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Coupling

Let X be a Markov process with state space S. We are interested
in the situation where we have two copies of this process, X and
Y, started from different states.

Definition
A coupling of X and Y is a process (X', Y') on S x S, such that

XZ2x and Y2V,

That is, viewed marginally, X’ behaves as a version of X and Y’ as
a version of Y.
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o The coupling time is defined by
T=inf{t: X[ =Y, forall s>t}

o The coupling is successful if P (17 < o0) =1

o T is not, in general, a stopping time (for the marginal
processes nor the joint process)
o A ‘good’ coupling is usually one with a ‘small’ coupling time 7

o existence of a coupling is trivial: let X’ and Y’ be
independent until they first meet, then stay together

o this idea goes back to Doeblin (1938)

@ a major use of coupling is to provide information about the
convergence of X...
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The coupling inequality

Let u and v be probability measures defined on S. The total
variation distance between p and v is given by

I = vy = sup (u(A) — v(A))
ACS
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The coupling inequality

Let u and v be probability measures defined on S. The total
variation distance between p and v is given by

I = vy = sup (u(A) — v(A))
ACS

Lemma (The coupling inequality)

Let (X,Y) be a coupling as above. Then

IP(Xe € ) —P(Y: € )y <P(r>1).
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Maximal coupling

It is well known that there exists a maximal coupling of X and Y
(Griffeath, 1975); that is, a joint process (X*, Y*) with coupling
time 7* satisfying

[P (X:€-) =P(Yy € )l =P (7" > 1).

o Thus there exists a successful coupling for X if and only if X
is weakly ergodic
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o Although a maximal coupling is known to exist, such a
coupling is typically (at best) non-Markovian, unintuitive, and
very difficult to compute explicitly — they are rarely used in
practical applications
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Co-adapted coupling

Definition
(X,Y) is called co-adapted if X and Y are both Markov with
respect to a common filtration (F%).

(We don't require that (X, Y) is Markov w.r.t. (F¢).)
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Co-adapted coupling

Definition
(X,Y) is called co-adapted if X and Y are both Markov with
respect to a common filtration (F%).

(We don't require that (X, Y) is Markov w.r.t. (F;).)
o It now suffices to study the first collision time of X and Y
— X and Y can be made to agree from this time onwards

o co-adapted couplings are much more intuitive (neither process
is allowed to ‘cheat’ by looking into the future)

o maximal couplings are in general not co-adapted
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Co-adapted coupling

Definition
(X,Y) is called co-adapted if X and Y are both Markov with
respect to a common filtration (F%).

(We don't require that (X, Y) is Markov w.r.t. (F;).)

o It now suffices to study the first collision time of X and Y
— X and Y can be made to agree from this time onwards

o co-adapted couplings are much more intuitive (neither process
is allowed to ‘cheat’ by looking into the future)

o maximal couplings are in general not co-adapted

But how good can a co-adapted coupling be?
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Brownian motion: a maximal coupling

Consider two Brownian motions, X and Y, on R, with X = x and
Yo =y (and x > y). Write

e—(u—x)2/2t

pe(x,u) = Y -2t

It is simple to calculate the total variation distance between these
two processes at any time t using the following result...
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Lemma

For probability measures ;1 and v, let ;i A\ v be their greatest
common component, and let A be a measure that dominates i and

v. Write

_du ,  dv

F=an T

Then

lu=vlm =1 [(FAr) dx.
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So...
(x+y)/2
LX)~ L(Ye)| =1-2 / pe(x, 2)dz
=)/
—Erf[\/ﬁ ]

=P (Toxty)/2 > t) -

where T(x4y)/2 = inf{t >0[X; =(x+y)/2}.
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So...
“(x+y)/2
1L(X) — LY =1 2‘/ pe(x, 2)dz
[y
‘Ef[ Vot ]

=P (Toxty)/2 > t) -

where T(x4y)/2 = inf{t >0[X; =(x+y)/2}.
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So...
(x+y)/2
1L(X) — LY =1 2'/ pe(x, 2)dz
e[
Ef{ NGT: }

= P (Tety)2 > 1) -

where 7(,4 )2 = inf{t > 0[ X = (x +y)/2} .
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Thanks to the symmetry of BM, this shows that reflection coupling
is maximal for X and Y. In other words, if we define Y by

Y, = y — (X¢ — x) for t < T(xty)/2
Xt for t > T(x+y)/2 >

then
1L (Xe) = LYol = Px (T(xyy2 > t) =P(Xe # Ye) -
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Altering the initial conditions

o Note that this reflection coupling is co-adapted
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[ Jele}

Altering the initial conditions

o Note that this reflection coupling is co-adapted

o But what if we now alter the starting conditions, so that
Xo = x is fixed, but Yo ~ N(0,02)?
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Altering the initial conditions

o Note that this reflection coupling is co-adapted

o But what if we now alter the starting conditions, so that
Xo = x is fixed, but Yy ~ N(0,0?)?

Perhaps surprisingly...

Lemma

Under these initial conditions, reflection coupling for the pair of
Brownian motions (X, Y) is not maximal
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However, reflection is an optimal co-adapted coupling for X and Y
when Yy is randomised using any distribution:

@ any co-adapted coupling must be conditioned at time zero
upon the o-algebra 7o = 0 {Xs, Ys : s < 0};

@ in particular, the coupling scheme at time zero is conditioned
on the event {Yp = y};

@ so the best that any co-adapted coupling can do is to match
the coupling time of a maximal coupling between X and Y
when (Xo, Yo) = (x,y), averaged over the distribution of Yp;

@ this bound is achieved uniquely by reflection coupling.
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However, reflection is an optimal co-adapted coupling for X and Y
when Yy is randomised using any distribution:

@ any co-adapted coupling must be conditioned at time zero
upon the o-algebra 7o = 0 {Xs, Ys : s <0};

@ in particular, the coupling scheme at time zero is conditioned
on the event {Yy = y};

@ so the best that any co-adapted coupling can do is to match
the coupling time of a maximal coupling between X and Y
when (Xp, Yo) = (x,y), averaged over the distribution of Yp;

@ this bound is achieved uniquely by reflection coupling.

Question

maximal
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Some extensions

o A similar set of results holds for couplings of two
Ornstein-Uhlenbeck processes.

o What about couplings for more general diffusions?

dXt = b(Xt) dt + U(Xt) dBt

Question

reflection

o it seems natural to conjecture that reflection is not maximal
when Xp = x and Yj is randomised

o but is reflection still a (unique) optimal co-adapted coupling?
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Random walk on the hypercube, Z

Let Z3 be the group of binary n-tuples, under coordinate-wise
addition modulo 2:
o this is the set of vertices of an n-dimensional cube

o we write x € Z5 as x = (x(1),...,x(n)) € {0,1}"

This is one of the simplest groups on
which to study random walks, due to
its high level of symmetry.
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We define a simple, symmetric, continuous-time random walk X
on 73 as follows:

o let A;, 1 < i < n, be independent unit-rate Poisson processes

o at incident times of A;, the i" coordinate of X flips to its
opposite value (0 or 1)

o unique equilibrium distribution is Uniform(Z3)

e.g., with n=6:
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We define a simple, symmetric, continuous-time random walk X
on 73 as follows:

o let A;, 1 < i < n, be independent unit-rate Poisson processes

o at incident times of A;, the i" coordinate of X flips to its
opposite value (0 or 1)

o unique equilibrium distribution is Uniform(Z3)

e.g., with n=6:
1 2 3 5 6
@ @ @] @) @ @
X I
O O @ ® O O
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We define a simple, symmetric, continuous-time random walk X
on 73 as follows:

o let A;, 1 < i < n, be independent unit-rate Poisson processes

o at incident times of A;, the i" coordinate of X flips to its
opposite value (0 or 1)

o unique equilibrium distribution is Uniform(Z3)

e.g., with n=6:
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Now suppose that we wish to couple two such random walks, X
and Y, with Xp = (0,0,...,0) and Yy ~ Uniform(Z3)

Maximal coupling
An almost-maximal coupling was described by Matthews (1987):
@ not co-adapted, but still intuitive!

o expected coupling time ~ (log n)/4

Stephen Connor University of York, UK



Now suppose that we wish to couple two such random walks, X
and Y, with Xp = (0,0,...,0) and Yy ~ Uniform(Z3)

Maximal coupling

An almost-maximal coupling was described by Matthews (1987):
@ not co-adapted, but still intuitive!

o expected coupling time ~ (log n)/4

But how good can a co-adapted coupling be for this process?
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Optimal co-adapted coupling

Any co-adapted coupling must satisfy three constraints (all
imposed by the marginal processes X(/) being unit-rate Poisson
processes):

@ in any instant, no. of jumps of (X, Y) cannot exceed two

o all 'single’ and ‘double’ jumps have rates bounded above by 1

o the total rate at which X(/) jumps must equal 1
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Optimal co-adapted coupling

Any co-adapted coupling must satisfy three constraints (all

imposed by the marginal processes X(/) being unit-rate Poisson
processes):

@ in any instant, no. of jumps of (X, Y) cannot exceed two

o all 'single’ and ‘double’ jumps have rates bounded above by 1
o the total rate at which X(/) jumps must equal 1

This allows us to describe any co-adapted coupling (X, Y) using
o marked Poisson processes A; (0<i,j<n)

@ a (n+1) x (n+ 1) matrix-valued control process, Q

Let C be the class of all co-adapted couplings.
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Stochastic control problem

We now just need to find the best control process Q:

Method

O Make a guess at a good process: call it Q;

Q Choose a cost function v, that measures how good any
control process Q is
eg v(Q)=E[rg] or v(Q,t) =P (1q > t);

© Use Bellman’s principle to show that v is minimized by Q.
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Making a good guess: intuition

o Matching coordinates should be made to move synchronously:

1 2 3 4 5 6

e ® O O @) °
X

O O @ [ O O
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Y
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Making a good guess: intuition

o Matching coordinates should be made to move synchronously:

1 2 3 4 5 6

® L @ O O] [
X

O O O ® O O

@) O e @ © O
Y

L ] O O O o

o Coupling strategy should depend only on

N; = no. of unmatched bits at time t
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Two possible strategies (1)

o Allow unmatched bits to evolve independently:

1 2 3 4 5 6

| @ @ O © [
X

@) O O o O O

O O @ [ @) O
Y
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Two possible strategies (1)

o Allow unmatched bits to evolve independently:

1 2 3 4 5 6

® o o O o e
X

© O O e O ©

O O e e @ O
v I

® e O O O e

— single new matches are made at rate 2N,
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Two possible strategies (1)

o Allow unmatched bits to evolve independently:

1 2 3 4 5 6
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— single new matches are made at rate 2N,
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Two possible strategies (II)

o Pair unmatched bits:

1 2 3 4 5 6
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Two possible strategies (II)

o Pair unmatched bits:

I~ -
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1 2 3 5
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— two new matches are made at rate N;
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Two possible strategies (II)

o Pair unmatched bits:

-
a) --—

1 2 3 5

@ O (@) O @) o
X

O @ O @ O O

O] O © @ o @)

O © O O O @

— two new matches are made at rate N;
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Main result: the optimal co-adapted coupling

Let Q control (X, Y) as follows:
@ matched bits move synchronously;
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Main result: the optimal co-adapted coupling

Let Q control (X, Y) as follows:
Q matched bits move synchronously;
Q if N; is even then coupled unmatched bits in pairs;
Q if N; is odd then let unmatched bits move independently.

Let 7 be the associated coupling time. What cost function should
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Main result: the optimal co-adapted coupling

Let @ control (X, Y) as follows:

Q matched bits move synchronously;

Q if N; is even then coupled unmatched bits in pairs;

Q if N; is odd then let unmatched bits move independently.
Let 7 be the associated coupling time. What cost function should

we use?

Define V(x,y,t) =P(7 > t|Xo=x,Yo=y) .
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Main result: the stochastically optimal co-adapted coupling

Let Q control (X, Y) as follows:
Q matched bits move synchronously;
Q if N; is even then coupled unmatched bits in pairs;
Q if N; is odd then let unmatched bits move independently.

Let 7 be the associated coupling time. What cost function should
we use?

Define V(x,y,t) =P(7 > t|Xo=x, Yo =y) .

Theorem (Connor & Jacka, 2008)
For any states x,y € Z5 and time t > 0,

O(X,y,t):i_rell;]P(Tc>t’X():X,YOZy).
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Remarks

o Proof uses notion of totally monotone functions;

@ The optimal co-adapted coupling is not a maximal coupling:

1 1
]E[?]Nilogn but IE[T*]NZIogn;

o If the rate at which X(/) flips is allowed to vary with i then
there is, in general, no stochastically optimal coupling.
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Analysis can be extended to simple
symmetric random walk on G/, where Gy
is the complete graph on d vertices.

L2
|[PRSTAD
==

Theorem (Connor, 2009)

There exists a stochastically minimal co-adapted coupling for this
random walk:

o the coupling is not maximal for any fixed d;

o but as d — oo, the coupling tends to a maximal coupling.
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Concluding remarks

o For some processes (such as the transposition shuffle on S,)
co-adapted couplings perform much worse than maximal
couplings, while for others (such as the examples above) there
is not a big difference

@ Not obvious a priori when a co-adapted maximal coupling will
exist for a given process, nor how big the ‘gap’ between
maximal and optimal co-adapted couplings will be

o Might lead to an interesting classification system for e.g.
random walks on groups

@ Possibly interesting consequences for perfect simulation
algorithms?
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