,

Ex [V (X1)] ≤ V (x)− (2− β)µV α(x) + bβ1[x≤zβ]. (5.57)

Assume that β < 1/4 and a corresponding zβ > z0 are fixed. Write Cβ = [0, zβ],

and for V (x) > zβ define F (V (x)) =
⌈
V 1/2(x)/µ

⌉
. Iterating the drift condition
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(5.57) we obtain for x /∈ C, with Fx = F (V (x)):

Ex [V (XFx)] ≤ V (x)− (2− β)µ
Fx−1∑
k=0

Ex
[
V 1/2(Xk)

]
+ bβFx

≤ (x+ 1)2 − (2− β)µ
Fx−1∑
k=0

(x+ 1− kµ) + bβFx (5.58)

since Ex
[
V 1/2(Xk)

]
= Ex [(Xk + 1)] ≥ x+ 1− kµ,

≤
(

1− (2− β) +
(2− β)

2

)
(x+ 1)2 + γx

for some γ > 0,

≤ β

2
V (x) + γV

1
2 (x).

Thus there exists a sub-level set C ′ and a constant b′ <∞ such that if

F (x) =

{⌈
x1/2/µ

⌉
x /∈ C ′

1 x ∈ C ′,

we obtain

Ex [V (XFx)] ≤ βV (x) + b′1C′(x).

with β < 1/4. Since α = 1/2, the requirement that log β < (1 − α)−1 logα is

satisfied, and so this chain is indeed tame.

(ii) In the general case, we can proceed by truncating the law of Z at a level −z0

so that the truncated distribution has a negative mean. The resulting chain,

X∗ say, is tame by the above argument. However, X∗ stochastically dominates

X on the whole of [0,∞), and so X must also be tame.

Remark 5.34. A polynomial drift condition for this chain can still be shown to hold

when m ∈ (1, 2) (corresponding to drift α ∈ (0, 1/2)). Although it is quite simple

to produce an adaptive subsampling scheme in this situation that produces a chain

satisfying condition GE(V, β, b, C), we have not yet been able to do this in a way

such that β is small enough to satisfy part (b) of Definition 5.14. Therefore it is

unclear at present whether such chains are in fact tame.

Now recall the Epoch chain of Example 5.24. This is the chain X on {0, 1, 2, . . .}

with the following transition kernel: for all x ∈ {0, 1, 2, . . .},

P (x, x) = θx ; P (0, x) = ζx ;
P (x, 0) = 1− θx .
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It was shown above that if θx = 1 − κ(x + 1)−γ then X satisfies a polynomial drift

condition and is tame. We now consider a variant of this chain which satisfies the

subgeometric drift condition SGE, but which is not polynomially ergodic: this chain

turns out to be wild.

Example 5.35 (Epoch chain II). Consider the Epoch chain with

θx = 1− log(x+ 1)
x

,

and with {ζx} satisfying

∑
x

ζxx <∞ , (5.59)

but
∑
x

ζx

(
x

log(x+ 1)

)1/(1−α)

=∞ for all α > 0. (5.60)

(This is satisfied, for example, if ζx ∝ (x log(x + 1))−2.) X is not geometrically

ergodic since θx → 1 as x → ∞ (Meyn and Tweedie 1993, page 362). Furthermore,

we claim that X does not satisfy condition PE. For suppose there exists a scale

function W such that X satisfies the drift condition

PW ≤W − cWα + b1C , (5.61)

for some α ∈ (0, 1). By design, for all x > 0, X satisfies

PW (x) = W (x)θx +W (0)(1− θx)

= W (x)− log(x+ 1)
x

(W (x)−W (0)) . (5.62)

Combining equations (5.61) and (5.62) it is evident that, to satisfy condition PE for

the scale function W , we must have

W (x) ≥
(

cx

log(x+ 1)

)1/(1−α)

. (5.63)

However, to satisfy inequality (5.61) completely, it is necessary that the drift from

the small set C is bounded. In particular, we require E0 [W (X1)] < ∞. However,

from the bound in inequality (5.63) it follows that

E0 [W (X1)] ≥
∑
x

ζx

(
cx

log(x+ 1)

)1/(1−α)

=∞



5. Perfect Simulation for Slow Markov Chains 162

for all α, by the condition imposed upon {ζx} in (5.60). Thus X does not satisfy

condition PE, as claimed.

X clearly does satisfy drift condition SGE however: with V (x) = x+ 1,

Ex [V (X1)] = V (x)− log V (x) + b1C ,

where the bound on the drift from {0} is now guaranteed by equation (5.59). How-

ever,

Hφ(x) =
∫ x

1

du

log u
≥ x

log x
/∈ Λ∗ ,

and so Theorem 5.29 cannot be applied.

We now show that, unlike the original epoch chain, X is wild. To see this,

consider a drift function W and a taming function F :

Ex
[
W (XF (W (x)))

]
≥W (x)Px (τ0 > F (W (x)))

= W (x)
(

1− log(x+ 1)
x

)F (W (x))

∼W (x) if F (W (x)) <
x

log(x+ 1)
.

However, if F (W (x)) ≥ x/ log(x+ 1) then by equation (5.22) the equilibrium distri-

bution of the resulting dominating process D, πD, satisfies (up to a normalisation

constant):

πD(x) ≥ F (W (x))x−(2−η) ≥ x−(1−η)

log(x+ 1)
,

for sufficiently large x, for some value of η ∈ (0, 1). But this means that πD is an

improper density. Therefore there does not exist a taming function for X, and so

this chain is wild.

5.4 Conclusions and questions

We have introduced the concept of a tame Markov chain, and shown that a perfect

simulation algorithm exists for all such chains. We have also shown how this algo-

rithm may be viewed in an extended state-space CFTP setting, as described in Cai

and Kendall (2002). Our algorithm is not expected to be practical in general, but

it directly extends the results of Foss and Tweedie (1998) and Kendall (2004): in a

practical setting of course, one would use a dominating process that is better suited
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to the chain of interest. The main assumption of the above work amounts to sup-

posing that we can translate into practice the theoretical possibility of implementing

various stochastic dominations as couplings. Although this is quite impractical in

its most general setting, it should be noted that practical and implemented CFTP

algorithms can correspond very closely to those described in this thesis. For ex-

ample, we have already seen that the CFTP algorithm arising from the result of

Foss and Tweedie (1998) is essentially the simplest case of the exact sampling al-

gorithm proposed by Murdoch and Green (1998) (reviewed in Section 4.2.1); the

scheme proposed in Kendall (2004) is closely related to fast domCFTP algorithms

for perpetuities with sample step k = 1.

Aside from the development of a perfect simulation algorithm, we have proved two

sufficient conditions for a subgeometrically ergodic chain to be tame, and provided an

example which demonstrates that neither of these sufficient conditions are necessary.

Our suspicion, which is shared by those experts with whom we have discussed this,

is that the following conjecture is true:

Conjecture 5.36. There exists a chain satisfying condition PE which is wild.

On the other hand, we do not rule out the possibility that all polynomially

ergodic chains are tame. A resolution of this conjecture would do much to further our

understanding of such chains. The tame/wild classification provides some structure

to the class of subgeometrically ergodic Markov chains that goes beyond the rate

at which they converge to equilibrium. Although purely theoretical at present, this

may prove to be important in understanding tricky MCMC implementations: for a

tame chain, the existence of a time-change which produces a geometrically ergodic

chain could possibly be exploited to improve the behaviour of an MCMC algorithm.

We have also given an example of a wild chain satisfying the drift condition SGE

(Example 5.35), but this chain does not satisfy any polynomial drift condition. The

existence of a perfect simulation algorithm for this and similar chains is another open

question.



“I predict that within 100 years, computers will be twice as powerful,
10,000 times larger, and so expensive that only the five richest kings of
Europe will own them.”

Professor Frink, in The Simpsons: Much Apu About Nothing



6. CONCLUSION

The work in this thesis has hopefully shown that coupling is a beautiful and powerful

technique, with many applications in both applied and theoretical probability. A

number of these applications have been investigated over the course of the past five

chapters, resulting in some interesting new theory and an abundance of stimulating

open questions.

A major topic of interest arising from this investigation is that of the difference

between co-adapted and non-co-adapted couplings. Co-adapted couplings are usu-

ally far more intuitive that their non-co-adapted counterparts, and as such are more

commonly used in practice. (This is certainly true for perfect simulation algorithms

such as CFTP.) The results of Chapters 2 and 3 show that for some processes there

exists a co-adapted maximal coupling, whereas for others this is not the case. Exam-

ples of this first kind include the random-to-top shuffle of Section 2.2, and Brownian

motions with fixed starting states (Section 3.4). Processes for which optimal co-

adapted coupling is not maximal include the simple symmetric random walk on Zn2
(Section 3.3.2), and Brownian motions with suitably randomised starting states (Sec-

tion 3.4). To the best of our knowledge, little research has been carried out to date

into the differences between optimal co-adapted and maximal couplings.

The ‘price to be paid’ for using co-adapted couplings of random walks on groups

has already been discussed at the end of Chapter 2. There a possible three-class

categorisation system for random walks was proposed, based upon the size of this

cost. At present there is no obvious system by which chains can easily be classified in

this way. For walks generated by the uniform probability measure on the set H ⊆ G,

research into conditions relating the structure of H to the cost of optimal co-adapted

couplings would be extremely interesting.

In the case of Brownian motion and the O-U process however, the difference

between co-adapted and maximal couplings depends completely upon the starting
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states of the two processes. For example, randomising the starting state of one

process while fixing that of the other breaks the maximality of the reflection coupling.

Generalisation of this observation to other diffusions on Rd, and investigation into

the structure of maximal couplings for these processes under initial randomisation,

are also directions for future research.

Finally, Chapter 5 introduced a new class of Markov chains, named tame chains.

Although this definition stemmed from the investigation into the existence of dom-

CFTP algorithms, the tame/wild classification is nevertheless interesting in itself.

Much is known about the asymptotic behaviour of subgeometrically ergodic chains,

but surprisingly little research into their short-term properties exists. From a theo-

retical viewpoint, development of necessary conditions for a chain to be tame would

prove valuable, as would resolution of Conjecture 5.36. For applied probabilists, it

is also to be hoped that a better understanding of tame chains may lead to improve-

ments in MCMC implementation for slowly-converging chains (as mentioned at the

end of Chapter 5).

Who can say where all these paths will lead? Lines of research are of course

co-adapted, so we will just have to wait and see...



APPENDIX: EQUILIBRIUM CALCULATIONS FOR
A D/M/1 QUEUE

Recall from Section 4.4.3 that U is defined as the system workload of a D/M/1 queue,

sampled just before arrivals, with arrivals every log(1/β) units of time, and service

times being independent and of unit rate Exponential distribution. This satisfies the

recurrence

Un+1 =
(
Un + Exp(1)− log β−1

)
∨ 0.

The queue workload just before an arrival is equal to the sum of N independent

Exp(1) random variables, whereN is the number of people in the queue (not including

the arrival being considered). Now, from Grimmett and Stirzaker (2000) we see that

the equilibrium distribution for N is Geometric, with parameter η, where η is the

smallest positive root of

η = β1−η. (A-1)

Thus if Ei
i.i.d∼ Exp(1), and Z ∼ Poisson(t):

P (Un ≤ t) =
∞∑
m=0

P

(
m∑
i=1

Ei ≤ t

)
ηm(1− η) =

∞∑
m=0

ηm(1− η)P (Z ≥ m)

=
∞∑
m=0

ηm(1− η)
∞∑
k=m

e−ttk

k!
=
∞∑
k=0

(1− η)
e−ttk

k!

k∑
m=0

ηm

=
∞∑
k=0

(1− η)
e−ttk

k!
(1− ηk+1)

(1− η)
= 1− ηe−t

∞∑
k=0

(tη)k

k!

= 1− ηe−t(1−η).

To check that this really is the equilibrium distribution of the workload, we now

show that Un+1 has the same distribution. Let E ∼ Exp(1). Then:
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P (Un+1 ≤ t) = P (Un + E − log(1/β) ≤ t)

=
∫ t+log(1/β)

0
e−s P (Un ≤ t+ log(1/β)− s) ds

=
∫ t+log(1/β)

0
e−s

(
1− ηe−(1−η)(t+log(1/β)−s)

)
ds

= 1− e−(t+log(1/β)) − ηe−(1−η)(t+log(1/β))

∫ t+log(1/β)

0
e−ηs ds

= 1− e−(1−η)(t+log(1/β))

= 1− ηe−t(1−η) ,

by the definition of η in equation (A-1). Thus the equilibrium distribution of U

is a mixture of an atom at zero with an Exp(1 − η) distribution, as claimed in

Section 5.2.1.
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Douc, R., G. Fort, E. Moulines, and P. Soulier (2004). Practical drift conditions
for subgeometric rates of convergence. Ann. Appl. Probab. 14 (3), 1353–1377.

Feller, W. (1968). An introduction to probability theory and its applications (3rd
ed.). Wiley.

Fill, J. A. (1999). An interruptible algorithm for perfect sampling via Markov
chains. In STOC ’97 (El Paso, TX), pp. 688–695 (electronic). New York: ACM.

Fill, J. A., M. Machida, D. J. Murdoch, and J. S. Rosenthal (2000). Extension
of Fill’s perfect rejection sampling algorithm to general chains. In Proceedings
of the Ninth International Conference “Random Structures and Algorithms”
(Poznan, 1999), Volume 17, pp. 290–316.

Fort, G. (2001). Contrôle explicite d’ergodicité de châıne de Markov : Applications
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