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The general problem

Let Φ = {Φn, n ≥ 0} be a time-homogeneous Markov chain on a
state space X. (Assume that Φ is phi-irreducible and aperiodic, for
simplicity.)

We’re interested in what can be said about the long-term
behaviour of Φ. For example:

does Φ converge to an equilibrium distribution?

if so, in what norm does this convergence take place, and how
fast?

and how is this related to the average time spent between
successive visits to certain sets?
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Notation

Pn: n-step transition kernel of Φ;

for a non-negative function f , and measure µ:

Pnf (x) = Ex [f (Φn)] , µ(f ) =

∫
f (y)µ(dy) ;

norm ‖µ‖g :

‖µ‖g = sup
f :|f |≤g

|µ(f )| , ‖ · ‖TV ≡ ‖ · ‖1 ;

first return time to a set: τA = inf{n ≥ 1 : Φn ∈ A};
C is a small set if ∃ε > 0 and a measure ν s.t.

P(x , ·) ≥ εν(·) for all x ∈ C .
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Ergodicity

Φ is called ergodic if it has a finite invariant measure π (π = πP).

In this case, for any x ,

‖Pn(x , ·)− π‖TV → 0 as n→∞. (1)

Equivalently, we can find a small set C with

sup
x∈C

Ex [τC] <∞.

But how fast does the convergence in (1) take place?
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Definition

Φ is geometrically ergodic if there exists r > 1 with

‖Pn(x , ·)− π(·)‖TV ≤ Mx r−n .

Equivalently:

there exists a scale function V : X→ [1,∞), a small set C,
and constants β ∈ (0, 1), b <∞, with

Ex [V (Φ1)] = PV (x) ≤ βV (x) + b1C(x);

supx∈C Ex [β−τC ] <∞.
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Drift conditions

The inequality

PV (x) ≤ βV (x) + b1C(x);

is called a Foster-Lyapunov drift condition.

often easiest way of showing that Φ is geometrically ergodic;

if V is bounded then Φ is uniformly ergodic.

Subgeometric ergodicity is implied by a weaker drift condition:

PV (x) ≤ V (x)− φ ◦ V (x) + b1C(x)

for some concave non-negative function φ.
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Questions:

Drift conditions tend to look at only one step of Φ though:
sometimes more convenient to work with a subsampled chain . . .

1 When can we find a function n : X→ N such that

Pn(x)V (x) ≤ βV (x) + b1C(x) ? (2)

2 Alternatively, if (2) holds for some n and V , what can be said
about moments of the return time to C?

3 And when is this useful?!
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Establishing a subsampled drift condition

Theorem (1)

Assume that there exist a small set D, a function V : X→ [1,∞)
and a continuously differentiable increasing concave function
φ : [1,∞)→ (0,∞), such that supD V <∞, inf [1,∞) φ > 0, and

PV ≤ V − φ ◦ V + b1D .

Fix β ∈ (0, 1) and let n : X→ N satisfy n(x) ∼ 1
β

(
V
φ◦V

)
(x).

Then for any β < β′ < 1,

Pn(x)W ≤ β′W + b′1C ,

where W = φ ◦ V .
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Comments

Theorem (1) says that we can deduce a (state-dependent)
subsampled geometric drift condition from a one-step drift,
but on a different scale;

More general results (not requiring a drift condition for V )
can be stated.
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Examples

PV ≤ V − φ ◦ V + b1D ⇒ Pn(x)W ≤ β′W + b′1C

Polynomially ergodic: if φ(t) ∼ ct1−α for some α ∈ (0, 1),
then n ∼ V α and W = V 1−α.
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Polynomially ergodic: if φ(t) ∼ ct1−α for some α ∈ (0, 1),
then n ∼ V α and W = V 1−α.

Motivation: Deterministic chain: Φn+1 = Φn − Φ0.4
n (so V (x) = x)
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Examples

PV ≤ V − φ ◦ V + b1D ⇒ Pn(x)W ≤ β′W + b′1C

Polynomially ergodic: if φ(t) ∼ ct1−α for some α ∈ (0, 1),
then n ∼ V α and W = V 1−α.

Subgeometrically ergodic: if φ(t) ∼ t[ln t]−α for some
α > 0, then n ∼ [ln V (x)]α and W = V [ln V ]−α.

Logarithmically ergodic: if φ(t) ∼ [1 + ln t]α for some
α > 0, then n ∼ V

[1+lnV ]α and W = [1 + ln V ]α.
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Using a subsampled drift condition

Question 2

Suppose we know that

Pn(x)V (x) ≤ βV (x) + b1C(x) .

What can be said about moments of τC?

If n(x) = c then Φ is geometrically ergodic;

Alternative drift condition

Pn(x)V (x) ≤ βn(x)V (x) + b1C(x)

(with no relation assumed between n and V ) shown by Meyn
& Tweedie (1994) to also imply geometric ergodicity.
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Theorem (2)

Assume that
Pn(x)V (x) ≤ βV (x) + b1C(x) .

If there exists a strictly increasing function R : (0,∞)→ (0,∞)
satisfying one of the following conditions

(i) t 7→ R(t)/t is non-increasing and R ◦ n ≤ V ,

(ii) R is a convex continuously differentiable function such that
R ′ is log-concave and R−1(V )− R−1(βV ) ≥ n,

then there exists a constant M such that

Ex [R(τC)] ≤ M (V (x) + b1C(x)) .



Introduction Establishing drift Using drift Applications References

If n(x) ≤ V (x) then taking R(t) = t in (i) we obtain

sup
x∈C

Ex [τC] <∞ ;

Part (i) can be applied when V = ξ ◦ n for some increasing
concave function ξ (i.e. useful when n� V );

Alternatively, if n = ξ ◦ V then

R−1(t) ∼
∫ t

1

ξ(u)

u
du

satisfies (ii) (i.e. this is useful when n/V decreasing).
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Interplay of subsampling rates and moments

Geometric rates: if n(x) = 1, take R(t) = κt , with 1 ≤ κ ≤ β−1.
Then

R is convex and log-concave;

R−1(V )− R−1(βV ) = (lnβ−1)/(lnκ) ≥ 1 = n.

Thus (ii) shows that

Ex [R(τC)] = Ex [κτC ] ≤ M (V (x) + b1C(x)) ,

and so Ex [β−τC ] <∞.
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Interplay of subsampling rates and moments

Polynomial rates: suppose n(x) ∼ V
α

(1−α) (x), for some α ∈ (0, 1].
Letting R(t) ∼ t1/α−1, we see that

when α ≤ 1/2 then R satisfies (ii);

when α ≥ 1/2 then R(t)/t is non-increasing, and

R ◦ n ∼ (V
α

(1−α) )1/α−1 = V ,

and so R satisfies (i).

In either case, we obtain

Ex

[
τ
1/α−1
C

]
≤ cV (x) .

Logarithmic and subgeometric rates can be dealt with similarly.
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Corollary (to Theorem (2))

If π(V ) <∞ then there exists a small set D with

sup
x∈D

Ex

[
τD∑
k=0

R(k)

]
<∞ .

Polynomial chains: if PV ≤ V − cV 1−α + b1C then (Thm (1))

Pn(x)W (x) ≤ β′W (x) + b′1D ,

where W ∼ V 1−α and n ∼ V α; furthermore, π(W ) <∞.

Using R(t) ∼ t1/α−1 in the Corollary we obtain

Ex

[
τ
1/α
C

]
<∞ .
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Application: tame chains

Class of Markov chains introduced by SBC & Kendall (2007).

Definition

Φ is tame if the following two conditions hold:

(i) there exist δ ∈ (0, 1) and a deterministic function n satisfying
n(x) ≤W δ(x) such that

Ex

[
W (Φn(x))

]
≤ βW (x) + b1C(x) ;

(ii) the constant δ satisfies lnβ < δ−1 ln(1− δ).

i.e. Φ satisfies a subsampled geometric drift condition, where the
subsampling time n is not too large.
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Theorem (SBC & Kendall, 2007 )

If Φ is tame then there exists a perfect simulation algorithm for Φ
(using Dominated Coupling from the Past).

Idea of proof: there exists a simple dominating process for any
geometrically ergodic chain (Kendall, 2004); delay this (using n) to
produce dominating process for X .
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When is a chain tame?

All geometrically ergodic chains are tame.

Proposition

If PV ≤ V − cV 1−α + b1C , with α ∈ (0, 1/2), then Φ is tame.

Proof easy, using Theorem (1).

Follows that chains with subgeometric drift (φ(t) ∼ t[ln t]−α)
are tame.

Logarithmically ergodic chains (φ(t) ∼ [1 + ln t]α) not
covered by this result.
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Dominating process

Can also use above theory to determine ergodic properties of the
dominating process D for Φ in the perfect simulation algorithm.

D does not satisfy a simple one-step drift condition;

but establishing state-dependent drift is simple!

Theorem (2) provides information about ergodic properties of
D.
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Dominating process

Can also use above theory to determine ergodic properties of the
dominating process D for Φ in the perfect simulation algorithm.

D does not satisfy a simple one-step drift condition;

but establishing state-dependent drift is simple!

Theorem (2) provides information about ergodic properties of
D.

E.g. if n(x) ∼W (x)γ (with γ ≤ δ), then D is ergodic and
converges to πD polynomially fast (in total variation)

but note that this isn’t enough to guarantee that the mean
run-time of the domCFTP algorithm is finite . . .
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Other applications/extensions

Sufficient conditions for ergodicity of strong Markov processes

applications in queueing
and network stability

continuum range of rates
of convergence

explicit norm of
convergence

Yüksel & Meyn (2012) use random-time, state-dependent
drift criteria to prove stability results, but not convergence
rates . . .
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