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Coupling

Let X be a Markov process with state space S. We are interested
in the situation where we have two copies of this process, X and
Y , started from different states.

Definition

A coupling of X and Y is a process (X ′,Y ′) on S × S, such that

X ′
D
= X and Y ′

D
= Y .

That is, viewed marginally, X ′ behaves as a version of X and Y ′ as
a version of Y .
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The coupling time is defined by

τ = inf
{

t : X ′s = Y ′s for all s ≥ t
}

The coupling is successful if P (τ <∞) = 1

τ is not, in general, a stopping time (for the marginal
processes nor the joint process)
A ‘good’ coupling is usually one with a ‘small’ coupling time τ

existence of a coupling is trivial: let X ′ and Y ′ be
independent until they first meet, then stay together

this idea goes back to Doeblin (1938)

a major use of coupling is to provide information about the
convergence of X ...
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The coupling inequality

Definition

Let µ and ν be probability measures defined on S . The total
variation distance between µ and ν is given by

‖µ− ν‖TV = sup
A⊂S

(µ(A)− ν(A))

Lemma (The coupling inequality)

Let (X ,Y ) be a coupling as above. Then

‖P (Xt ∈ ·)− P (Yt ∈ ·)‖TV ≤ P (τ > t) .

Stephen Connor University of York, UK



Introduction Types of coupling Brownian Motion RW on Zn
2 Conclusion References

The coupling inequality

Definition

Let µ and ν be probability measures defined on S . The total
variation distance between µ and ν is given by

‖µ− ν‖TV = sup
A⊂S

(µ(A)− ν(A))

Lemma (The coupling inequality)

Let (X ,Y ) be a coupling as above. Then

‖P (Xt ∈ ·)− P (Yt ∈ ·)‖TV ≤ P (τ > t) .

Stephen Connor University of York, UK



Introduction Types of coupling Brownian Motion RW on Zn
2 Conclusion References

Maximal coupling

It is well known that there exists a maximal coupling of X and Y
(Griffeath, 1975); that is, a joint process (X ∗,Y ∗) with coupling
time τ∗ satisfying

‖P (X ∗t ∈ ·)− P (Y ∗t ∈ ·)‖TV =P (τ∗ > t) .

Thus there exists a successful coupling for X if and only if X
is weakly ergodic
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Although a maximal coupling is known to exist, such a
coupling is typically (at best) non-Markovian, unintuitive, and
very difficult to compute explicitly – they are rarely used in
practical applications
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Co-adapted coupling

Definition

(X ,Y ) is called co-adapted if X and Y are both Markov with
respect to a common filtration (Ft).

(We don’t require that (X ,Y ) is Markov w.r.t. (Ft).)

It now suffices to study the first collision time of X and Y
→ X and Y can be made to agree from this time onwards

co-adapted couplings are much more intuitive (neither process
is allowed to ‘cheat’ by looking into the future)

maximal couplings are in general not co-adapted

But how good can a co-adapted coupling be?
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Brownian motion: a maximal coupling

Consider two Brownian motions, X and Y , on R, with X0 = x and
Y0 = y (and x ≥ y). Write

pt(x , u) =
e−(u−x)

2/2t

√
2πt

.

It is simple to calculate the total variation distance between these
two processes at any time t using the following result...

Stephen Connor University of York, UK



Introduction Types of coupling Brownian Motion RW on Zn
2 Conclusion References

Lemma

For probability measures µ and ν, let µ ∧ ν be their greatest
common component, and let λ be a measure that dominates µ and
ν. Write

f =
dµ

dλ
, f ′ =

dν

dλ
.

Then

‖µ− ν‖TV = 1−
∫

(f ∧ f ′) dλ .
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y x

So...

‖L (Xt)− L (Yt)‖ = 1− 2

∫ (x+y)/2

−∞
pt(x , z)dz

= Erf

[
(x − y)/2√

2t

]
= Px

(
τ(x+y)/2 > t

)
.

where τ(x+y)/2 = inf {t ≥ 0 |Xt = (x + y)/2} .
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Thanks to the symmetry of BM, this shows that reflection coupling
is maximal for X and Y . In other words, if we define Y by

Yt =

{
y − (Xt − x) for t ≤ τ(x+y)/2

Xt for t > τ(x+y)/2 ,

then

‖L (Xt)− L (Yt)‖ = Px

(
τ(x+y)/2 > t

)
= P (Xt 6= Yt) .

y

x

x+y

2
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Altering the initial conditions

Note that this reflection coupling is co-adapted

But what if we now alter the starting conditions, so that
X0 = x is fixed, but Y0 ∼ N(0, σ2)?

Perhaps surprisingly...

Lemma

Under these initial conditions, reflection coupling for the pair of
Brownian motions (X ,Y ) is not maximal
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However, reflection is an optimal co-adapted coupling for X and Y
when Y0 is randomised using any distribution:

any co-adapted coupling must be conditioned at time zero
upon the σ-algebra F0 = σ {Xs ,Ys : s ≤ 0};
in particular, the coupling scheme at time zero is conditioned
on the event {Y0 = y};
so the best that any co-adapted coupling can do is to match
the coupling time of a maximal coupling between X and Y
when (X0,Y0) = (x , y), averaged over the distribution of Y0;

this bound is achieved uniquely by reflection coupling.

Question

Is there an intuitive description of a maximal coupling under these
initial conditions?
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Some extensions

A similar set of results holds for couplings of two
Ornstein-Uhlenbeck processes.

What about couplings for more general diffusions?

dXt = b(Xt) dt + σ(Xt) dBt

Question

Is reflection (reflecting Bt) maximal when X0 and Y0 are
deterministic?

it seems natural to conjecture that reflection is not maximal
when X0 = x and Y0 is randomised

but is reflection still a (unique) optimal co-adapted coupling?
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Random walk on the hypercube, Zn
2

Let Zn
2 be the group of binary n-tuples, under coordinate-wise

addition modulo 2:

this is the set of vertices of an n-dimensional cube

we write x ∈ Zn
2 as x = (x(1), . . . , x(n)) ∈ {0, 1}n

This is one of the simplest groups on
which to study random walks, due to
its high level of symmetry.
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We define a simple, symmetric, continuous-time random walk X
on Zn

2 as follows:

let Λi , 1 ≤ i ≤ n, be independent unit-rate Poisson processes

at incident times of Λi , the i th coordinate of X flips to its
opposite value (0 or 1)

unique equilibrium distribution is Uniform(Zn
2)

e.g., with n = 6:
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Now suppose that we wish to couple two such random walks, X
and Y , with X0 = (0, 0, . . . , 0) and Y0 ∼ Uniform(Zn

2)

Maximal coupling

An almost-maximal coupling was described by Matthews (1987):

not co-adapted, but still intuitive!

expected coupling time ∼ (log n)/4

But how good can a co-adapted coupling be for this process?
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Optimal co-adapted coupling

Any co-adapted coupling must satisfy three constraints (all
imposed by the marginal processes X (i) being unit-rate Poisson
processes):

in any instant, no. of jumps of (X ,Y ) cannot exceed two

all ‘single’ and ‘double’ jumps have rates bounded above by 1

the total rate at which X (i) jumps must equal 1

This allows us to describe any co-adapted coupling (X ,Y ) using

marked Poisson processes Λij (0 ≤ i, j ≤ n)

a (n + 1)× (n + 1) matrix-valued control process, Q

Let C be the class of all co-adapted couplings.
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Stochastic control problem

We now just need to find the best control process Q:

Method

1 Make a guess at a good process: call it Q̂;

2 Choose a cost function v , that measures how good any
control process Q is
e.g. v(Q) = E [τQ ], or v(Q, t) = P (τQ > t);

3 Use Bellman’s principle to show that v is minimized by Q̂.
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Making a good guess: intuition

Matching coordinates should be made to move synchronously:

Coupling strategy should depend only on

Nt = no. of unmatched bits at time t
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Two possible strategies (I)

Allow unmatched bits to evolve independently:

→ single new matches are made at rate 2Nt
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Two possible strategies (II)

Pair unmatched bits:

→ two new matches are made at rate Nt
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Main result: the optimal co-adapted coupling

Let Q̂ control (X ,Y ) as follows:

1 matched bits move synchronously;

2 if Nt is even then coupled unmatched bits in pairs;
3 if Nt is odd then let unmatched bits move independently.

Let τ̂ be the associated coupling time. What cost function should
we use?

Define v̂(x , y , t) = P (τ̂ > t |X0 = x ,Y0 = y) .
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Main result: the stochastically optimal co-adapted coupling

Let Q̂ control (X ,Y ) as follows:

1 matched bits move synchronously;

2 if Nt is even then coupled unmatched bits in pairs;

3 if Nt is odd then let unmatched bits move independently.

Let τ̂ be the associated coupling time. What cost function should
we use?

Define v̂(x , y , t) = P (τ̂ > t |X0 = x ,Y0 = y) .

Theorem (Connor & Jacka, 2008)

For any states x , y ∈ Zn
2 and time t ≥ 0,

v̂(x , y , t) = inf
c∈C

P (τ c > t |X0 = x ,Y0 = y) .
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Remarks

Proof uses notion of totally monotone functions;

The optimal co-adapted coupling is not a maximal coupling:

E [τ̂ ] ∼ 1

2
log n but E [τ∗] ∼ 1

4
log n ;

If the rate at which X (i) flips is allowed to vary with i then
there is, in general, no stochastically optimal coupling.
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Analysis can be extended to simple
symmetric random walk on Gn

d , where Gd

is the complete graph on d vertices.

Theorem (Connor, 2009)

There exists a stochastically minimal co-adapted coupling for this
random walk:

the coupling is not maximal for any fixed d;

but as d →∞, the coupling tends to a maximal coupling.
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Concluding remarks

For some processes (such as the transposition shuffle on Sn)
co-adapted couplings perform much worse than maximal
couplings, while for others (such as the examples above) there
is not a big difference

Not obvious a priori when a co-adapted maximal coupling will
exist for a given process, nor how big the ‘gap’ between
maximal and optimal co-adapted couplings will be

Might lead to an interesting classification system for e.g.
random walks on groups

Possibly interesting consequences for perfect simulation
algorithms?
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