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Introduction

CFTP/domCFTP in a nutshell

Suppose that we’re interested in simulating from the equilibrium
distribution of some ergodic Markov chain X .

Think of a (hypothetical) version of the chain, X̃ , which was
started by your (presumably distant) ancestor from some state x at
time −∞:

at time zero this chain is in equilibrium: X̃0 ∼ π;

CFTP/domCFTP tries to determine the value of X̃0 by
looking into the past only a finite number of steps;

do this by identifying a time in the past such that all earlier
starts from x lead to the same result at time zero.
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domCFTP: basic ingredients

dominating process Y
draw from equilibrium πY
simulate backwards in time

sandwiching

Lowerlate 4 Lowerearly 4 . . . 4 Target 4 . . . 4 Upperearly 4 Upperlate

coalescence
eventually a Lower and an Upper process must coalesce
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Omnithermal simulation

Suppose that the target process X has a distribution πβ that
depends on some underlying parameter β.

In some situations it is possible to modify a perfect simulation
algorithm so as to sample simultaneously from πβ for all β in some
given range: call this omnithermal simulation.

Clearly desirable to be able to do this, particularly if it requires
minimal additional computational overhead.

Let’s look at some examples...
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Random Cluster Model

First example of omnithermal CFTP (Propp & Wilson, 1996).
States are subsets of edges of undirected graph G , with

πp(H) ∝

(∏
e∈H

p

)(∏
e /∈H

(1− p)

)
2C(H) , H ⊆ G .

p ∈ [0, 1]

C (H) = number of connected
components of H

Assigning commom random spin
(±1) to connected vertices gives
random (attractive) Ising model state
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Single-bond heat-bath (Glauber dynamics) is monotone w.r.t.
subgraph inclusion: allows for sampling via (monotone) CFTP.
(Top state = G , bottom = empty graph.)

Heat-bath dynamics also monotone w.r.t. parameter p (linked to
temperature in Ising model) hence omnithermal version:

record set of values p(e) for which edge e belongs to H

monotonicity ensures that

p ∈ p(e) and p′ ≥ p =⇒ p′ ∈ p(e)

added complexity: determining limit of each interval p(e).
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Area Interaction Process (or Widom-Rowlinson Process)

Point process in a compact region of R2. Density w.r.t. unit rate
Poisson process given by

πβ(x) ∝ λn(x)e−βm(Ur (x))

λ > 0

n(x) = number of points in x

m = Lebesgue measure on R2

Ur (x) = union of disks of radius r
centred at points of x

β ∈ R controls area-interaction:
β > 0 is attractive case
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πβ can be viewed as equilibrium distribution of a spatial
birth-death process Ψβ: new points are born at a rate depending
upon the current configuration, and die after an Exp(1) lifetime.

Implement by simulating a free process Φ, and censoring births
accordingly: Ψβ(t) ⊆ Φ(t)

Equilibrium of Φ is just a Poisson PP of rate λ

Φ simple to run in reverse-time

Censoring of births is monotonic w.r.t. set inclusion, so
sandwiching holds

So we have all the necessary ingredients for domCFTP. (Kendall,
1998)
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Going Omnithermal

Censoring of births is also monotonic in β:

β < β′ and Ψβ(0) = Ψβ′(0) =⇒ Ψβ(t) ⊇ Ψβ′(t) for all t ≥ 0

given birth of a point ξ in free process Φ, record set of values
β(ξ) for which the birth is accepted in all target processes Ψβ

with β ≤ β(ξ), and rejected otherwise

careful construction yields set of points of form (ξ, β(ξ)),
which can be thresholded to obtain a draw from πβ

added complexity: determining values β(ξ)

See (Shah, 2004) for details.
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M/G/c Queue

Customers arrive at times of a Poisson process: interarrival
times Tn ∼ Exp(λ)

Service durations Sn are i.i.d. with E [S ] = 1/µ (and we
assume that E

[
S2
]
<∞)

Customers are served by c servers, on a First Come First
Served (FCFS) basis

Queue is stable iff ρ :=
λ

µc
< 1.

Interested in equilibrium distribution of (ordered) workload vector.
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DomCFTP Algorithm (C. & Kendall, 2015)

Dominating process Y is stationary M/G/c [RA] queue

Check for coalescence of sandwiching processes, Uc and Lc :

these are workload vectors of M/G/c [FCFS ] queues

Lc starts from empty

Uc is instantiated using residual workloads from Y
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Going Omnithermal

Dynamics for workload vectors with different numbers of servers
are monotonic w.r.t. a natural partial order:

for V c ∈ Rc and V c+m ∈ Rc+m, write V c+m � V c if and only if

V c+m(k + m) ≤ V c(k) , k = 1, . . . , c .

(“Busiest c servers in V c+m each no busier than corresponding
server in V c”.)
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So we can produce processes Uc+m and Lc+m over [T , 0], coupled
to our c-server dominating process Y , such that:

Uc+m and Lc+m sandwich our M/G/(c + m) FCFS process of
interest

Uc+m
t � Uc

t and Lc+m
t � Lc

t

But Uc+m and Lc+m won’t necessarily coalesce before time 0!
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Write T c ≤ 0 for the coalescence time of Uc and Lc .

Condition A

∀ arrival times τ ∈ [T ,T c ], if Lc
τ−(1) = Uc

τ−(1) then Uc
τ−(1) = 0

Theorem (C., 2016)

If Condition A holds then T c+m ≤ T c for any m ∈ N.

This gives us a method for performing omnithermal domCFTP:

1 for a given run of the c-server domCFTP algorithm, check to
see whether Condition A holds. If not, repeatedly backoff
(T ← 2T ) until Condition A is satisfied;

2 run Lc+m (for any m ∈ N) over [T , 0], and return Lc+m(0).
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Example output

Simulation results from 5,000 runs for M/M/c with λ = 2.85,
µ = 1 and c = 3 (ρ = 0.95)

333 (7%) runs needed extending

only 2 runs needed more than 2 additional backoffs

Mean workload at each server, for c = 3 and m ∈ {0, 1, 2, 3}:

Number of servers

3 4 5 6

1 2 3 4 5 6
0

1

2

3

4

Workload vector coordinate

M
e
a
n

w
o
rk

lo
a
d
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Example output

Distribution functions for workload at (a) first and (b) last
coordinates of the workload vector:

Number of servers

3 4 5 6

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

(a) First coordinate workload
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Number of servers
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(b) Last coordinate workload
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How expensive is this in practice?

Not very!

Simulations indicate that Condition A is satisfied (with no
need for further backoffs) > 90% of the time when ρ ≤ 0.75,
and in > 70% of cases when ρ = 0.85

In addition, runs in which Condition A initially fails typically
don’t require significant extension

Theoretical analysis of run-time would be nice, but hard!
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Conclusions

Perfect simulation algorithms are of practical use (and theoretical
interest!) in a growing number of applications.

Some of these algorithms can be modified to provide omnithermal
samples, often with relatively little additional computational effort

There are plenty of other perfect simulation algorithms out there,
e.g. gradient simulation for fork-join networks (Chen & Shi, 2016),
for which it may be possible to “go omnithermal”!
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