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Abstract

In his Hardy Lecture at Warwick University in May 2001, Persi Dia-
conis described some work he had undertaken for the Californian Prison
Service. This entailed applying the theory of Markov Chain Monte Carlo
(MCMC) simulation to the problem of decoding substitution codes writ-
ten between prisoners. In this project I have attempted to tackle this issue
myself. In it, I give an account of MCMC algorithms and their application
to decoding, producing simulation programs of my own. I then introduce
the theory of random walks on groups, and use this to estimate bounds
on the convergence rate of such algorithms.

1 Introduction

In this section, the principle of Markov Chain Monte Carlo simulation is in-
troduced, with a brief insight into its history and applications to date. Some
consideration is also given to the issues involved in using such techniques in the
context of decoding.

1.1 Monte Carlo Techniques

Statistical models have, over the years, become more and more complex, partly
as a result of the increasing amount of data available. This increasing complexity
has made it much harder to compute characteristics of associated probability
distributions. For example, suppose we wish to calculate the expected value
E[ψ(Y )] of a random vector Y in k dimensions with density function f(x),
where ψ : Rk → R and E[|ψ(Y )|] < ∞. The usual method of course is to
analytically calculate

E[ψ(Y )] =

∫

Rk

ψ(x)f(x)dx ,

though in high dimensions this cannot often be accomplished. One alternative is
to turn to numerical integration, but another is to use Monte Carlo estimation.
This involves generating a sequence of i.i.d. random vectors {Yi}i≥1 with the
same distribution as Y . The strong law of large numbers tells us that

E[ψ(Y )] = lim
n→∞

1

n

n∑

i=1

ψ(Yi)
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and so we proceed to estimate the value in question by 1
n

∑n
i=1 ψ(Yi). The

accuracy of the estimate is clearly dependent upon the sample size, and the
theory of confidence intervals tells us how large to choose n to satisfy a given
level of accuracy. The Monte Carlo method so described is known to compete
well with numerical integration and, in some circumstances, is the only method
available.

The drawback, however, is that Monte Carlo methods require us to sample
from high dimensional distributions, and this may be extremely difficult or
expensive in computer and analysis time. In such cases, there is another method
available to us: Markov Chain Monte Carlo. One of the main areas in which
this has proved extremely useful is that of computing normalizing factors for
probability distributions. Suppose we have some unknown variables x ∈ X
and data y ∈ Y , then to obtain the posterior p(y|x) given the prior p(x) and
likelihood p(y|x), we can use Bayes’ theorem:

p(x|y) =
p(y|x)p(x)∫

X
p(y|x′)p(x′)dx′

.

In high dimensions though, it can prove extremely difficult to calculate the
integral (normalizing factor) above. Using MCMC, we can still sample from the
distribution of interest, π, by constructing an aperiodic and irreducible Markov
chain which has π as a limiting distribution. We can then sample from the chain
when it is close to equilibrium, and treat this as a dependent sample from π.

Of course, this assumes that we can easily construct a suitable Markov Chain
with limiting distribution π. It turns out that it is in fact not only relatively
simple to do this, but that there are many suitable schemes available to us.
In this project I will concentrate upon the Metropolis-Hastings algorithm (Sec-
tion 2.1). This was introduced in the 1950s, and was originally motivated by
the desire to solve problems in combinatorics and physics. It has been used
extensively since, and, two years ago, was placed in a survey among the top
ten algorithms that had the greatest influence on the development and practice
of science and engineering in the 20th century [3]. Its use in decoding (a new
application) is effective, but unfortunately limited as we shall see.

1.2 Modelling Language

The original application of Markov chains was to analyze the Russian poem
Evgeny Onedin. Markov analyzed the alternation of consonants and vowels,
which he modelled as a simple two-state Markov chain [24]. This, of course,
means assuming that the probability of observing a vowel/consonant depends
solely upon the last letter observed. Although this simplified approach to mod-
elling language may seem a bit crude at first, the use of Markov chains in this
area is widely regarded as acceptable.

We do not need to restrict ourselves to a two-state chain however. A simple
generalization of Markov’s work is to consider transition probabilities between
an alphabet of letters. Further, Shannon and Weaver [26] discuss the mod-
elling of language at a range of different levels: first using N -grams of letters
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(sequences of length N ), and progressing to the level of considering transition
probabilities between sequences of words. At each increase in the amount of
information being used, one sees a vast improvement in the language produced.
The downside, however, is that the computational effort involved increases ex-
ponentially at the same time: if our alphabet is of size n, then a model using
N -grams involves n2(N−1) transition probabilities. This clearly makes high-
order models impractical.

This discussion does, however, give us some reason to consider using Markov
chains to decipher substitution codes. By a substitution code I formally mean
the following.

Definition 1.1 (Substitution Code). Suppose Alph is a character set of size

n, and that we have a portion of text T̃ (expressed as a vector of characters),
that we wish to encode, made up entirely of characters in Alph. Suppose that
Alph’ is another character set, also of size n. If we encode T̃ by choosing some
bijection f : Alph → Alph’ and applying this map to T̃ , then T = f(T̃ ) is a
substitution code.

This is obviously one of the simplest forms of code possible. It is also worth
pointing out that there exist far more accurate and efficient methods of de-
ciphering much harder codes than this, so this is not a particularly practical
application of Markov Chain Monte Carlo. This project does, however, provide
a beautiful example of the power of MCMC techniques.

2 Markov Chain Monte Carlo

I now move on to introduce the Markov Chain Monte Carlo algorithms in more
detail, in particular the Metropolis-Hastings algorithm. This will lead on to a
discussion of how best to apply these techniques to decoding substitution codes.

2.1 The Metropolis-Hastings algorithm

The first example of a method to sample from a distribution using Markov chains
was proposed in 1953 by Metropolis et al. [25]. Known as the Metropolis algo-
rithm, it had a huge impact, and many more papers on Monte Carlo simulation
appeared, particularly in the physics literature, following this. The next really
significant contribution came from Hastings in 1970. He, along with his student
Peskun, showed that the Metropolis algorithm is a particular example of a large
family of algorithms [17]. They studied the optimality of these algorithms, and
introduced the Metropolis-Hastings algorithm, which is what I shall use as the
basis of my decoding algorithm.

I first start by considering the general case, as proposed by Hastings. The
main principle behind the Markov Chain Monte Carlo method is that any
Markov chain on a finite state space which is aperiodic and irreducible has
a unique stationary distribution, and that the k -step transition matrix Pk will
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converge to this stationary distribution as k → ∞. This means that, given our
‘target’ distribution π, we simply need to find a transition kernel P that satis-
fies the above conditions, and has π as a stationary distribution, i.e. satisfies
πP = π.

A simple way to do this is to consider a certain type of Markov chain, called
a (time) reversible chain:

Definition 2.1. A stationary Markov chain with initial distribution π is called
reversible if for all x, y∈S,

π(x)p(x, y) = π(y)p(y, x). (2.1)

where p(x, y) is the one-step transition probability that the chain moves from
state x to state y.

Equations (2.1) are called the detailed balance equations.

Proposition 2.1. Let P = {p (i, j)}i,j∈S be a transition matrix on a count-
able state space S, and let π be some probability distribution on S. If for all
x, y ∈S, the detailed balance equations (2.1) are satisfied, then π is a stationary
distribution of P.

Proof. Fix x∈S, and sum equalities (2.1) with respect to y ∈S to obtain

∑

y∈S

π(x)p(x, y) =
∑

y∈S

π(y)p(y, x) .

The left-hand side is equal to π(x)
∑

y∈S p(x, y) = π(x), and therefore, for all
x∈S,

π(x) =
∑

y∈S

π(y)p(y, x) .

This is the motivation for considering reversible chains: if a Markov chain is
designed so as to be reversible, then it automatically follows from Proposition 2.1
that it will have π as its unique stationary distribution. It is usually much easier
to verify that the detailed balance equations hold than it is to check the general
balance equations: πP = π.

Now consider the transition kernel P in the original form proposed by Hast-
ings in [17]. This is designed to have the following form:

p(x, y) = q(x, y)α(x, y) (x 6= y)

with p(x, x) = 1 −
∑

y 6=x

p(x, y) .

Here Q = {q (i, j)} is the transition matrix of an arbitrary Markov chain on
S, and α(i, j) is given by

α(i, j) =
s(i, j)

1 + t(i, j)
(2.2)
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where s(i, j) is a symmetric function of i and j chosen so that, for all i, j,
0 ≤ α(i, j) ≤ 1, and

t(i, j) =
π(i)q(i, j)

π(j)q(j, i)
.

q(x, y) is commonly referred to as the proposal probability, and α(x, y) as
the acceptance probability.

Lemma 2.2. Let {Xn} be a Markov chain with transition matrix P as described
above. Then {Xn} satisfies detailed balance with respect to π.

Proof.

π(x)p(x, y) = π(x)q(x, y)α(x, y)

=
π(x)q(x, y)s(x, y)

1 + π(x)q(x,y)
π(y)q(y,x)

=
π(x)q(x, y)s(y, x)π(y)q(y, x)

π(y)q(y, x) + π(x)q(x, y)
(since s(x, y) = s(y, x))

=
π(y)q(y, x)s(y, x)

1 + π(y)q(y,x)
π(x)q(x,y)

= π(y)q(y, x)α(y, x)

= π(y)p(y, x) .

The algorithm for producing a sample from the target distribution π, using
a chain defined by the transitions as above, is as follows:

1. Set an (arbitrary) starting state X0, and initialize the iteration counter
j = 1.

2. Propose a new state y using the proposal density q(Xj−1, ·).

3. Evaluate the acceptance probability α(Xj−1, y).
Uniformly generate a random number U ∈ [0, 1].

4. If U ≤ α(Xj−1, y), then the move is accepted, and we set Xj = y. If not,
the chain does not move, i.e. Xj = Xj−1.

5. Increase the counter from j to j+1, and return to step 2 until convergence
is reached.

Since this algorithm allows for rejection, it is clearly aperiodic. By Lemma 2.2
the chain satisfies detailed balance, so we need only check irreducibility in each
specific case to ensure that it will converge to the required target distribution.

5



Now, in order to satisfy the constraint in (2.2) that α(x, y) ∈ [0, 1],we must
have

s(x, y) ≤ 1 + min{t(x, y), t(y, x)} ,

since s is a symmetric function. There are clearly many possible functions s(i, j)
that satisfy the above constraint, and these lead to different MCMC algorithms.
I will concentrate upon one of these only: that produced by taking equality in
the above expression. This leads to

α(x, y) = min

{
1,

π(y)q(y, x)

π(x)q(x, y)

}
. (2.3)

Henceforth I shall refer to the algorithm produced by taking α as in (2.3)
as the Metropolis-Hastings algorithm. It is this form of MCMC algorithm that
will be used in the application to substitution codes henceforth.

2.2 Optimality of the Metropolis-Hastings algorithm

I now take a moment to justify the decision to use the Metropolis-Hastings
algorithm. This entails the introduction of a result of Peskun that shows that
this algorithm is optimal (in some sense) of all MCMC algorithms of the form
considered by Hastings.

Let {Xn} be an ergodic homogeneous Markov chain on some finite state
space E, with transition matrix P and stationary distribution π. Let f : E → R.
Define the asymptotic variance of Xn to be

v(f,P, π) = lim
n→∞

1

n
V ar

(
n∑

k=1

f(Xk)

)
.

When designing a simulation algorithm for our chain, we would clearly like
to minimize v(f,P, π) with respect to P and for fixed π. The following result
of Peskun advises how to do this [4].

Theorem 2.3. Let P1 and P2 be reversible ergodic transition matrices on a
finite state space E, with the same stationary distribution π. If P1 has all its
off-diagonal terms greater than or equal to the corresponding off-diagonal terms
of P2, then

v(f,P1, π) ≤ v(f,P2, π)

for all f : E → R.

Recall that in the Hastings algorithm, we have

p(x, y) = q(x, y)
s(x, y)

1 + t(x, y)

where t(x, y) depends only on q(x, y) and π. We aim to find the best MCMC
algorithm in the Hastings class given a fixed Q. It was observed above that to
satisfy α(x, y) ∈ [0, 1], with s(x, y) symmetric, we must have

s(x, y) ≤ 1 + min{t(x, y), t(y, x)}.
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In the Metropolis-Hastings algorithm, we have equality in the above. As Q is
fixed, p(x, y) is dependent only on s(x, y). It follows that the off-diagonal terms
of P, when using this algorithm, are greater than or equal to the corresponding
off-diagonal terms of any other possible transition matrix. It hence follows from
Theorem 2.3 that the Metropolis-Hastings algorithm is optimal with respect to
asymptotic variance for fixed Q.

2.3 Decoding Substitution Codes

I now introduce the idea of a random walk on a group.

Definition 2.2. A group G is a set with an associative multiplication s, t → st,
an identity id, and inverses s−1. In particular, the symmetric group Sn is the
group of permutations of a set containing n elements.

Note that if Alph’ = Alph in Definition 1.1 then f ∈ Sn. From now on it will
be assumed that this is the case, and I talk about ‘applying a permutation to a
character set’. This assumption is purely for simplicity: the deciphering method
I shall develop can easily be applied to the more general case. Hence to encode
a message all that need be considered is the application of a permutation σ to
the relevant character set, and then the act of decoding reduces to the problem
of finding the inverse permutation σ−1.

This suggests the following idea. Whatever our original text, it can be
viewed as a sequence of characters generated by some Markov chain. If we
can assign a probability to each possible character transition (i.e. working with
digrams), then we can calculate the likelihood of any permutation by applying
the permutation to the text, and then multiply up the resulting sequence of
transition probabilities. We then decide upon the ‘most likely’ decoding, σ̂−1,
by choosing the permutation that has the greatest calculated likelihood.

For a simple example, suppose we are working with the (encoded) text
T = (t, a, c). We can thus restrict ourselves to working with the character set
Alph = {a, c, t}. Suppose further that we have the following matrix of estimated
transition probabilities:

a c t
a
c
t




0 0.3 0.7
0.5 0.05 0.45
0.3 0 0.7


 .

There are six possible permutations of this character set (|S3| = 6). These

permutations are given in Figure 2.1, with the result of applying each to T, and
the resulting likelihood of each permutation.

In this case we would say that the most likely permutation is {a, c, t} 7→
{a, t, c}, since this has the greatest likelihood (0.35). This then, is σ̂−1, our best
guess at the inverse permutation needed to decode the text T. (In this case, the
decoding produces the word ‘cat’.)
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Permutation Applied to T Likelihood

{a, c, t} (t, a, c) 0.3 × 0.3 = 0.09
{a, t, c} (c, a, t) 0.5 × 0.7 = 0.35
{c, a, t} (t, c, a) 0 × 0.5 = 0
{c, t, a} (a, c, t) 0.3 × 0.45 = 0.135
{t, a, c} (c, t, a) 0.45 × 0.3 = 0.135
{t, c, a} (a, t, c) 0.7 × 0 = 0

Figure 2.1: Decoding some simple text

When we are dealing with a larger character set however, the above method
of calculating the likelihood for each permutation becomes infeasible (since
|Sn| = n!). The problem is that we have a (very large, but finite) set of per-
mutations S = Sn (for some fixed n), and we can calculate the unnormalized
probability of any given permutation p̃(s) : s ∈ S (by multiplying up transi-
tion probabilities, as above). What is required, however, is to be able to draw
approximately from the normalized distribution:

p(·) =
p̃(·)∑

s∈S p̃(s)
.

Clearly the sum in the denominator is far too large to calculate, due to
the size of the state space S. This suggests turning to MCMC techniques for
an answer, since it has already been mentioned that they are extremely useful
in problems involving the calculation of normalizing constants. The idea is
then as follows: construct a Markov chain on the state space S (a ‘random
walk on the permutation group’), which has as its equilibrium distribution the
posterior distribution for the true substitution code given the encoded message.
This chain can then be run for a long time, until it is believed to be close to
equilibrium, and then sampling from it can occur.

2.4 Constructing the Markov Chain

Before beginning to consider the application of the Metropolis-Hastings algo-
rithm to the problem at hand, the character set needs to be decided upon, and
the matrix of character transition probabilities obtained. The easiest way to do
this empirically is to analyze a very large piece of text: I chose the novel War
and Peace [18]. I made this decision based upon the constraints that it had to
be a large piece of text to obtain ‘good’ probabilities (War and Peace contains
approximately 3 million characters), and it had to be available on-line (ruling
out anything too recent). Of course, this project could easily be carried out
again using a different basis for the transition probabilities, although this will
be further discussed later. War and Peace has a character set of size 79 (26
lower case letters, 26 upper case, 10 numbers and 17 punctuation). From now
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on this character set will be referred to as Alph, and S79 will be denoted simply
by S.It now becomes clear just how large the state space is (79!), and why the
method used in our earlier example is so infeasible.

Now that the language model has been finalized, a suitable algorithm for
updating the Markov chain must be designed. I have already shown the ap-
propriateness of the Metropolis-Hastings algorithm, and so it simply remains to
decide upon suitable proposal and acceptance probabilities (q(x, y) and α(x, y)
respectively).

I identified (in the earlier simple example) a method of evaluating the like-
lihood of any specific permutation. I now develop this slightly, and introduce
the notation that will be used henceforth.

Suppose T is our encoded text. Then we can write

T = (t0, t1, . . . , tN ) for some N ∈ N.

Then, if σ is some permutation in S, the ‘likelihood of σ’ is calculated by:

p̃(σ) = β(σt0)

N∏

k=1

γ(σt(k−1)
, σtk

) (2.4)

where

• β(σt0) is the prior probability that the initial letter of the decoded text is
σt0 (the image of t0 under the permutation σ).

• γ(σt(k−1)
, σtk

) is the prior probability that the kth letter is σtk
given that

the (k − 1)th letter is σt(k−1)
.

Under the assumption that the English language can be well modelled by
a Markov chain, the target distribution for our chain is simply the normalized
form of equation (2.4).

This just leaves the task of choosing the way in which to propose the moves
that the chain can make. This requires a bit of consideration: we do not want
to jump too wildly around the state space. We hence want to propose only per-
mutations that are similar to the present permutation. This suggests proposing
random transpositions: the two proposed characters in the current permutation
are then transposed to get the new (proposed) permutation. If x, y ∈ S differ
by a single transposition, write x ↔ y. With a character set of size n, there are(
n
2

)
possible transpositions, and so if we choose these uniformly at random, we

have that

q(σ, φ) =





1

(n

2)
if σ ↔ φ

0 otherwise.

So in equation (2.3), we have q(x, y) = q(y, x) if x ↔ y. This reduces the
acceptance probability to the ratio π(y)/π(x), where π is our target distribu-
tion. We have already seen that we only know our target distribution up to
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a normalizing constant, but this constant now cancels out in the above ratio!
This demonstrates why MCMC techniques are particularly useful when the nor-
malizing constant is unknown: it does not feature in the Metropolis-Hastings
algorithm.

I have now completely specified the nature of the Markov chain. Random
transpositions of characters will be proposed, and a move between permutations
σ and φ will be accepted with probability

π(φ)q(φ, σ)

π(σ)q(σ, φ)
=

π(φ)

π(σ)

=
β(φt0)

β(σt0)

N∏

k=1

γ(φt(k−1)
, φtk

)

γ(σt(k−1)
, σtk

)
. (2.5)

The state space for this chain is clearly irreducible, since the chain can
move between any two given permutations by a sequence of transpositions.
Thus the chain should, since it satisfies the detailed balance equations, converge
to its stationary distribution. The next task is to consider the best way of
implementing this algorithm on a computer, and this is what I proceed to do in
the next section.

3 Computer Implementation

When it comes to running a Markov Chain Monte Carlo simulation, the only
practical method available is of course to use a computer. For the purpose
of this project I chose to work in Mathematica, as I have some experience of
working with this package in the past. It must be pointed out, however, that
the programs produced would run much faster in a language such as Java: I
unfortunately did not have time to attempt such an implementation. All the
relevant Mathematica code produced for this project is included in Appendix A.

3.1 The Acceptance Probability

In the breakdown of the Metropolis-Hastings algorithm given in Section 2.1, it is
clear that the only step requiring some consideration is Step 3: calculation of the
acceptance probability (since the proposal probabilities have been designed to be
uniform). The formula in equation (2.5) involves at least 2(N + 1) calculations
in its present form, where N is the length of our text T. This is awfully large,
and would considerably decrease the speed of the program as the length of
the text increases. However, as the chain is only considering moves between
permutations that differ by a single transposition, only a relatively small number
of characters will change when the new proposed permutation is applied to T.
For example, if it proposes swapping characters i and j, then the new proposed
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decoding is identical to the present one, apart from the fact that all occurrences
of character i have been replaced with j, and vice versa.

This suggests rewriting equation 2.5 in the following way.

π(φ)

π(σ)
=

β(φt0)

β(σt0)

N∏

k=1

γ(φt(k−1)
, φtk

)

γ(σt(k−1)
, σtk

)

=
β(φt0)

β(σt0)

∏

x,y∈S

γ(x, y) #φ(x, y)

γ(x, y) #σ(x, y)
, (3.1)

where #φ(x, y) is the number of times character y follows character x when
permutation φ is applied to T. But if the chain is currently at permutation σ
and we propose to transpose characters i, j (producing permutation φ), we have
that #φ(x, y) = #σ(x, y) if x, y /∈ {i, j}, so most of the above terms cancel.
Equation (3.1) then reduces to

π(φ)

π(σ)
=

β(φt0)

β(σt0)

∏

x∈S

γ(x, {i, j}) #φ(x, {i,j}) γ({i, j}, x) #φ({i,j}, x)

γ(x, {i, j}) #σ(x, {i,j}) γ({i, j}, x) #σ({i,j}, x)
(3.2)

It is also worth pointing out here that, in most cases, β(φt0) = β(σt0), unless
the first letter of T under the current permutation is one of those in the proposed
transposition.

The number of calculations required at each iteration to compute the ac-
ceptance probability α has thus been substantially reduced. Equation (3.2) still
involves the product of quite a large number of probabilities though, and if I
were to use this version when writing my program, I would be very likely to
incur errors due to rounding. For the final form of α, the above equation is
therefore rewritten using logarithms to provide more numerical stability:

log π(φ) − log π(σ) =
[
log β(φt0) − log β(σt0)

]

+
∑

x∈S

[
#φ(x, {i, j}) − #σ(x, {i, j})

]
log γ(x, {i, j})

+
∑

x∈S

[
#φ({i, j}, x) − #σ({i, j}, x)

]
log γ({i, j}, x) .

(3.3)

The decision to use this form of acceptance probability means that the pro-
gram now does not need to apply each permutation to T in order to calculate
α. Instead, it just needs to keep track of the number of each type of character
transition, #φ(x, y) ∀x, y ∈ S, for any given permutation φ. The obvious way
to do this is to use matrices, which will also help to increase the speed of the
programs, as will be explained shortly.
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From now on, I will refer to the ‘transition matrix of a permutation σ’:

Mσ =

Alph1 Alph2 . . .
Alph1

Alph2
...




m11 m12 . . .
m21 m22 . . .

...
...

. . .




where mij = #σ(Alphi,Alphj), and I will usually just write

Mσ =




m11 m12 . . .
m21 m22 . . .

...
...

. . .


 .

This means that in matrix form, equation (3.3) reads:

log π(φ) − log π(σ) =
[
log β(φt0) − log β(σt0)

]
+ (Mφ −Mσ)(log P)T (3.4)

where P is the matrix of empirical transition probabilities obtained from
War and Peace, and (logP) is the matrix whose (i, j)th entry is the log of the
(i, j)th entry of P. So the chain accepts a move from σ to φ with probability α,
where

log α = min {0, log π(φ) − log π(σ)} .

The algorithm for the chain is then as follows:

1. calculate the transition matrix for the current state σ

2. propose new permutation, φ

3. calculate new transition matrix for φ

4. calculate the acceptance probability using equation (3.4).

Again the task of calculating α is simplified by the fact that when we trans-
pose two characters, the rest are unaffected. This means that if characters i
and j are transposed, only the entries in the rows and columns of the transition
matrix corresponding to these characters will change. So most of the entries
of the matrix (Mφ − Mσ) in equation (3.4) are zero. This suggests that the
speed of computation can be increased by looking for simple matrix operations
to apply to the current Mσ in order to obtain the matrix for the newly proposed
permutation.

A little experimentation shows that swapping characters i and j corresponds
to first swapping rows Alphi and Alphj in Mσ, and then swapping columns Alphi

and Alphj . For example, suppose we are working with a character set of size 5,
and the chain is currently at permutation σ, with
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Mσ =




m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34 m35

m41 m42 m43 m44 m45

m51 m52 m53 m54 m55




.

Now suppose we propose to transpose characters 1 and 4, resulting in per-
mutation φ. To obtain Mφ, we simply swap rows 1 and 4 of Mσ . . .




m41 m42 m43 m44 m45

m21 m22 m23 m24 m25

m31 m32 m33 m34 m35

m11 m12 m13 m14 m15

m51 m52 m53 m54 m55




. . . and then swap columns 1 and 4 to get:

Mφ =




m44 m42 m43 m41 m45

m24 m22 m23 m21 m25

m34 m32 m33 m31 m35

m14 m12 m13 m11 m15

m54 m52 m53 m51 m55




Now, when we subtract Mσ from Mφ, we are left with:




m44 − m11 m42 − m12 m43 − m13 m41 − m14 m45 − m15

m24 − m21 0 0 m21 − m24 0
m34 − m31 0 0 m31 − m34 0
m14 − m41 m12 − m42 m13 − m43 m11 − m44 m15 − m45

m54 − m51 0 0 m51 − m54 0




.

So the number of calculations required to compute the acceptance proba-
bility has been reduced to just a few: row and column operations are simple
calculations for a computer. The algorithm can even be sped up slightly more by
observing the pattern of entries in the final matrix, (Mφ−Mσ). It is possible to
force the computer to calculate each non-zero entry of this matrix individually:
this involves the calculation of 4(n − 1) non-zero entries (where |Alph| = n),
compared to the 2(N + 1) calculations in equation 2.5. Since in nearly all sit-
uations, n ≪ N , this is a significant improvement. With a large character set
this method is marginally faster than using matrix operations, but the gain is
minimal.

3.2 Program-writing

Now that a relatively fast method of computing the acceptance probability has
been developed, the construction of the programs that will be needed to decode
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a portion of text can be considered. All relevant code is included in Appendix A
with some commenting. In this subsection I do not go into much detail: the
aim is merely to present some of the methods used, explain why they were used,
and describe some of the problems encountered.

The first issue that requires some consideration is that of obtaining the em-
pirical character transition probability matrix, P. I have already described my
reasons for using War and Peace as the basis for this matrix, and the program
that was used to convert the novel into transition matrix form is named prob.
Entries in this matrix then need to be converted into probabilities (just dividing
each entry by the relevant row-sum) and logarithms taken. The program that
does is this is logprob. Although this stage seems rather trivial, it is mentioned
because some thought is needed when we have a zero entry in the transition ma-
trix: we clearly do not want to be summing terms involving log(0) when it comes
to calculating α. On the other hand, if these entries of (log P) are simply set to
zero, then the chain will always accept a move to a permutation that has likeli-
hood zero. A little trial and error work resulted in my defining log(0) : = −12:
this seems to be small enough to prevent the chain from accepting such a move.
The matrix (log P) is called matwrpc whenever it appears in a program.

The other matrix obtained from War and Peace is freq. This is a column
vector of length 79, whose ith entry is the relative frequency of character Alphi

in the novel. This is used in the calculation of the acceptance probability, since

β(φt0) = freq (φt0)

in equation (3.4).
The two programs that are involved in calculating the acceptance probabil-

ity are named swap3 and swap. The former of these carries out the row swap
followed by the column swap to produce the transition matrix for the proposed
permutation. This matrix is accepted as the starting matrix for the next it-
eration if the chain moves to this permutation. The other program calculates
the matrix (Mφ − Mσ) by explicitly determining each non-zero element, as
described on the previous page.

It has already been mentioned that the program does not need to apply each
permutation to the text at each iteration in order to calculate it’s likelihood.
This means that all it needs to do is store the original permutation, and then to
update this by applying any accepted transposition to the current permutation.
The program stores the current permutation under the name alph, and applies
transpositions using the program tranAlph. When the chain is terminated, the
program alphify applies the final permutation to the text, so producing the
actual decoding.

The final program to run the algorithm is entitled solvitbound, and runs
according to the following algorithm:

1. calculate the transition matrix of T under the identity permutation (i.e.
take alph = Alph)

2. propose a transposition of two characters at random
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3. calculate the transition matrix of the permutation arising from the above
transposition

4. calculate the prior probability of the first letter of T under the new per-
mutation

5. calculate the acceptance probability

6. if the move is accepted, set the current transition matrix to be that found
in step 3

7. return to step 2 until the chain converges1 or the maximum number of
iterations is reached

8. produce appropriate diagnostic plots

9. decode the text using the final permutation.

The main problem that I encountered whilst programming was that of track-
ing the effects of the chain accepting a move. Not only does the transition matrix
change, but the first letter of the decoded text must also be tracked, and this
produced quite a few indexing problems. The main issue is that of logically
following through the indexation. For example, to find the prior probability of
the initial letter under the current permutation alph, three steps are involved:

• the first letter under alph must be calculated

• the position of this letter in Alph must be found

• the relevant entry in freq must be referenced.

The above method works well, but there may well be a much more efficient
way of doing this.

This concludes the discussion of the decoding program that I developed.
Further commenting is provided with the code, and this should help to provide
more of an insight into the methods that were used. I now proceed to discuss
some diagnostic methods that I used to assess the efficacy of my program.

3.3 Convergence Diagnostics

The convergence of Markov chains produced under Markov Chain Monte Carlo
simulation can be notoriously difficult to assess. There is usually no definitive
way of deciding that the chain has converged, and so convergence diagnostics
are used as a heuristic method of assessing this. These methods normally warn
if convergence has not been reached, but can not generally be used to guarantee
that the chain is close to equilibrium.

A common diagnostic is to plot a summary statistic of the chain, especially
if the chain lives in a space of high-dimension. It is usually the case that these

1This will be discussed in detail in Section 3.3
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plots display atypical behaviour early on, and this can often be attributed to
initialization bias caused by the choice of starting state for the chain. Once the
chain has reached equilibrium, its distribution becomes more constant over time,
and so a more stable graph is to be expected. The reverse of this is not neces-
sarily true however: if the path of the chain appears stable, but equilibrium has
not been reached, then the chain is said to be experiencing meta-stability. This
can be caused by the stationary distribution being multi-modal. In the decod-
ing application this is equivalent to the chain finding a pretty good permutation
(but not the target one) and ‘getting stuck’ there for a time before moving on
again. If we were to sample during this time, believing that convergence had
been reached, we would clearly not find the target permutation. It is therefore
common to choose a range of starting states for the chain, which are widely
dispersed in the sample space. A Markov chain is then simulated from each
of these starting states, with the idea being that we can detect meta-stability
if it occurs since the different chains will get stuck in different modes of the
stationary distribution.

In this project I decided upon three methods of assessing convergence. Using
the three together improves the chance of avoiding sampling when the chain is
in meta-stability, as described above.

The three diagnostics used are:

• Proportion of Transpositions Accepted

• Negative Log-Likelihood

• Percentage Accuracy

The first of these simply counts how often the chain accepts a new permuta-
tion. This is displayed as a percentage every few hundred iterations (dependent
upon the maximum allowable number of iterations). When the chain is started,
it is likely to be visiting states of low likelihood and so we would expect to
see quite a high acceptance rate at first (approximately 50%). As the chain
approaches equilibrium, it becomes less likely that a better permutation will
be proposed and accepted, and so the percentage of transpositions accepted
should drop significantly. Hastings defines the rejection rate of a chain as the
proportion of times t for which Xt+1 = Xt [17]. He recommends recording the
rejection rate (effectively what my diagnostic is doing), since a high rejection
rate “may be indicative of a poor choice of initial state or transition matrix,
or of a ‘bug’ in the computer program”. A consistently high rejection rate is
clearly undesirable, as this would lead to long periods of meta-stability: this
would not only increase the number of iterations needed to reach equilibrium,
but could also fool us into believing that the chain had converged.

Before explaining the second of these diagnostics, I first need to explain
exactly what I mean by negative log-likelihood. If the chain is currently at
permutation σ, then the negative log-likelihood of σ is defined to be

− Mσ(log P)T .
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This is calculated and printed by the program likeprint. The negative log-
likelihood of a permutation is a positive number, rounded by the program to the
nearest integer (the exact version is used by the main program when calculating
the acceptance probability). Since the log-likelihood of any permutation is nega-
tive, and we expect it to increase as the chain approaches equilibrium, we would
clearly expect the negative log-likelihood to decrease as the chain converges. If
the required permutation (σ−1) is known, then the negative log-likelihood of any
permutation can be compared with that of σ−1 as a measure of how close the
chain is to equilibrium. This permutation is, of course, unknown in all practical
cases, but when testing the programme I started by encoding some text and
then trying to decode it. This meant that I knew σ, and hence σ−1, and so this
diagnostic proved particularly useful when checking that the program actually
worked.

The third diagnostic that I used again requires σ−1 to be known in advance,
making it useless when faced with some encoded text. The percentage accuracy
of any permutation φ is the proportion of letters correctly decoded when φ is
applied to T. This is not simply the number of characters in φ which agree with
σ−1: it also takes into account the frequency with which each character occurs
in the decoded text. This diagnostic is calculated by the program percentage,
and is rounded to the nearest integer. It is not calculated by applying each
permutation to T and comparing the two decodings, but instead compares the
two permutations and uses the transition matrix of φ to take into account the
character frequencies in the text.

When presenting my results I will concentrate upon the second two of these
diagnostics. Although tracking the rejection rate was very helpful when devel-
oping the programs, it proved not to be as useful as the other two when trying
to identify convergence.

4 Preliminary Language-Analysis

Before presenting the main findings of this project, I first take a moment to
discuss the type of text that I used my program to decode. Since I used the
novel War and Peace as the basis of the matrix (log P), it seemed intuitive
that the program would perform best on similar sorts of text. This is because
the program works by assuming that the text it is trying to decode has similar
character transition probabilities when decoded. Hence, if the text T is too
dissimilar to War and Peace, the program will be quite useless. This led me to
my decision to use the program to decode scrambled versions of English novels.

A little more justification is needed here though: just how similar are these
novels? In an attempt to answer this question, I selected the first chapters of
nine novels and looked at their letter frequencies. These texts were of varying
lengths, by different authors, and from a range of eras. They are: Oliver Twist
(Dickens), Treasure Island (Stevenson), Robinson Crusoe (Defoe), Pride and
Prejudice (Austen), Jane Eyre (Brontë), War and Peace (Tolstoy), Far from
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the Madding Crowd (Hardy), Framley Parsonage (Trollope) and an unpublished
children’s story by W. Kendall. (With the exception of the last, these are all
available from the Project Gutenberg website [18].) Henceforth I shall refer to
them by author.

Of course it is the transition probabilities which are really important to the
program, but it is a much bigger job to compare 792 frequencies between the
texts, as opposed to just 79. The results are displayed in Figure 4.1: the numbers
on the x-axis refer to the position of the characters in Alph (see Appendix A).
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Figure 4.1: Character frequencies for the nine novels

The mode at position 17 corresponds to ‘space’, and the next two peaks
(at 28 and 36) correspond to the letters ‘a’ and ‘e’ respectively, as might be
expected.

It would appear then that character frequencies are fairly consistent between
novels: this is encouraging, as it indicates that these texts may decode well
when using War and Peace as a basis. The above graph does not, however,
tell us anything about the character transitions. I have already mentioned that
producing histograms with 792 bars is infeasible, but I have already discussed
another method of assessing character transitions: the negative log-likelihood.
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I hence calculated the negative log-likelihood of the first chapters of the nine
novels, and plotted these against their lengths (since negative log-likelihood
almost certainly increases with length of text). The graph of this is presented
in Figure 4.2, with the simple linear regression line drawn in.
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Figure 4.2: Linear regression of negative log-likelihood against length.

This best-fit line has a y-intercept of -281, and gradient 2.5. We would
expect a y-intercept of zero of course, but the value obtained is reasonable in
light of the scale of the data points. The fact that these points lie so close
to a straight line suggests that, if negative log-likelihood turns out to be a
good indicator of convergence, we can use this line to predict to what level the
negative log-likelihood should drop when the chain reaches equilibrium. This
would be extremely useful, for two reasons:

• we do not need to know σ−1 to use the negative log-likelihood diagnostic
- i.e. this can be used in ‘real’ applications of the program

• we will not be caught out by meta-stability, since we can predict the
approximate value at which the diagnostic should stabilize, just by con-
sidering the length of the text that we are decoding.

It remains to be seen whether or not the negative log-likelihood is actually
that good at assessing convergence, but if it is then we have found an extremely
useful diagnostic measure.
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It hence appears that the program should be quite effective at decoding
text which is ‘similar enough’ to the basis of the matrix (log P). To see how
dissimilar other sorts of text would be, I selected six texts of various kinds and
performed the above analysis of them. These texts were: novels in German,
Dutch and Welsh; some Latin prose; an article from a computer magazine; an
extract from a biochemical paper.

I chose these as I would expect them to be different from War and Peace, but
on different scales. For instance, the computer magazine and biochemistry paper
contain mainly English, but with more abbreviations and acronyms than used by
Tolstoy. I would also expect the Latin text to have similar character transitions
to English, but the Welsh and Dutch texts to be completely dissimilar.
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Figure 4.3: Character frequencies for the other texts

The character frequencies for these texts are presented in Figure 4.3 . The
histograms for the computer magazine article and the Latin text are similar
to that of the novels, but the others display some differences. The biochemical
article has many more capital letters than the novels (the bars in the histograms
for the novels are not separated - the ‘spaces’ are the bars for the capital letters).
This is almost certainly due to more acronyms, descriptions of DNA chains etc.
The Dutch text has a very high frequency of the letter ‘e’, whilst the Welsh text
favours the letter ‘y’.

The most significant difference between these texts and the novels is only
really identified by considering the negative log-likelihood for these texts. Figure
4.4 shows how these compare to the best-fit line found in Figure 4.2 (the new
points are represented as triangles).

The negative log-likelihood for these texts is clearly quite different from that
of the novels. Although this is not conclusive proof that the program will not
decode these texts, it does indicate that their character transition frequencies
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Figure 4.4: Negative log-likelihood vs length for the other texts.

are different from those in War and Peace, and so these probably would not
decode so well. It also means that, if we were to try to decode texts of this kind
using War and Peace as a basis, the negative log-likelihood diagnostic would
not be as useful as it will hopefully prove to be with the novels.

As a preliminary form of analysis therefore, it appears that English novels do
display similar characteristics concerning character frequencies and transitions.
This is encouraging, as it indicates that the program should be able to decode
any text of this kind. Other kinds of text are quite different as we have seen.
and so it is unlikely that the program as it stands would decode these. This
problem is easily resolved of course: if we wanted to decode something in Welsh
for example, then we could simply create a new (log P) matrix using some
Welsh text. This should then work just as well as the English version: any
substitution code can theoretically be deciphered, as long as a suitable basis for
the character transition matrix can be found. As I have chosen to use War and
Peace for my project however, I will henceforth consider principally English
novels, and proceed to carry out my analysis on just four of these: Kendall,
Brontë, Dickens and Stevenson.
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5 Results

The program works! The final working version took me quite a long time to
develop, but is indeed capable of producing quite an accurate decoding of the
sort of text I am considering. The first point that must be emphasized, however,
is that the program does not always decode the text to a satisfactory degree, as
we shall see. It must be remembered that the Markov chain evolves according to
numbers produced randomly by the computer: although the theory states that
the chain should eventually converge, practical constraints (such as imposing a
maximum number of iterations) often prevent equilibrium being reached. One
of the areas that I investigated was how many iterations it takes for the chain
to converge, and these results are presented in section 5.3.

The results presented in this section come from a number of versions of
the final program solvitbound (the names of which, for reference, all start
‘solv’). These all use the same algorithm to construct the Markov chain, but
the arguments and output change according to exactly what is desired. An
example of the program solveplot2 working is provided in Appendix ??: the
output comprises of the negative log-likelihood and percentage correct at the
start and finish, a graph of the negative log-likelihood against the number of
iterations, and the first few lines of the decoded text.

5.1 Length of Text

Once it was established that the program worked, I used it to investigate ways
of improving the efficiency and accuracy of the decoding. The first thing that I
chose to consider was the length of the text T that the program was being asked
to decode. Of course, the running time of the program is fairly independent of
this length: once the initial transition matrix is constructed (which is length-
dependent), the program runs completely on matrix operations. Since changing
the length of the text cannot therefore significantly improve the efficiency of
the program, it may well be asked why it is worthy of any consideration. The
reason is that the program works by comparing character transition frequencies
in T with those in War and Peace. Hence, if the text is too short, there may
not be enough information about these transitions available. This suggests that
the program will decode longer text to a better degree of accuracy.

To investigate this, I selected two of the novels (Kendall and Dickens) and
used the program to decode different lengths of these. For each run of the pro-
gram, the encoding of the text and the random seed (defining the proposed trans-
positions and the uniform random variable contributing to the acceptance prob-
ability) were fixed. Four lengths were used for each text. This was implemented
using the program solveplot2: this was an early version of solvitbound, and
ran very slowly in comparison. Consequently, I imposed an upper bound of
25, 000 iterations for each run: this is relatively small and the chain is unlikely
to be in equilibrium by this stage as we shall see later, but was sufficient to gain
some results in this area. Each run of four decodings was repeated 20 times
for each piece of text. An example of the result of one run of four decodings of
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Dickens is included in Appendix ??.
In this instance, the first 2, 000 and first 4, 000 characters both decoded to

99% accuracy, whilst the other two lengths (first 1, 000 and first 6, 000 charac-
ters) did not perform well at all after 25, 000 iterations. (It is worth pointing
out here that the length of time the program takes to run is indeed independent
of the length of text: each decoding in this example took approximately 990
seconds.)

This was not the case with every run, however. Figure 5.1 is a box-plot
of the percentage error of decoding these four lengths of Dickens at 25, 000
iterations. Although the results from the 2, 000 and 4, 000 character runs do
not tell us much, the marked difference between the error rates at 1, 000 and
6, 000 characters supports the proposal that longer text should decode better.
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Figure 5.1: Percentage error vs length of text for Dickens

This was not the trend obtained from the results of decoding Kendall in the
above manner though. Figure 5.2 is the corresponding box-plot for this text.
This shows a trend that is almost completely the opposite to that in Figure 5.1:
the percentage error appears to be increasing with text length. This is far from
conclusive, however, since the sample size is unfortunately quite small. The
range of values at each length is very large, due to the fact that at least one
extremely accurate decoding was produced for each length of text, but in many
cases equilibrium was not reached. It is almost certainly the case that many
of the decodings with high percentage errors would actually decode very well if
allowed to run for longer, as will be investigated in subsection 5.3. Unfortunately
these results were obtained, as mentioned, before I had developed the algorithm
for my final program, and time constraints meant that I was not able to repeat
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Figure 5.2: Percentage error vs length of text for Kendall

this part of my investigation with solvitbound.
These results seem pretty inconclusive therefore: they certainly do not sup-

port the idea that more text should produce a better decoding. Going back
to the reasoning behind this idea though, there is another effect introduced
by increasing text length that was not considered. In my earlier argument, I
stated that increasing text length provides the program with more information
regarding character transition frequencies. This assumes, however, that these
frequencies become more consistent with those in War and Peace as more text
is included. But this may not always be the case: for example, the character fre-
quencies for the first half of the correctly decoded text may be similar to those
in War and Peace, whilst those for the second half of the text are markedly
different. This may arise for any number of reasons. For example, a new proper
noun may be introduced suddenly: this may significantly increase the number
of transitions between two characters that are not commonly seen together in
everyday English, e.g. the ‘nz ’ in the name ‘Rapunzel ’ (Kendall).

5.2 Splitting the Text

It would appear then that we cannot expect to significantly increase the accuracy
of a decoding simply by introducing more text, unless we can be sure that the
character transitions become more consistent with our basis text as we do this.
This suggested that I should next try splitting up the encoded text, and then
using the program to decipher each part separately.

This was carried out in a manner similar to the above investigation, but I
did not simply add more text at each run. I instead partitioned each novel into
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four overlapping parts. The text partitions are labelled 1-4 in each case, and
the sequence of characters in T to which each corresponds is as follows:

Partition Dickens Kendall
1 1-4, 000 1-3, 000
2 2, 000-6, 000 1, 500-4, 500
3 4, 000-8, 000 3, 000-6, 000
4 1-8, 000 1-6, 000

The aim of this was to see if certain sections of text decode better than
others: if so, then this may help to explain the results obtained in Section 5.1.
For example, if we were to find that the first n characters of T decode well, but
that the following N characters do not decode so well, then it may well be the
case that the first n would decode better than the first n + N (a longer piece of
text).

Each run of four decodings was carried out 20 times for each piece of text
again (for 25, 000 iterations), keeping the encoding and seed constant for each
set of four. The results of this are displayed in Figures 5.3 and 5.4.
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Figure 5.3: Percentage error vs partition of text for Dickens

These plots clearly show that there is a lot of variation within a piece of
text. For example, in Dickens the first 3, 000 characters decoded much better
than the final 3, 000. Together, however, they decode very well (partition 4).
Figure 5.4 is again different though. For Kendall it appears that both the first
and second halves (partitions 1 and 3) decode well, but that combining them
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Figure 5.4: Percentage error vs partition of text for Kendall

actually increases the percentage error. This is in keeping with Figure 5.2, where
increasing the length of the text worsens the deciphering accuracy.

It appears then, that there are some quite complex interactions occurring
within the text. It is worth emphasizing that the above results were obtained
by keeping the random seed constant for each run of four decodings, so the
results of different partitions are directly comparable. This variation within text
could have severe implications for our aim to develop the best method (within
the MCMC framework) of deciphering substitution codes. The fact that the
observed variation does not seem to follow any obvious pattern (evident from
the direct comparison of Dickens and Kendall above) does not suggest any ways
of dealing with it.

One method, however, may be to partition the text and decode each por-
tion as above. This would then lead to multiple suggestions for the required
permutation σ−1. Out of these, the permutation with the lowest negative log-
likelihood could be accepted as σ̂−1, and then this could be applied to T to
achieve the final decoding.

Interested to see if this would actually improve the frequency with which
a ‘good’ decoding was achieved, I again considered the results obtained from
partitioning the text. In doing this I decided to define a ‘good’ decoding as
one that achieves an error rate of less than 10%: once the program gets this
close, it is usually quite easy to identify and rearrange the incorrect characters.
The outcome of this was quite interesting: it appears that the frequency with
which a good decoding is achieved can be significantly increased by splitting the
text into two halves and using the program separately on each. With Dickens,
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decoding the whole text produced a good result 60% of the time, whilst doing the
two halves separately increased this to 80%. An even better result was observed
with Kendall : here the frequency was increased from 40% to 80%. Although the
sample size is again quite small, the intuition behind this idea makes sense and
is supported by the results obtained. My first recommendation for increasing
the accuracy of the decoding is therefore to consider splitting the text into two
parts (or possibly more) and attempting to decipher each separately.

5.3 Number of Iterations

One of the most important issues associated with this project is, of course,
how many iterations it takes for the chain to converge. This is investigated in
this section, using a faster program than solveplot2, which I had thankfully
developed in time to do this.

Having this final program available meant that I was able to produce a larger
sample size, and also to run each chain for far more than the 25, 000 iterations to
which the program was restricted above. In order to investigate the number of
runs to reach equilibrium, I first had to decide how to define equilibrium. From
the earlier results, it appeared that the chain could reach at least 99% accuracy
in some cases, and so I decided to use this as my definition of convergence. I
selected four of the nine novels (Kendall, Dickens, Brontë and Stevenson) and
ran the program 60 times on each. The program was set to terminate if 99%
accuracy was attained, or if the maximum allowable number of iterations was
reached (200, 000).

In addition to considering those that ‘reached equilibrium’, I also looked
at the number of unfinished runs which had reached at least 90% accuracy by
200, 000 iterations: it was highlighted above that at this level of accuracy it is
often easy to ‘fill in the blanks’. Although the program was not set up in a way
to tell us how many iterations it took to reach this stage, this could easily be
implemented. With some text, as we shall see, the program often managed to
obtain an error rate of less than 10%, but ‘got stuck’ at this point, meaning
that it did not satisfy the strict criterion for convergence.

The results are displayed below. The following table identifies the proportion
of times 99% or 90% accuracy was reached for each novel. It also gives the mean
number of iterations the chain took to reach convergence, given that it did indeed
reach the 99% level:

%’ge accuracy Kendall Dickens Brontë Stevenson
99% 63% 67% 28% 68%
90% 63% 72% 68% 68%

Mean no. of iterations 20580 42666 31095 23211
Standard deviation 9195 34718 28491 11652

Leaving the results for Brontë aside for a second, the program seems to have
a success rate of approximately 66% at reaching equilibrium within 200, 000
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iterations. It would also appear that in the cases when it exceeds the 90%
accuracy mark, it nearly always converges. Moreover, the mean number of
iterations taken for each novel appears surprisingly low compared to the bound
imposed: to investigate this further, I produced a box-plot of the number of
iterations the chains took to converge for each novel (Figure 5.5).
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Figure 5.5: Number of iterations to reach convergence for:
1.Kendall 2.Dickens 3.Brontë 4.Stevenson

From this it is evident that most of the 66% of chains that converge before
200, 000 iterations actually do so before about 60, 000. This is clearly quite
surprising: it appears that the chains either converge quite quickly or do not
manage this in the time allowed. The theory states that any chain should even-
tually converge, and so we would probably expect to see more chains converging
between 100 and 200 thousand iterations. If this is really the case, and the num-
ber of chains that reach equilibrium after 60, 00 iterations is so small, then this
is both good and bad news. It is helpful to us in that it indicates that it is not
worth running any chain for more than, say, 70, 000 iterations: if convergence
has not been reached then we are more likely to obtain a good decoding by
running the program again, rather than continuing with the current chain.

Of course, it is also bad news as it poses the question of why such a small
number of chains converge after this cut-off point (assuming that the program
works). This is quite difficult to answer, since the permutation space that we
are using is so vast and complicated. Ideally, it would be helpful if we could
produce a 3-D model of the ‘likelihood-surface’: imagine the permutations lying
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on a plane, in a way such that permutations that differ by a single transposition
are ‘next to each other’. Now add a third dimension corresponding to the log-
likelihood of the permutations. So the permutations with the highest likelihood
(i.e. the lowest negative log-likelihood) appear as peaks, whilst those of low
likelihood are troughs. This is the ‘surface’ that the Markov chain traverses
in its search for the correct peak: meta-stability occurs when it finds a certain
local maximum/minimum on the surface and gets stuck there. Of course, it
is also possible for a permutation to have a higher likelihood than the target
permutation! Remember that, although the chain will always accept a move
that increases its likelihood, it can also accept moves in the opposite direction by
construction of the acceptance probability in the Metropolis-Hastings algorithm.
It is clearly desirable for the chain to be able to move in this direction, else it
could easily reach a local maximum on the likelihood surface from which there
would be no chance of progressing to the required permutation. If we could do
this, then to understand why the chains do not converge after 60, 000 iterations,
we would simply need to plot the paths of such chains on this surface and see
what prevents them from converging. Of course, such a model is impossible
to construct, but the mental image is useful when trying to understand the
behaviour of the chain.

From the graphs produced in the output of the program, it would appear
that the chains that do not converge get stuck at certain permutations extremely
early on, and then move very little, if at all, from these points. This then is a
description of what happens, but it does not really explain why it occurs: the
chain should always converge, and so should be able to dig itself out of any
troughs encountered. In an attempt to understand why a chain may experience
this lengthy period of meta-stability, I modified the program to produce a his-
togram of the character frequencies of the final permutation if the chain did not
converge. The results were not conclusive, but the histograms produced were
quite similar to those in Figure 4.1. The only difference was that the peaks
corresponding to the lower-case vowels and the ‘space’ character were shuffled.
Hence the program had in almost all cases probably found a permutation which
had similar character transition frequencies to those in War and Peace: this
did not class as convergence, however, because the percentage accuracy of any
permutation that does not correctly decode the most frequent characters is ex-
tremely low by design. So even if the chain had reached a permutation that
decoded the text perfectly apart from the characters ‘space’ and ‘e’, then it
may experience meta-stability there, since nearly all transpositions proposed
would increase the negative log-likelihood. But the program would not term
this as convergence, even though it would be quite easy to finish the decoding
by hand.

Indeed, if we now look back at the results obtained from deciphering Brontë,
we see that 40% of the runs reached at least 90% accuracy without reaching the
99% target. Upon closer inspection of this 40%, it was observed that all of these
had reached a percentage accuracy of 98%. This is strong evidence for other lo-
cal maxima on the likelihood surface to which these chains converged. Indeed,
it would appear that there are at least two different areas on the surface in
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which these chains stabilized. This observation arises from consideration of the
negative log-likelihood of the final states of the unfinished chains that reached
90%. Half of these readings are between 28, 257 and 28, 259, and the other half
lie between 28, 140 and 28, 145. It is not the case, of course, that if two permu-
tations have equal negative log-likelihoods then they are the same permutation.
However, the fact that the readings from so many chains lie so close together
is, I believe, evidence for two local maxima on the likelihood surface. The val-
ues of the negative log-likelihood for those chains that did converge lie in the
range 15, 598 to 28, 366, with nearly all of them being clustered about the value
28, 200. Hence the final negative log-likelihood values of the chains that reached
98% accuracy are actually lower than some of those that converged. They are
also lower than the true value of the first chapter of Brontë: 28, 281.

This is a good example therefore of the complexity of the likelihood surface,
and of the problems associated with using percentage accuracy to diagnose
convergence. We have seen that it is possible for a chain to get stuck at a
permutation that has a low negative log-likelihood but whose percentage error
is slightly too high to diagnose equilibrium. Of course, we could simply relax
the percentage accuracy bound, but problems of this kind will always be found
near to the designated cut-off value. The above results also cast some doubt on
the usefulness of the negative log-likelihood as a measure of convergence, since
it may be possible to find a permutation with a high likelihood (indeed, higher
than that of the target permutation) but lower than 99% accuracy. This will be
discussed further at the end of the next subsection, at which point there will be
more information available to us.

5.4 Starting State

In the discussion about meta-stability in Section 3.3 it was mentioned that one
way of trying to avoid such a phenomenon is to simulate a few Markov chains
with different starting states. This should help to identify any initialization bias
caused by the choice of the initial state. With this in mind I next decided to
investigate the effect of the starting state on the time taken to reach convergence.

The final program, solvitbound, starts from the identity permutation: this
means that, in a real substitution code, it is likely to have a high negative log-
likelihood. An obvious way to try to speed up the rate of convergence is to start
the chain from a better starting state (although this will not necessarily ensure
convergence, since this state may be one of the local maxima described above).
This also assumes that a method is available to choose such a starting state.
There is, however, one easy way of doing this: simply match up the character
frequencies in T with those in War and Peace (i.e. replace the most frequent
character in T with ‘space’, the next most frequent with ‘e’ etc). The program
starter returns the permutation that, when applied to T, achieves just this.
Of course, there are many states that we could choose from when searching for
a good starting permutation. The advantage of this choice is, of course, that it
can be used in real situations - knowledge of the decoded text is not needed.

I hence proceeded to decode the same four novels as earlier, starting from
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two different states. The first of these was the ‘intelligent’ permutation de-
scribed above, and the second was simply the identity permutation as normal.
Having fixed the random seed, I used solvitbound to decode the two versions
20 times for each novel (with an upper bound of 50, 000 iterations). An example
of the output from this program is included in Appendix ?? (the graphs are:
negative log-likelihood vs iterations; percentage accuracy vs iterations; negative
log-likelihood vs percentage accuracy).

The first observation to report is that using the intelligent permutation dra-
matically increases the percentage accuracy of the starting state: an average of
54% for these four novels. Figure 5.6 shows the percentage of runs attaining the
90% and 99% levels of accuracy for each starting state (‘both’ means that both
of the chains produced a decoding to the relevant level of accuracy):

Kendall Dickens Brontë Stevenson
90% 99% 90% 99% 90% 99% 90% 99%

Intelligent 100 100 100 90 100 40 95 95
Identity 60 60 65 35 60 20 75 75
Both 60 60 65 35 60 10 75 75

Figure 5.6: Percentage of runs that reached 90% or 99% accuracy with different
starting states

From these results it appears that using the intelligent permutation increases
the chance of the chain reaching equilibrium. An improvement was seen at both
the 90 and 99% levels for all the texts, and some of these were very significant
(for example, the number of runs of Dickens reaching 99% accuracy). In total,
98.75% of the intelligent chains reached the 90% level, and 81.25% the 99%
level, compared to just 65% and 47.5% of the identity chains respectively. It is
also the case that, with the exception of Brontë, there were no instances where
the intelligent chain did not perform as well as its opponent. With Brontë
there were two instances where this was not the case, but we have already seen
that the likelihood surface for this text is quite complicated: in all cases the
intelligent chain reached the 90% level, and in fact all of those that did not
reach 99% finished at the 98% level again.

It therefore looks as though choosing a good starting state can increase the
frequency of runs that produce good decodings. It remains to be seen, however,
whether or not this method actually decreases the number of iterations required
for the chain to reach equilibrium. Figure 5.7 is a box-plot of the number of
iterations taken by the two types of chain to reach equilibrium for the four
texts. It can be seen that the mean number of iterations for each novel, with
the exception of Brontë as usual, decreased when using the intelligent chain.
However, since only four of the identity chains for Brontë actually decoded, no
real weight can be given to this result. (The other plots were all produced from
samples of a much better size.) The weighted mean number of iterations for
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the four texts were as follows: 21, 790 for the identity chain, and 15, 462 for the
intelligent chain. This is a reduction of almost 30%, and so it would appear that
using an intelligent starting permutation does indeed decrease the time taken
to equilibrium.
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Figure 5.7: Number of iterations to reach convergence for:
1.Kendall (identity) 2.Kendall (intelligent) 4.Dickens (identity)
5.Dickens (intelligent) 7.Brontë (identity) 8.Brontë (intelligent)
10.Stevenson (identity) 11.Stevenson (intelligent).

With the output from solvitbound in this section, it is now appropriate to
draw to a conclusion the ongoing debate about how best to diagnose conver-
gence. So far we have seen that measuring the percentage error is an accurate
way of predicting convergence. The downsides are that, firstly, the Markov chain
can often get stuck at a level below this: although this may be good enough
to enable us to finish the decoding by hand, the program will not terminate.
Secondly, and more importantly, this diagnostic measure is absolutely useless
if we are unaware of the correctly deciphered text from the start! Its use is
therefore limited to helping to debug programs.

On the other hand we have the negative log-likelihood method. It was first
observed that, due to the consistency of character transitions in English novels,
the target negative log-likelihood (of the deciphered text) can be calculated be-
fore running the program: all that is required is the length of T. This is clearly
an advantage over the percentage accuracy method. However, so far we have

32



been unconvinced about its efficiency: we have seen examples of permutations
which have a lower negative log-likelihood than the target permutation, but a
lower percentage accuracy. However, the output of the program solvitbound

produces a plot of the negative log-likelihood vs the percentage accuracy of
the chain. Every such graph produced by this program (given that the chain
converged) shows a linear relationship: see the example in Appendix ?? for
an example. This is not a perfect relationship, but then we do not need it to
be: the important point is that the negative log-likelihood decreases steadily
as the percentage accuracy increases. As this is the case, all that is needed is
to make the program terminate when the negative log-likelihood of the chain is
close enough to that of the target permutation. If the chain stops at a permu-
tation with lower negative log-likelihood than is required this does not matter:
experience shows that these permutations are usually incorrect only in a few
entries (typically some upper-case letters and punctuation). Using the negative
log-likelihood method also means that the program will diagnose convergence in
those cases where the chain stops at a level slightly below 99% (as was so often
the case when decoding Brontë). This should decrease run-time in many cases,
and will increase the frequency of runs that are classified as having reached
equilibrium.

5.5 Other Text

In Section 4 I presented my reasons for using my program to decode English
novels only. In this, I made a brief comparison between such texts and some
other literature whose character frequencies and negative log-likelihood values
marked them out as being quite different. In this section I briefly present the
outcome of attempting to use my program to decode some of these texts, in order
to see if my original assertions about its applicability in such circumstances were
justified.

I hence used the program to decode the Welsh, Dutch and Biochemistry
texts. This was done without the use of an intelligent starting state, and with
an upper bound of 50, 000 iterations for each run: 20 runs were carried out for
each text.

The results are quite conclusive: not one run achieved the 99% accuracy
level. This is not too surprising, since we would hardly expect any of these
texts to be that similar to War and Peace. Figure 5.8 shows the range of
percentage errors produced for these texts. From this we can see a high level
of error across the board. As we could have predicted, the text that was best-
decoded was the biochemical journal: here the hardest thing that the program
was faced with was DNA strings and a few acronyms. This was the only text to
have been deciphered to more than 70% accuracy: the Dutch and Welsh texts
performed very poorly. A better result may have been achieved by using the
‘intelligent’ chains discussed earlier, but there was unfortunately not time to
implement this. It is uncertain how much of a difference it would have made
however: the mean percentage accuracy of the intelligent starting state for these
texts was just 34%, compared to an average of 50% for the nine English novels.
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Figure 5.8: Percentage error for: 1.Biochemistry 2.Dutch 3.Welsh

It must also be remembered that the program is not designed to decode such
texts, since it uses War and Peace as its basis. These results are therefore in
keeping with my preliminary analysis, and emphasize the necessity of choosing
an appropriate basis for the matrix (log P).

5.6 Further Issues

There are clearly many issues remaining in this area: I have only managed to
scratch the surface in the permitted time. Below I outline a few directions in
which the work in this project could be continued.

Increasing the speed of convergence

I have already described some methods of decreasing the number of iterations
taken to reach equilibrium: splitting the text into two and using the intelligent
starting state to name but two. There are undoubtedly more methods available,
but to research any of these in depth (and to produce good sample sizes) it would
be necessary to implement my programs in a faster language than Mathematica.
I originally intended to re-write my programs in Java, but found the fine-tuning
of the code in Appendix A too time-consuming to enable me to do this.
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Second-order chains

The algorithm employed by my program is based upon character transition
frequencies, where I assumed that the English language could be modelled as a
simple Markov chain. A better approximation to English may be obtained by
extending this model using N -grams. I have already mentioned in Section 1.2
the work of Shannon and Weaver [26]: this shows just how much difference a
progression to a higher order model may make.

Inspired by this, I wrote adapted versions of my programs which were de-
signed to use trigrams (i.e. a second-order chain). Unfortunately, this involves
creating a new matrix (log P) from War and Peace. This matrix now has 794

entries, which produces severe implementational issues: Mathematica was very
reluctant to work with such large matrices! Again, this would be more practical
if working with a faster programming language.

Reducing the character set Alph

Another method of improving the decoding may be to work with a reduced
character set. The reasoning behind this is the fact that many of the entries in
the original character transition frequency matrix obtained from War and Peace
are very small, or even zero. Hence there is not much information regarding
transitions between these characters. For example, the sequence ‘Az ’ may not
be used at all by Tolstoy, but it may form part of the text we are trying to decode.
If the entry in the aforementioned matrix corresponding to this sequence is zero,
then the program will have trouble accurately decoding this part of the text.

One way of reducing this problem is to combine certain entries in the matrix
obtained from the basis text, in such a way that the amount of information
available is increased. For example, with the exception of the characters ‘space’,
‘comma’ and ‘full-stop’, punctuation tends to be fairly infrequent in most texts,
compared to the number of other characters. This suggests combining little-
used punctuation into a ‘wild character’. The transition probabilities for this
character could then be arranged so as to incorporate all of the information
arising from each punctuation mark being mapped to it. An extension of this
would be to combine the upper and lower-case letters into one. Upper-case
letters are also quite rare, and so the program has real difficulty in decoding
them. If the two cases were combined more information would be available to
the program, provided by the lower-case letters.

A program of this sort would run according to the following algorithm:

1. propose a permutation (via transpositions as usual)

2. introduce the wild character, and combine upper/lower cases

3. calculate the acceptance probability using the reduced character set matrix

4. move the chain if appropriate, and return to stage 1.

I attempted to implement such an algorithm, but was quite unsuccessful.
The main problem was that, after I had combined the transition frequencies

35



for the punctuation marks into one matrix entry for the wild character, this
character became too popular! The relatively high frequency with which one
punctuation mark follows another in English (that is, any mark follows any
other) meant that the output from the program consisted of a string of almost
entirely wild characters. This idea has merit, however, since in theory it should
help to produce a more accurate decoding. In fact, I have recently heard from
Diaconis himself that one of his Ph.D students has just tackled this problem
in his thesis. Apparently quite a lot of thoughtful work is needed to adjust
the transition frequency of the wild character to avoid the problems that I
encountered.

6 Coupling

Having considered the number of iterations my program takes to converge, I
now present two methods for calculating a theoretical bound on this figure. In
this section, I use coupling theory and strong uniform times, and in the following
section an approach involving representation theory is given. Both methods are
based upon the analysis of shuffling a pack of n cards. The shuffling construction
is different in each section, but both use random transpositions of cards and
consider the time taken until the pack is ‘well shuffled’. The ways in which
transpositions of cards are proposed and accepted is much simpler than in the
Metropolis-Hastings algorithm: in fact, no information about the current state
of the cards is used in determining which cards are swapped. Nevertheless, this
theoretical approach is extremely interesting, and provides some very useful
information about the convergence rate of the Markov chains produced by the
program.

Before considering the shuffling construction for the coupling method, it is
first necessary to introduce the language of random walks and probabilities on
groups.

Definition 6.1. A probability Q on G assigns a real number to each element of
G, such that Q(g) ≥ 0 for all g, and

∑
g Q(g) = 1.

The Uniform distribution on the finite group G is the probability that assigns
the value 1

|G| to each element g in G.

Suppose now that we wish to construct a random walk on G, where Q is a
probability on G. If independent choices are made from G, according to Q, then
this yields elements ζ1, ζ2, . . . ∈ G. We can then proceed to define the products

X0 = id
X1 = ζ1

X2 = ζ2ζ1

...
...

Xk = ζkXk−1 = ζkζk−1 . . . ζ1.
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It follows that {Xk}k≥0 is a random walk on G with step distribution Q. Now,

note that:
P (X2 = g) = Q∗Q(g) =

∑

h∈G

Q(h)Q(gh−1),

since Q(h)Q(gh−1) is the probability that element h is picked first, and gh−1

picked second, resulting in the product g. Induction on this argument leads to:

P (Xk = g) = Q∗k(g) = Q ∗ Q∗(k−1)(g) =
∑

h∈G

Q(h)Q∗(k−1)(gh−1).

Definition 6.2. If P and Q are two probabilities on G, then the convolution
P ∗ Q is the probability P ∗ Q(s) =

∑
t P (st−1)Q(t).

Now, in these card-shuffling setups, we are interested in the number of trans-
positions needed to get the pack ‘close to random’. Before we can progress any
further, it is hence necessary to decide exactly what we mean by this. To do
this we first require the following definition:

Definition 6.3. Let G be a finite group, and let P and Q be probability dis-
tributions on G. Define the variation distance between P and Q as

‖P − Q‖ = max
A∈G

|P (A) − Q(A)|

This definition provides us with a metric structure that enables us to compare
the distance between probabilities on G, and U , the uniform distribution. It
makes sense to use the uniform distribution as the probability on a well-shuffled
pack, since this assigns an equal weight to each permutation of the n cards. Say
that the smaller the variation distance from uniform, the ‘closer the pack is to
random’.

I said at the start of this section that the first method of finding an upper
bound on the number of iterations would involve coupling and strong uniform
times, so I had better explain what I mean by this. Coupling is an extremely
useful method with a wide range of applications in Markov processes. First
proposed by Doeblin in 1938, it enables us to assess the convergence of a Markov
chain by comparing it with another chain. For our purpose, we wish to assess the
convergence of P ∗k (for some distribution P describing the shuffling method),
and have decided to do this by comparing it with the uniform distribution, U .
The exact method of doing this is presented shortly, but first we need the notion
of a strong uniform time:

Definition 6.4. A stopping time is formally a function T : G∞ → {1, 2, . . . ,∞}
such that if T (s) = j, then T (s′) = j for all s′ with s′i = si for 1 ≤ i ≤ j. At a
more intuitive level, a stopping time considers a sequence of elements in G and
says ‘stop at the jth one’: this rule is allowed to depend on what happens up to
time j, but not on any events further into the future.

A strong uniform time is a stopping time T such that for each k < ∞,

P (T = k, Xk = s) is constant in s

where {Xj}j≥0 is the observed Markov chain.
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Note that, if T is a strong uniform time, the above definition implies that

P (Xk = s | k ≥ T ) = P (Xk = s | k = T ) =
1

|G|
.

The following lemma will be instrumental in this section in the attempt to
bound the number of shuffles needed to approximate a uniform distribution. It
provides a useful connection between strong uniform times and the distance in
variation of two distributions.

Lemma 6.1. Let Q be a probability on the finite group G. Let T be a strong
uniform time for Q. Then, for all k ≥ 0,

∥∥Q∗k − U
∥∥ ≤ P (T > k)

where U is the uniform distribution on G.

Proof. For any A ⊂ G:

Q∗k(A) = P (Xk ∈ A)

=
∑

j≤k

P (Xk ∈ A, T = j) + P (Xk ∈ A, T > k)

=
∑

j≤k

P (Xk ∈ A | T = j) P (T = j) + P (Xk ∈ A | T > k) P (T > k) .

Now, P (Xk ∈ A | T = j) = U(A), for j ≤ k, since T is a strong uniform time.
So we have,

Q∗k(A) =
∑

j≤k

U(A)P (T = j) + P (Xk ∈ A | T > k) P (T > k)

= U(A) + [P (Xk ∈ A | T > k) − U(A)] P (T > k)

⇒
∣∣Q∗k(A) − U(A)

∣∣ ≤ P (T > k) .

I now describe in detail the shuffling method that will be used to bound the
convergence rate. It uses random transpositions and the notion of ‘checking’
certain cards as they are selected and swapped. The particular construction
upon which I shall concentrate is due to Andre Broder.

6.1 Shuffling Construction

Picture laying out n cards in a row on a table. At each stage we randomly and
independently select a card with each hand, giving rise to a pair (Li, Ri), which
are swapped.
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If either

1. both hands touch the same unchecked card, or

2. Li is unchecked, but Ri is checked,

then the card touched by the left hand, Li, is checked. The shuffling process
stops at time T when all the cards are checked.

The aim is now to prove that T is a strong uniform time, so that it can
be used in Lemma 6.1 to bound the time taken to get close to the uniform
distribution. First note that T is clearly a stopping time, since it depends
purely on the card transpositions taken for all the cards to get checked, and not
upon what occurs after this point. This reduces the problem to showing that
at time T the ordering of the cards is completely random.

Let us first consider the process on an informal basis, before turning to a
formal proof. The process of checking begins when both hands touch the same
unchecked card. This card (call it card 1) is checked. Nothing happens then
until one of two things happens: either both hands hit a different card to card
1 (say card 2), or the left hand hits an unchecked card (say 2) and the right
hand hits card 1 - these are then swapped. At this stage, conditional upon the
positions of the two checked cards in the line, a1 and a2 say, and the labels 1
and 2, the positions are clearly equally likely to correspond to (a1, 1)(a2, 2) or
(a1, 2)(a2, 1). This follows since the chance of choosing card 2 is 1

n2 in either
case.

Before attempting a formal proof of the uniformity of the cards once all
have been checked, I first take a moment to establish notation. In general, the
position we are in at any time may be described as follows:

{L, {a1, . . . , aL} , {c1, . . . , cL} ,ΠL} .

Where,

L = number of checked cards

{a1, . . . , aL} = set of positions of the checked cards

{c1, . . . , cL} = labels of the checked cards

ΠL : {a1, . . . , aL} → {c1, . . . , cL} records the card at each position.

It is extremely important to ensure full comprehension of this notation be-
fore reading on. The main point to appreciate is that once L cards have been
checked, the sets a L = {a1, . . . , aL} and c L = {c1, . . . , cL} are fixed: ΠL is a
permutation, telling us how these checked cards are arranged amongst them-
selves. So if I write ΠL ({a1, . . . , aL}) = (γ1, . . . , γL), then I mean that card γ1

is in position a1, γ2 in a2 etc, where γ
L

= (γ1, . . . , γL) is a distinct ordering of
the cards {c1, . . . , cL}.

The fact that T is a strong uniform time will follow from the following
proposition.
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Proposition 6.2. At each time, conditional on L, {a1, . . . , aL}, and {c1, . . . , cL},
the permutation ΠL is uniform.

Proof. This is proved by induction on L. For k ≥ 0, define Bk to be the
event {L = k, positions are {a1, . . . , ak} , labels are {c1, . . . , ck}}. We need to
show that, for fixed L = k,

P

(
Πk ({a1, . . . , ak}) = γ

k
| Bk

)
=

1

k!
(6.1)

We have:

• L = 0, Π0 : {φ} → {φ}

• L = 1, Π1 : {a1} → {c1}

and in these cases it is clear that 6.1 is satisfied, since there is only one possible
permutation in each case.

Assume now that the equation (6.1) holds true for L = k. Consider again
the shuffling setup: if we are at a time when Bk holds, then the permutation
remains uniform until a new card (ck+1) is checked, and event Bk+1 occurs.
This happens when the left hand (LH) touches ck+1 and the right hand (RH)
touches one of {c1, . . . , ck+1}. The right hand is equally likely to touch any one
of this set of k + 1 cards, and so we have

P (new card checked | Bk) = P (LH = ck+1, RH ∈ {c1, . . . , ck+1} | Bk)

=
k + 1

n2
. (6.2)

Now,

P

(
Πk+1

(
a k+1

)
= γ

k+1
| Bk+1

)

= P

(
Πk+1({aj}) = ck+1, Πk+1

(
a k+1\ {aj}

)
= γ

k+1
\ {ck+1} | Bk+1

)

for some j ∈ {1, . . . , k + 1}

(simply looking at where Πk+1 maps card ck+1)

= P

(
Πk+1

(
a k+1\ {aj}

)
= γ

k+1
\ {ck+1} | Πk+1(aj) = ck+1, Bk+1

)

× P (Πk+1({aj}) = ck+1 | Bk+1)

(conditioning on the position of the new card, ck+1)

= P

(
Πk+1

(
a k+1\ {aj}

)
= γ

k+1
\ {ck+1} | Bk

)

× P (Πk+1({aj}) = ck+1 | Bk+1)

(once we know where ck+1 is, we just need to consider the permutation

of the other k cards)

=
1

k!
P (Πk+1({aj}) = ck+1 | Bk+1) (by the inductive hypothesis)

=
1

k!

P (RH = Πk({aj}), LH = ck+1 | Bk)

P (a new card is checked | Bk)
, where Πk({ak+1}) := ck+1
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(This step follows from the shuffling setup. Imagine that we are at a stage
where Bk holds. The probability of the event {ck+1 is checked and Πk+1 maps
position aj to card ck+1}, equals the probability that LH touches ck+1 and RH
touches the card that was in position aj , divided by the probability that we
actually check a new card, given Bk holds.)

=
1

k!

(
1

n2

) (
k + 1

n2

)−1

(from equation (6.2))

=
1

(k + 1) !
as required.

We have therefore shown that T is indeed a strong uniform time, meaning
that we can use it in Lemma 6.1.

6.2 Convergence Rates

Now, the strong uniform time T can be written in the following way:

T =
n−1∑

i=0

(Ti+1,n − Ti,n) ,

where Ti,n is the number of transpositions until i cards are checked, for a fixed
total of n cards. Clearly the random variables (Ti+1,n − Ti,n) are independent.
They also each follow a Geometric(pi,n) distribution, by the independence of
transpositions, where

pi,n = P (new card checked | i cards checked already)

= P (LH touches one of (n − i) unchecked cards)

× P (RH touches one of i checked, or RH=LH)

=
(n − i)(i + 1)

n2
.

It follows that the mean of (Ti+1,n − Ti,n) is n2/[(n − i)(i + 1)].
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Thus

E[T ] =

n−1∑

i=0

n2

(i + 1)(n − i)
(6.3)

=

(
n2

n + 1

) n−1∑

i=0

(
1

i + 1
+

1

n − i

)
(partial fractions)

=

(
2n2

n + 1

)(
1 +

1

2
+ . . . +

1

n

)

=

(
2n

n + 1

)
(n log n − n rn) where lim

n→∞
rn = γ (Euler’s constant [6].)

= n log n

(
2 −

2

n + 1
−

2n

(n + 1)

rn

log n

)

= n log n

(
2 −

1

log n

(
2n

n + 1
rn −

2 log n

n + 1

))
.

Now, setting kn = 1
log n

(
2n

n+1rn − 2 log n
n+1

)
, we have:

|kn log n| ≤ c as n → ∞ for some constant c

⇒ kn = O

(
1

log n

)

Hence,

E[T ] =

(
2 + O

(
1

log n

))
n log n.

Note that this varies from the account given by Diaconis in [8]: this gives

O
(

1
n

)
where in the above I have O

(
1

log n

)
. This does not affect the convergence

rate calculations explicitly: it is merely pointed out here for completeness.
We also have:

V ar(T ) =
n−1∑

i=0

V ar (Ti+1,n − Ti,n) (by independence)

= n2
n−1∑

i=0

n2 − (i + 1)(n − i)

(i + 1)2(n − i)2
since variance of a Geometric(pi,n) =

1 − pi,n

p2
i,n

=
n4

(n + 1)2

n−1∑

i=0

2

(i + 1)2
+

2n2(n2 − 2n − 1)

(n + 1)3

n−1∑

i=0

1

(i + 1)

= n2

[(
n

n + 1

)2 n∑

k=1

2

k2
+

(
n2 − 2n + 1

(n + 1)3

) n∑

k=1

2

k

]

= O(n2) since both sums in the brackets converge as n → ∞.
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In order to determine the long-run behaviour of this method of shuffling, it
is necessary to consider the sum of the independent random variables
Xi,n : = (Ti+1,n−Ti,n). An obvious method of doing this is to look to the central
limit theorem (CLT) for help. The two versions of the CLT that I attempted to
use are presented below in Theorems 6.3 and 6.4.

Theorem 6.3 (Central Limit Theorem - Lyapunov). Let X1,X2, . . . be
independent variables satisfying

E[Xj ] = 0, V ar(Xj) = σ2
j , E[X3

j ] < ∞

and such that
1

σ(n)3

n∑

j=1

E[X3
j ] → 0 as n → ∞ (6.4)

where

σ(n)2 = V ar

(
n∑

1

Xj

)
=

n∑

1

σ2
j .

Then
1

σ(n)

n∑

1

Xj → N(0, 1).

Theorem 6.4 (Central Limit Theorem - Lindeberg). Let X1,X2, . . .
be mutually independent one-dimensional random variables with distributions
F1, F2, . . . such that

E[Xk] = 0, V ar(Xk) = σ2
k,

and put
s2

n = σ2
1 + . . . + σ2

n.

Assume that for each t > 0

s−2
n

n∑

k=1

∫

|y|≥tsn

y2Fk{dy} → 0. (6.5)

Then the distribution of the normalized sum

S∗
n = (X1 + . . . + Xn) /sn

tends to the standard normal distribution.

However, I was unable to make the centred random variables, Yi : = Xi −
E[Xi], satisfy either of equations (6.4) or (6.5). It then came to light that, despite
Diaconis [8], the central limit theorem can not be applied in this situation.

To show why this is true I turn to the theory of epidemics without removals.
Suppose we have a constant population of size n, with one individual infected
at time t = 0. At time t let Xt be the number of susceptible individuals, and
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Yt the number of individuals infected (so Xt + Yt = n for all t). Assume that
infection is by contact and that the population mixes homogeneously. Assume
also that if there are y infected then the rate at which y → y + 1 is given by
αy(n + 1 − y) for some α > 0.

We wish to study the time taken for all the population to become infected,
S. As before, we can write

S =
n−1∑

i=0

(Si+1 − Si) ,

where Si is the length of time until i individuals are infected. (Si+1 − Si) is
exponentially distributed with mean (αi(n− i))−1. A calculation similar to that
in (6.3) gives

E[S] ≈
2log n

α n
(6.6)

This is clearly very similar to the card shuffling setup. Here, we are looking
for the time at which all individuals have become infected, whereas before we
were interested in the time taken for all the cards to get checked. We can
hence model the card checking as an epidemic without removals, and this gives
α = n−2 for the shuffling method described above (by comparison of equations
(6.3) and (6.6), setting S = T ).

Now, it can be shown that the limiting distribution of (Sn−1 − 2 log n)
exists ([7] pp200, ex.13). We do not need to concern ourselves with what this
distribution is (call it X), simply that it exists and is not Normal. This shows
that the CLT cannot apply in the card checking situation: I have already shown
that

E[T ] ≈ 2n log n and V ar(T ) = O(n2).

It therefore follows that if the CLT applied, it would be the case that

T − 2n log n

n
∼ N(0, σ2) for some σ.

This is not the case though, since X is not Normal.
Although I have now significantly wandered from the discussion of Diaconis,

it is possible to reach his result of an upper bound. This can be achieved simply
by using the fact that the distribution X exists, and that

P (T − 2n log n > nx) → P (X > x) .

Now, if k = 2n log n + c(n)n, with c(n) → ∞,

∥∥P ∗k − U
∥∥ ≤ cP (T > k) ,

since T is a strong uniform time.
But,

P (T > k) = P (T − 2n log n > c(n)n) .
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It follows that

lim
n→∞

sup P (T − 2n log n > c(n)n) ≤ P (X > x) if c(n) > x eventually.

Since c(n) → ∞, this is true for all x, and so the limit superior above must
be equal to 0.

Therefore, with k = 2n log n + c(n)n, where c(n) → ∞,

∥∥P ∗k − U
∥∥ → 0 as n → ∞.

These sorts of calculations have been used to solve many similar card-
shuffling problems, and have generally proved more useful than the more tra-
ditional methods involving the second largest eigenvalue of a chain’s transition
matrix [4]. The main difference is that these methods enable us to answer ques-
tions such as “are k shuffles enough to get close to uniform?”, as opposed to the
more traditional “how close to uniform is the deck after n shuffles?”.

Other shuffling schemes have been studied as well, and similar bounds ob-
tained. For example, the pack could be shuffled by repeatedly removing the
top card and inserting it at a random position. Diaconis [1, 8] has shown that,
for this setup, k = 1

2n log n shuffles are enough. In all shuffling models that
have been studied, there appears to be what Diaconis refers to as a cut-off
phenomenon: there is some critical number of shuffles, k0 such that

∥∥∥Q∗(k0+o(k0)) − U
∥∥∥ ≈ 0

but
∥∥∥Q∗(k0−o(k0)) − U

∥∥∥ ≈ 1.

Thus the pack suddenly becomes well-shuffled at this cut-off point: the vari-
ation distance is practically 1 until this number of shuffles, and then becomes
very small, before tending to zero exponentially after k0. This phenomenon is
what enables us to produce such sharp bounds as the 2n log n result above.

7 Representation Theory

In this section I present a completely different area of theory: that of group
representations. This area has had a huge impact upon calculating convergence
rates for card shuffling schemes over the past 20 years. There are many texts
devoted to its study, but here I only give a brief introduction to the theory, and
work towards another result of Diaconis in [8].

I begin with a few definitions:

Definition 7.1. A representation of a group G of degree n is a homomorphism
of G into the group GL(V ) of linear maps on a vector space V . So to each
element g ∈ G there corresponds a matrix ρ(g), and if x, y ∈ G we have ρ(xy) =
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ρ(x)ρ(y).
The dimension of ρ is dρ, which equals the dimension of V .
The trivial representation is 1-dimensional: it maps every group element to

the identity.

Definition 7.2. If W is a subspace of V stable under G (i.e. ρ(g)W ⊂ W ,
for all g ∈ G), then ρ|W gives a subrepresentation. If ρ has no non-trivial
subrepresentation, then ρ is called irreducible.

Irreducible representations are the building blocks of the theory, since it can
be shown that every representation is a direct sum of irreducible representations.
They will prove important later on, as will the notion of the character of a
representation:

Definition 7.3. If ρ is a representation, the character of ρ, χρ, is defined by

χρ(s) = Tr (ρ(s))

where Tr is the trace of the matrix. (This is independent of the choice of basis
of V , since the trace function is basis-free.)

Throughout the following discussion, the Fourier transform will play an im-
portant role, and I now take a moment to explore the link between this and the
convolution defined in Definition 6.2.

Definition 7.4. Let P be a probability on G. The Fourier transform of P at
the representation ρ is the matrix

P̂ (ρ) =
∑

s∈G

P (s)ρ(s). (7.1)

The Fourier transform and the convolution interact as follows. Let ρ be any
representation. We have

P̂ ∗ Q(ρ) = P̂ (ρ)Q̂(ρ).

Proof.

P̂ ∗ Q(ρ) =
∑

s

P ∗ Q(s)ρ(s)

=
∑

s

∑

t

P (st−1)Q(t)ρ(s)

=
∑

s

∑

t

P (st−1)ρ(st−1)Q(t)ρ(t) since ρ is a homomorphism

=
∑

t

(∑

s

P (st−1)ρ(st−1)

)
Q(t)ρ(t)

=

(∑

s

P (s)ρ(s)

) (∑

t

Q(t)ρ(t)

)

= P̂ (ρ)Q̂(ρ)
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I now move onto one of the most important results in the theory of group
representations, Schur’s Lemma. The proof is not hard [8, 23], but is omitted
here for brevity.

Lemma 7.1. (Schur’s Lemma) Let ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be
two irreducible representations of G, and let f be a linear map of V1 into V2,
such that

ρ2(s) ◦ f = f ◦ ρ1(s) ∀s ∈ G. (7.2)

Then,
1) if ρ1 and ρ2 are not equivalent, f = 0
2) if V1 = V2 and ρ1 = ρ2, f = λI, λ a constant.

Corollary 7.2. Let V1 = V2 = V , ρ : G → GL(V ) be a representation, and U
be the uniform probability on G. Define f : V → V by f = Û(ρ). Then

ρ(s) ◦ f = f ◦ ı(s) ∀s ∈ G

where ı is the trivial representation.

Proof.

ρ(s) ◦ f = ρ(s)
∑

t∈G

U(t)ρ(t)

=
∑

t∈G

1

|G|
ρ(s)ρ(t)

=
∑

t∈G

1

|G|
ρ(st)

=
∑

t∈G

U(t)ρ(t) since G is a finite group

= f ◦ ı(s).

Before proceeding to the main results of this section, I first present a couple
of equalities that will be of significant use later on. The first is the observation
that Q̂(ı) = 1, when Q is any probability on G. This follows simply from the
fact that ı(t) = 1 for all t ∈ G, and that Q is a probability, hence

∑
t Q(t) = 1.

Furthermore, the above corollary shows that, when ρ is the trivial represen-
tation, the conditions for Schur’s Lemma are satisfied by U . So, in the notation
of the corollary, ρ 6= ı implies that Û(ρ) = 0. We hence have:

Û(ρ) =

{
1 for ρ trivial
0 for ρ non-trivial.

(7.3)

Recall from 6.3 the definition of ‖Q − P‖. This will again be the method
used to consider how far the cards are from random. However, for its employ-
ment in this section it has a much more useful form:
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Proposition 7.3.

‖Q − P‖ =
1

2

∑

s

|Q(s) − P (s)| .

Proof.

‖Q − P‖ = max
A⊂G

|Q(A) − P (A)|

=
∑

g∈A′

|Q(g) − P (g)| where A′ = {g ∈ G : Q(g) > P (g)}.

But, ∑

g∈G

|Q(g) − P (g)| =
∑

g∈A′

|Q(g) − P (g)| +
∑

g/∈A′

|Q(g) − P (g)| .

Clearly, by symmetry, the two sums on the right hand side are equal, hence the
result.

The following theorem, presented here without proof [8] is the last that is
needed to be able to really start on the quest to find an upper bound.

Theorem 7.4 (Plancherel Theorem). Let f and h be functions on G, then

∑

s

f(s−1)h(s) =
1

|G|

∑

i

diTr
(
f̂(ρi)ĥ(ρi)

)
.

Note that when f and h are real functions, and the ρi are unitary represen-
tations, the above can be rewritten as:

∑

s

f(s)h(s) =
1

|G|

∑

i

diTr
(
ĥ(ρi)f̂(ρi)

∗
)

,

where x∗ is the conjugate of x.
This theorem, along with Proposition 7.3 enable us to bound the variation

distance
∥∥P ∗k − U

∥∥. This is courtesy of the Upper Bound Lemma, the main
result of this section. This inequality was first used in Diaconis and Shahsha-
hani [9]:

Lemma 7.5 (Upper Bound Lemma). Let Q be a probability on the finite
group G. Then

‖Q − U‖
2
≤

1

4

∗∑
dρTr

(
Q̂(ρ)Q̂(ρ)∗

)
,

where the sum (
∑∗

) is over all non-trivial representations.
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Proof. From 7.3,

4 ‖Q − U‖
2

=

{∑

s

|Q(s) − U(s)|

}2

≤ |G|
∑

|Q(s) − U(s)|
2

by Cauchy-Schwarz

= |G|
∑

f(s)2 where f(s) = |Q(s) − U(s)|

=
∑

dρTr
(
f̂(ρ)f̂(ρ)∗

)
by the Plancherel Theorem.

Now,

f̂(ρ) =
∣∣∣Q̂(ρ) − Û(ρ)

∣∣∣

=

{
0 for ρ trivial

Q̂(ρ) for ρ non-trivial, by equation (7.3).

Therefore,

4 ‖Q − U‖
2
≤

∗∑
dρTr

(
Q̂(ρ)Q̂(ρ)∗

)
.

Now that we have a method of using representations to bound the distance
a distribution is from uniform, we need to consider the method of card shuffling
to be used. This will then lead to determination of the associated probability
distribution, which can then be used in the Upper Bound Lemma to produce
the required bound.

In this section a simpler method of shuffling is available to us. Suppose we
have n cards laid in a row on a table. Shuffle these in the following manner:
the left hand touches a random card, as does the right hand, and the two cards
are simply interchanged. This can be modelled this by the following probability
distribution on the symmetric group of n elements, Sn:

P (ρ) =





1
n for ρ = id

2
n2 for ρ a transposition (denoted τ)

0 otherwise.

Repeated random transpositions of the n cards can then be modelled as
repeatedly convolving the above probability. From this setup it is clear that P
is constant on conjugacy classes: P (ηπη−1) = P (π). Hence, looking to satisfy
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the conditions for Schur’s Lemma, we see that:

ρ(s) ◦ P̂ (ρ) = ρ(s)
∑

P (t)ρ(t)

=
∑

P (sts−1)ρ(st)

=
(∑

P (sts−1)ρ(sts−1)
)

ρ(s)

= P̂ (ρ) ◦ ρ(s).

Thus Schur’s Lemma applies here, and so P̂ (ρ) = λI for some constant λ.
Taking traces of both sides gives:

λdρ =
∑

t

P (t)χρ(t)

=
1

n
dρ +

∑

τ

2

n2
χρ(τ) since χρ(ı) = dρ

=
1

n
dρ +

n(n − 1)

2

2

n2
χρ(τ) since there are

(n
2

)
possible transpositions.

Therefore, λ =
1

n
+

(n − 1)

n

χρ(τ)

dρ
.

To ease notation in the sequel, and keeping with that of Diaconis [8], I will write

r(ρ) =
χρ(r)

dρ
for any transposition r. This gives:

λ =
1

n
+

(n − 1)

n
r(ρ).

By the Upper Bound Lemma, we have:

∥∥P ∗k − U
∥∥2

≤
1

4

∗∑

ρ

dρTr
(
P̂ ∗k(ρ)P̂ ∗k(ρ)∗

)

=
1

4

∗∑

ρ

dρ

(
dρλ

2k
)

since P̂ ∗k(ρ)∗ = P̂ ∗k(ρ) =
(
P̂ (ρ)

)k

=
1

4

∗∑

ρ

d2
ρ

(
1

n
+

(n − 1)

n
r(ρ)

)2k

.

Now, there exist methods of calculating the characters and dimensions of the
irreducible representations of Sn, but this is quite time-consuming (for example,
there are 42 of them to calculate for S10). Such calculations can be avoided,
however, by using certain properties of the representations of the symmetric
group and the theory of Young tableaux [12]. This is another area of theory
completely, and there is not space to give it justice here. Instead, I move
straight to the main theorem of Diaconis [8], which uses the above bound as the
foundation of its proof.
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Theorem 7.6. Let k = 1
2n log n + cn. For c > 0,

∥∥P ∗k − U
∥∥ ≤ ae−2c

for a universal constant a.

I do not give the proof here: it is quite approachable, but very combinatorial
in nature. The following discussion gives the idea of where this result comes
from. Upon consideration of the values of |r(ρ)| for fixed n, it turns out that
these values are usually very small, with a few exceptions: these arise from
representations of low dimensions. If it could be shown that |r(ρ)| ≤ 1

2 for most
ρ, then for large n,

∣∣ 1
n + n−1

n r(ρ)
∣∣ ≤ 1

2 approximately, and we would have

∥∥P ∗k − U
∥∥2

≤
1

4

(
1

2

)2k ∑
d2

ρ.

Now, it can easily be shown that
∑

d2
ρ = |Sn| (this holds for all finite

groups). The above bound then becomes 1
4

(
1
2

)2k
n!. We can next employ

Stirling’s formula:

n! ≈ nne−n (2πn)
1
2 ,

giving, for k = n log n,

(
1

2

)2k

n! ≈ exp

(
log n

[
n (1 − 2 log 2) +

1

2

]
− n +

1

2
log (2π)

)

→ 0 as n → ∞

(since the term in the square brackets is negative for n ≥ 2).
In a similar manner it is possible to consider the term arising from the n− 1

dimensional representation: it turns out that this is the slowest term, with most

others being less than
(

1
2

)2k
. This representation has character n − 3, and so

(
1

n
+

n − 1

n
r(ρ)

)2k

=

(
1 −

2

n

)2k

.

This is a long way off from
(

1
2

)2k
: we therefore need to adjust our value for

k in order to kill this term in Lemma 7.5, i.e. we need to be able to kill

(n − 1)
2

(
1 −

2

n

)2k

.

It can quite easily be shown that this term is equal to

exp

(
2k log

(
1 −

2

n

)
+ 2 log (n − 1)

)
= exp

(
−

4k

n
+ 2 log n + O

(
k

n2

))
.
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Hence, if we take k = 1
2n log n + cn, this is asymptotic to e−4c. Taking

square roots of this leads to the e−2c in Theorem 7.6. Although this argument
is not particularly rigorous, it does shed some light on the origins of the upper
bound produced in this theorem. This upper bound is therefore an improvement
on that found via the coupling method, although only by a factor of four. A
proper comparison of the bounds produced and the actual number of iterations
taken by my program to reach convergence will be given in Section 9.

8 Application: Internet Search Engines

The method developed and put to use in this project to decode substitution
codes may be adaptable to an internet search engine algorithm. Markov chains
are currently used in this field: indeed, statistical language modelling is often
crucial to the process of information retrieval. One such method used in infor-
mation retrieval systems is that of Natural Language Processing (NLP) [20].

NLP involves two mathematical procedures: Markov chains and scoring.
The Markov chain element is similar to that used in my decoding programs.
The idea is to record prior word transition probabilities in a language, just as
I used a matrix of character transition probabilities. With this in mind, the
British National Corpus has been developed [15]: this is a collection of more
than 4, 000 text files, on a wide variety of subjects, totaling about 100 million
words (slightly more than in War and Peace)! Suitable prior transition matrices
can then be formed using text from this database.

The retrieval system works as follows. Each component in a user’s query is
given a weighting according to the scoring scheme. Suitable documents contain-
ing these components are found, and the text adjacent to these words considered:
these documents are then assigned a probability of relevance. The method for
calculating this probability involves multiplying-up the appropriate word tran-
sition probabilities for the surrounding text, using the prior transition matrix,
aiming to maximize this value. The documents retrieved are then ranked by
this relevance probability before being suggested to the user.

This is clearly similar to the method used above to find the best decod-
ing. There, the program aims to find the best possible permutation σ̂−1 using
character transition frequencies. With the web, the most useful document is
targeted with the use of word transitions. To the best of my knowledge, MCMC
is not actually used at the moment in this process, but its applicability is obvi-
ous. Such methods may, however, prove far too time-consuming to be practical,
especially since the growth of the web means a rapidly-evolving link structure.
This means that large-scale ranking computations, such as those used in NLP,
are becoming too expensive.

Other methods are currently being developed though, and in many cases
these are still based upon the N -gram structure of language. One idea is to
categorize texts by their letter frequencies. This assumes that similar texts
have similar character frequencies, just as we saw with the English novels in
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Section 4. The aim of this is to encourage search engines to return only a list
of documents which are of a suitable nature.

It is extremely difficult to model natural language effectively - Markovian
language models using N -grams are widely acknowledged to be too crude, but
it is hard to find anything better at present. Grammatical constructions and
long-distance correlations between words, for example, are ignored under this
framework. Many other methods are currently being proposed and developed
(e.g. a whole-sentence exponential model [19]), but there will always be room,
and indeed need, for improvement in this important field.

9 Conclusions

This project has shown that Markov Chain Monte Carlo techniques can be
successfully employed in the deciphering of simple substitution codes. Of course,
there are many much more efficient methods available for solving such easy
codes, but it does serve to emphasize the wide applicability of this area of theory.
I have shown, through the development of my own program to implement a
version of the Metropolis-Hastings algorithm, that this method can frequently
decode text to 99% accuracy. Using this program I then investigated certain
methods of improving the accuracy of the decoding. My final recommendation
for this is to firstly split the text into two halves, and then to decode each
part using the intelligent starting permutation scheme explained in Section 5.4:
the final decoding is formed by using the resulting permutation with the lowest
negative log-likelihood. This should significantly improve the frequency with
which a good deciphering is produced, and also reduce the mean number of
iterations taken for the Markov chain to converge.

The expected number of iterations when the chain is run without the help
of this starting state turned out to be 29, 459, with a standard deviation of
24, 766 (these figures come from the 66% of runs that reached 99% accuracy
within 200, 000 iterations). In assessing these figures, I attempted to describe
the ‘likelihood surface’ traversed by the Markov chain. This turned out to be
extremely complex, with peaks and troughs producing periods of meta-stability:
often these stopped the program from terminating when using the percentage
accuracy diagnostic. I also investigated the use of the negative log-likelihood
as a diagnostic measure: it turned out to be very effective in this capacity.
Indeed, it is such a consistent measure across English novels that the negative
log-likelihood of the target permutation can be calculated in advance simply
from knowledge of the length of the text. This means that meta-stability can
be avoided and convergence easily diagnosed.

I then presented two very different theoretical methods for calculating the
number of shuffles it takes to randomize a pack of n cards. The shuffling setup
for each of these was much simpler than the method of character transpositions
used by my program, since no information about the current state of the pack
was involved. From these I obtained two upper bounds on the required number
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of transpositions: 2n log n for the coupling method, and 1
2n log n for that using

representation theory. Since, for my program, I was working with the group S79,
these upper bounds become 690 and 173 respectively when n = 79. These are
clearly much lower than the actual number of iterations taken by my decoding
chains to reach equilibrium. It hence appears that the speed of convergence
is greatly reduced when the chain takes account of its present position, i.e.
when it uses the data available to it. It is currently an open problem to find
a way of integrating the unconditioned information from the coupling or group
representation methods into the algorithm. The hope is that this may be able
to significantly increase the convergence speed, since the theory shows that it is
definitely not the huge size of the state space (n!) that slows down the algorithm.
There may, however, be no way of solving this problem, since it may be the case
that the data completely breaks the symmetry of the unconditional chain.

Now, since |Alph| = 79, there are
(
79
2

)
= 3, 081 possible transpositions that

the program can propose. Define Ti to be the number of transpositions proposed
before a new one is proposed, given that i have already been considered. Then
if T is the time until all possible transpositions have been suggested, we can
write

T =

k−1∑

i=0

(Ti+1 − Ti) where k =

(
n

2

)
.

If i transpositions have already been proposed, then a new one is proposed

with probability
(

k−i
k

)
, and hence (Ti+1 − Ti) is Geometric with mean

(
k

k−i

)
.

Therefore,

E[T ] = 1 +
k

k − 1
+

k

k − 2
+ . . . +

k

1

= k

[
1 + . . . +

1

k − 1
+

1

k

]

≈ k log k.

Since k = 3, 081, this gives the expected number of transpositions needed for
all possibilities to have been suggested as 24, 750. This is much closer than the
theoretical upper bounds to the actual mean number of iterations taken by the
program: 29, 459. It hence looks as though in practice it is necessary to run the
chain for a length of time that allows all possible permutations to be suggested.
This was certainly the case in my investigations, where I recommended that the
program should be allowed to run for at least 60-70 thousand iterations.

Therefore I have demonstrated the use of MCMC in decoding, and have
implemented my own program to this effect. I have compared the convergence
rates in reality with those produced by the theory, and have attempted to explain
their difference in magnitude. I also gave a brief insight into possible uses of
this kind of algorithm in internet search engines, although it would appear that
such uses are limited in practice. There are clearly many further issues to be
investigated in extension of this work. There are many implementational issues,
for example, that I was unable to address due to lack of time and want of a
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faster program, as mentioned in Section 5.6. The two areas of theory also have
much potential, especially that of representation theory, although this is limited
to random walks generated by probabilities that are constant on conjugacy
classes.
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A Computer Code

All relevant code produced during this project is included below. It must be
emphasized that, to the best of my knowledge, these programs implement the
Metropolis-Hastings algorithm with the results presented in Section 5. I do not
claim that these are the most efficient way of producing such an algorithm; they
are included purely for completeness.

Alph = {"!", "*", "(", ")", "-", "[", "]", ".", ",", ";", "\"",

"?", "’", "/", ":", "\n", " ",

"0", "1", "2", "3", "4", "5", "6", "7", "8", "9",

"a", "A", "b", "B", "c", "C", "d", "D", "e", "E", "f", "F",

"g", "G", "h", "H", "i", "I", "j", "J", "k", "K", "l", "L",

"m", "M", "n", "N", "o", "O", "p", "P", "q", "Q", "r", "R",

"s", "S", "t", "T", "u", "U", "v", "V", "w", "W", "x", "X",

"y", "Y", "z", "Z"}

→ This is the character set (“\n” corresponds to a carriage return).

prob[code_/;VectorQ[code],alph_/;VectorQ[alph]]:=

Module[{matrix, xx, yy},

matrix = Table[Table[0, {Length[alph]}], {Length[alph]}];

For[ii = 1,

ii < Length[code],

ii = ii + 1,

xx = Flatten[Position[alph, code[[ii]]]];

yy = Flatten[Position[alph, code[[ii + 1]]]];

matrix[[xx, yy]] = matrix[[xx, yy]] + 1

];

matrix

]

→ Returns the transition matrix for code, whose rows/columns follow the ordering of
alph.

makefreq[mat_/;MatrixQ[mat]]:=

Module[{temp, yy},

temp = Table[0, {Length[mat]}];

yy = Apply[Plus, Apply[Plus, mat]];

For[ii = 1,

ii <= Length[temp],

ii = ii + 1,

temp[[ii]] = Apply[Plus, mat[[ii]]]/yy

];

temp

]

→ Converts matrix mat into a vector of relative frequencies.

freq = Log[makefreq[pr]]

compare[xx_,yy_]:=

If[xx < yy, 1, 0]

SetAttributes[compare, Listable]

→ Allows comparison of xx with y, irrespective of the level at which each is nested
within a list.
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alphify[lst1_,lst2_,lst3_]:=

Module[{temp},

temp = lst1;

For[ii = 1,

ii <= Length[lst2],

ii = ii + 1,

temp[[Flatten[Position[lst1,lst2[[ii]]]]]]=lst3[[ii]]

];

temp

]

→ Decodes lst1 using permutation lst3, assuming lst2 to be the identity
permutation.

swap3[mat_/;(MatrixQ[mat]&&Apply[Equal,Dimensions[mat]]),ii_,jj_]:=

Module[{temp, temp2},

temp2 = mat;

temp2[[ii]] = mat[[jj]];

temp2[[jj]] = mat[[ii]];

temp = temp2;

temp2[[All, ii]] = temp[[All, jj]];

temp2[[All, jj]] = temp[[All, ii]];

temp2

]

→ Returns the new transition matrix obtained when mat is the current transition
matrix and characters ii and jj are proposed.

swap[mat_/;(MatrixQ[mat]&&Apply[Equal,Dimensions[m]]),ii_,jj_]:=

Module[{temp, mat2},

temp = Table[Table[0, {Length[mat]}], {Length[mat]}];

temp[[ii]] = mat[[jj]] - mat[[ii]];

temp[[jj]] = -temp[[ii]];

temp = Transpose[temp];

mat2 = Transpose[mat];

temp[[ii]] = mat2[[jj]] - mat2[[ii]];

temp[[jj]] = -temp[[ii]];

temp = Transpose[temp];

temp[[ii, ii]] = mat[[jj, jj]] - mat[[ii, ii]];

temp[[jj, jj]] = -temp[[ii, ii]];

temp[[ii, jj]] = mat[[jj, ii]] - mat[[ii, jj]];

temp[[jj, ii]] = -temp[[ii, jj]];

temp

]

→ Returns the difference between two transition matrices, calculated explicitly
entry-by-entry.

tranAlph[lst_/;VectorQ[lst],no2_,no3_]:=

Module[{temp},

temp = lst;

temp[[Flatten[Position[lst,Alph[[no2]]]]]]=Alph[[no3]];

temp[[Flatten[Position[lst,Alph[[no3]]]]]]=Alph[[no2]];

temp

]

→ Exchanges characters no2 and no3 in permutation lst.
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logprob[mat_/;MatrixQ[mat]]:=

Module[{prmat, help, logprmat},

prmat = DiagonalMatrix[Table[0, {Length[mat]}]];

logprmat = DiagonalMatrix[Table[0, {Length[mat]}]];

help = Table[0, {Length[mat]}];

For[ii = 1,

ii <= Length[mat],

ii = ii + 1,

{help[[ii]] = (Apply[Plus, mat[[ii]]]),

For[jj = 1,

jj <= Length[mat],

jj = jj + 1,

prmat[[ii, jj]]=If[help[[ii]]==0,0,mat[[ii,jj]]/help[[ii]]];

logprmat[[ii, jj]] =

If[prmat[[ii, jj]] == 0, -12, Log[prmat[[ii, jj]]]]

]

}

];

logprmat

]

→ Returns matrix of log probabilities produced from mat.
log(0) is defined to be −12.

joiner[lst_/;VectorQ[lst]]:=

Module[{start},

start = lst[[1]];

For[ii = 1,

ii < Length[lst],

ii = ii + 1,

start = StringInsert[start, lst[[ii + 1]], -1]

];

start

]

→ Converts a list into a string.

unpermute[lst_/;VectorQ[lst],alph_/;VectorQ[alph]]:=

Module[{temp, xx},

temp = Table[0, {Length[lst]}];

For[ii = 1,

ii <= Length[lst],

ii = ii + 1,

xx = Flatten[Position[lst, alph[[ii]]]];

temp[[ii]] = alph[[xx]]

];

Flatten[temp]

]

→ If permutation lst is applied to some text, then this returns the inverse permutation
when using character set alph.
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percentage[vec1_/;VectorQ[vec1],vec2_/;VectorQ[vec2],

mat_/;MatrixQ[mat]]:=

Module[{total, help},

total = Table[0, {Length[vec1]}];

For[vv = 1,

vv <= Length[vec1],

vv = vv + 1,

If[vec1[[vv]] != vec2[[vv]], total[[vv]] = 1]

];

help = makefreq[mat];

newhelp = help;

For[zz = 1,

zz <= Length[help],

zz = zz + 1,

newhelp[[zz]]=help[[Flatten[Position[Alph,vec1[[zz]]]]]]

];

Round[100*(1 - total.newhelp)]

]

→ Returns the percentage to which permutations vec1 and vec2 agree when applied
to the text. Used when the target permutation (σ−1) is known, to help test for
convergence.

matwrpc = logprob[pr]; matwr = Flatten[matwrpc];

→ Produces the matrix (logP), as well as its flattened (vector) representation.

likeprint[mat_/;MatrixQ[mat]]:=

Round[(Flatten[mat]).matwr]

→ Calculates the negative log-likelihood of the matrix mat.

starter[code_/;VectorQ[code],freq1_/;VectorQ[freq1],

freq2_/;VectorQ[freq2]]:=

Module[{temp, temp1, temp2, help1, help2, final, xxx},

temp1 = Table[{0}, {Length[freq2]}];

temp2 = temp1;

For[tt = 1,

tt <= Length[freq2],

tt = tt + 1,

temp1[[tt]]=Insert[{freq1[[tt]]},Alph[[tt]],{2}];

temp2[[tt]]=Insert[{freq2[[tt]]},Alph[[tt]],{2}]

];

help1 = Sort[temp1][[All, 2]];

help2 = Sort[temp2][[All, 2]];

final = Table[0, {Length[help1]}];

For[hh = 1,

hh <= Length[final],

hh = hh + 1,

xxx = Flatten[Position[help1, Alph[[hh]]]];

final[[hh]] = help2[[xxx]]

];

{help1, help2, Flatten[final]}

]

→ Calculates the ‘intelligent starting permutation‘ as described in Section 5.4.

59



solvitbound[code_/;VectorQ[code],number_/;IntegerQ[number],

bound_/;IntegerQ[bound]]:=

Module[{matp, len, ratio, ran, ran1, ran2, newmat, alph,

extra1, liker, confound, extra2, no1, kk, nn,

plotter1, plotter2, plotter3},

nn = number*100;

matp = prob[code, Alph];

len = Length[matp];

alph = Alph;

liker = -likeprint[matp];

confound = percentage[unperm, alph, matp];

plotter1 = {{0, liker}};

plotter2 = {Flatten[{0, confound}, 1]};

plotter3 = {Flatten[{confound, liker}, 1]};

no1 = Flatten[Position[Alph, First[code]]];

kk = Ceiling[nn/5];

For[jj = 1,

jj <= 5,

jj = jj + 1,

Do[

extra1 = 0;

extra2 = 0;

ran1 = Random[Integer, (len - 1)] + 1;

ran2 = Random[Integer, (len - 1)] + 1;

newmat = Flatten[swap[matp, ran1, ran2]];

If[{ran1}==no1,

{extra1=freq[[Flatten[Position[Alph,alph[[ran2]]]]]],

extra2=freq[[Flatten[Position[Alph,alph[[ran1]]]]]]}

];

If[{ran2}==no1,

{extra1=freq[[Flatten[Position[Alph,alph[[ran1]]]]]],

extra2=freq[[Flatten[Position[Alph,alph[[ran2]]]]]]}

];

ratio = extra1 - extra2 + newmat.matwr;

ran = Log[Random[]];

If[compare[ran, ratio] == 1 || compare[ran, ratio] == {1},

{alph = tranAlph[alph, ran1, ran2],

matp = swap3[matp, ran1, ran2],

confound = percentage[unperm, alph, matp],

If[compare[bound, confound] == {1},

{liker = -likeprint[matp],

Print["Runs Neg.Log.Like. %’ge Correct"],

Print[N[(jj - 1)*kk + pp], " ", liker,

" ", confound],

AppendTo[plotter1,{(jj-1)*kk+pp,liker}],

AppendTo[plotter2,Flatten[{(jj-1)*kk+pp,confound},1]],

AppendTo[plotter3,Flatten[{confound,liker},1]],

Goto[overhere]}],
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no1 = Switch[no1,

{ran1}, {ran2},

{ran2}, {ran1},

_, no1]

}

],

{pp, kk}

];

AppendTo[plotter1, {(jj - 1)*kk, -likeprint[matp]}];

AppendTo[plotter2,

Flatten[{(jj-1)*kk,percentage[unperm,alph,matp]},1]];

AppendTo[plotter3,

Flatten[{percentage[unperm,alph,matp],-likeprint[matp]},1]]

];

Print["Unfinished ", -likeprint[matp], " ",

percentage[unperm, alph, matp]];

Label[overhere];

ListPlot[plotter1, PlotJoined -> True];

ListPlot[plotter2, PlotJoined -> True];

ListPlot[plotter3, PlotJoined -> False];

joiner[alphify[code[[Range[1, 200]]], Alph, alph]]

]

→ This is the main decoding program. The arguments are the encoded text, the upper
bound on the number of iterations (in hundreds) and the percentage accuracy required for
the chain to stop, respectively. When the algorithm stops, the following are displayed:

• the number of iterations completed (‘Unfinished’ if convergence is not reached)

• the negative log-likelihood of the final permutation

• the percentage agreement between the final permutation and the correct inverse per-
mutation.

Three graphs are then produced:

• negative log-likelihood vs no. of iterations

• percentage accuracy vs no. of iterations

• negative log-likelihood vs percentage accuracy.

The first 200 characters of the final decoding are then displayed in string-format.
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