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Let & = {®,,n > 0} be a time-homogeneous Markov chain on a
state space X. (Assume that @ is phi-irreducible and aperiodic, for
simplicity.)

We're interested in what can be said about the long-term
behaviour of ®. For example:

o does ® converge to an equilibrium distribution?

o if so, in what norm does this convergence take place, and how
fast?

o and how is this related to the average time spent between
successive visits to certain sets?



©

P": n-step transition kernel of ®;

o for a non-negative function f, and measure pu:

PrPC) = EAf(@n)].  w(f)= [ F()uldy):

@ norm ||p|lg:
lllg = sup |u(O)s - llev =1 [l
f:|f|<g
o first return time to a set: 74 =inf{n>1: &, € A},

C is a small set if 3¢ > 0 and a measure v s.t.

©

P(x,-) > ev(-) for all x € C.
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® is called ergodic if it has a finite invariant measure 7 (7 = 7P).

In this case, for any x,
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IP"(x, ) — 7||tv — 0 as n — oc.

Equivalently, we can find a small set C with

sup Ex[7e] < oc.
xeC
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In this case, for any x,

IP"(x,-) — 7||Tv — 0 as n — co. (1)

Equivalently, we can find a small set C with

sup Ex[7e] < oc.
xeC

But how fast does the convergence in (1) take place?
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Definition

& is geometrically ergodic if there exists r > 1 with

[P7(x,:) = 7 ()lpy < Mxr™".

Equivalently:

o there exists a scale function V : X — [1,00), a small set C,
and constants 8 € (0,1), b < oo, with

Ex [V(®1)] = PV(x) < BV(x) + ble(x);

o sup,cc Ex[577¢] < o0.
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The inequality

PV(x) < BV(x) + ble(x);

is called a Foster-Lyapunov drift condition.

o often easiest way of showing that ® is geometrically ergodic;
o if V is bounded then & is uniformly ergodic.

Subgeometric ergodicity is implied by a weaker drift condition:

PV (x) < V(x) — ¢ o V(x) + ble(x)

for some concave non-negative function ¢.
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sometimes more convenient to work with a subsampled chain . ..
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Drift conditions tend to look at only one step of ® though:
sometimes more convenient to work with a subsampled chain . ..

@ When can we find a function n: X — N such that

PrOIV(x) < BV(x) + ble(x)? (2)

Q Alternatively, if (2) holds for some n and V/, what can be said
about moments of the return time to C?

@ And when is this useful?!



Theorem (1)

Assume that there exist a small set D, a function V : X — [1,00)
and a continuously differentiable increasing concave function
¢ : [1,00) = (0,00), such that supp V < oo, inf[y ooy ¢ > 0, and

PV <V —¢oV +blp.

Fix 3 € (0,1) and let n: X — N satisfy n(x) ~ 1 <L) (x).
Then for any B < B’ < 1,

i

P"OW < BW + b1e,

where W = ¢ o V.




o Theorem (1) says that we can deduce a (state-dependent)
subsampled geometric drift condition from a one-step drift,
but on a different scale;

@ More general results (not requiring a drift condition for V)
can be stated.
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PV <V —¢oV+blp = | PPOW<BW+ b1

o Polynomially ergodic: if ¢(t) ~ ct'=® for some a € (0,1),
then n~ V% and W = V1=«

Motivation: Deterministic chain: ®,,; = ®, — ®%* (so V(x) = x)
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PV <V —¢oV+blp = | PPOW<BW+ b1

o Polynomially ergodic: if ¢(t) ~ ct'=® for some a € (0,1),
then n ~ V® and W = V1~

o Subgeometrically ergodic: if ¢(t) ~ t[Int]™ for some
a >0, then n~ [In V(x)]* and W = V[In V]

o Logarithmically ergodic: if ¢(t) ~ [1 + Int]* for some

a >0, then nwWand W =[1+InV]~
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Suppose we know that

P V(x) < BV(x) + ble(x) .

What can be said about moments of 7¢?

o If n(x) = c then ® is geometrically ergodic;
o Alternative drift condition
PPIV(x) < "V (x) + ble(x)

(with no relation assumed between n and V') shown by Meyn
& Tweedie (1994) to also imply geometric ergodicity.



Theorem (2)

Assume that

P"™V(x) < BV/(x) + blc(x).

If there exists a strictly increasing function R : (0, 00) — (0, c0)
satisfying one of the following conditions

t — R(t)/t is non-increasing and Ron <V,

R is a convex continuously differentiable function such that
R’ is log-concave and R=1(V) — R=}(BV) > n,

then there exists a constant M such that

Ex[R(7c)] < M (V(x) + ble(x)).




o If n(x) < V(x) then taking R(t) =t in (i) we obtain

sup Ex[rc] < o0
xeC
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o If n(x) < V(x) then taking R(t) =t in (i) we obtain

supEx[rc] < o0;
xeC

o Part (i) can be applied when V = £ o n for some increasing
concave function £ (i.e. useful when n>> V);

o Alternatively, if n =& o V then
t
R7(t) ~ / @du
1 u

satisfies (ii) (i.e. this is useful when n/V decreasing).



Geometric rates: if n(x) = 1, take R(t) = xf, with 1 < x < 7L,
Then

@ R is convex and log-concave;

o R7Y(V) = RYBV)=(InBY)/(Ink) >1=n.

Thus (ii) shows that
Ex[R(7e)] = Ex[r7] < M (V(x) + ble(x))

and so E, [f77¢] < 0.



Polynomial rates: suppose n(x) ~ VI (x), for some a € (0, 1].
Letting R(t) ~ tY/*1, we see that

o when a <1/2 then R satisfies (ii);
o when o > 1/2 then R(t)/t is non-increasing, and
Ronn~ (VEa)/e1loy,

and so R satisfies (i).



Polynomial rates: suppose n(x) ~ VI (x), for some a € (0, 1].
Letting R(t) ~ tY/*1, we see that

o when a <1/2 then R satisfies (ii);

o when o > 1/2 then R(t)/t is non-increasing, and
Ron~ (VIma)l/erl— v,
and so R satisfies (i).
In either case, we obtain

Ex [7‘3/&_1} < cV(x).

Logarithmic and subgeometric rates can be dealt with similarly.
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Corollary (to Theorem (2))

If m(V) < oo then there exists a small set D with

TZDR(/()] < 0.

k=0

sup Ey
xe€D

Polynomial chains: if PV < V — cV1= 4+ bl; then (Thm (1))
P W (x) < BW(x)+ b1lp,

where W ~ V=% and n ~ V; furthermore, (W) < oc.

Using R(t) ~ t1/=1 in the Corollary we obtain

E, [Té/a:| < 00




Class of Markov chains introduced by SBC & Kendall (2007).

® is tame if the following two conditions hold:
there exist 0 € (0,1) and a deterministic function n satisfying

n(x) < W9(x) such that

Ex [W(cbn(x))] < ﬁW(X) + blC(X) '

the constant ¢ satisfies In 3 < 6~ In(1 — §).

i.e. ® satisfies a subsampled geometric drift condition, where the
subsampling time n is not too large.



Theorem (SBC & Kendall, 2007 )

If ® is tame then there exists a perfect simulation algorithm for ®
(using Dominated Coupling from the Past).

Idea of proof: there exists a simple dominating process for any
geometrically ergodic chain (Kendall, 2004); delay this (using n) to
produce dominating process for X.
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Theorem (SBC & Kendall, 2007 )

If ® is tame then there exists a perfect simulation algorithm for ®
(using Dominated Coupling from the Past).
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o All geometrically ergodic chains are tame.

Proposition

IFPV <V — V=@ 4+ ble, with o € (0,1/2), then ® is tame.

o Proof easy, using Theorem (1).

o Follows that chains with subgeometric drift (¢(t) ~ t[Int]~%)
are tame.

o Logarithmically ergodic chains (¢(t) ~ [1 + In t]*) not
covered by this result.



Can also use above theory to determine ergodic properties of the
dominating process D for ® in the perfect simulation algorithm.
o D does not satisfy a simple one-step drift condition;
@ but establishing state-dependent drift is simple!
o Theorem (2) provides information about ergodic properties of
D.
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Can also use above theory to determine ergodic properties of the
dominating process D for ® in the perfect simulation algorithm.
o D does not satisfy a simple one-step drift condition;
@ but establishing state-dependent drift is simple!
o Theorem (2) provides information about ergodic properties of
D.

E.g. if n(x) ~ W(x)Y (with v < ¢), then D is ergodic and
converges to mp polynomially fast (in total variation)
@ but note that this isn't enough to guarantee that the mean
run-time of the domCFTP algorithm is finite . ..
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and network stability

o continuum range of rates
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o explicit norm of
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o Sufficient conditions for ergodicity of strong Markov processes

o applications in queueing
and network stability

o continuum range of rates
of convergence

o explicit norm of
convergence

@ Yiksel & Meyn (2012) use random-time, state-dependent
drift criteria to prove stability results, but not convergence
rates ...



State-dependent FosterLyapunov criteria for subgeometric convergence of
Markov chains.

Perfect Simulation for a Class of Positive Recurrent Markov Chains.
Geometric Ergodicity and Perfect Simulation.
State-dependent criteria for convergence of Markov chains.

Random-Time, State-Dependent Stochastic Drift for Markov Chains and
Application to Stochastic Stabilization Over Erasure Channels.
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