"Omnithermal" perfect simulation for M/G/c queues

Stephen Connor stephen.connor@york.ac.uk

University of York

MCQMC, Stanford August 2016

Dominated CFTP in a nutshell

Suppose that we're interested in simulating from the equilbrium distribution of some ergodic Markov chain X.

Think of a (hypothetical) version of the chain, \tilde{X} , which was started by your (presumably distant) ancestor from some state x at time $-\infty$:

- ullet at time zero this chain is in equilibrium: $ilde{X}_0 \sim \pi$;
- dominated CFTP (domCFTP) tries to determine the value of \tilde{X}_0 by looking into the past only a *finite* number of steps;
- do this by identifying a time in the past such that all earlier starts from x lead to the same result at time zero.

- dominating process
 - draw from equilibrium
 - simulate backwards in time

- dominating process
 - draw from equilibrium
 - simulate backwards in time
- sandwiching

 $\mathsf{Lower}_{\mathsf{late}} \preccurlyeq \mathsf{Lower}_{\mathsf{early}} \preccurlyeq \ldots \preccurlyeq \mathsf{Target} \preccurlyeq \ldots \preccurlyeq \mathsf{Upper}_{\mathsf{earlv}} \preccurlyeq \mathsf{Upper}_{\mathsf{late}}$

- dominating process
 - draw from equilibrium
 - simulate backwards in time
- sandwiching

 $\mathsf{Lower}_{\mathsf{late}} \preccurlyeq \mathsf{Lower}_{\mathsf{early}} \preccurlyeq \ldots \preccurlyeq \mathsf{Target} \preccurlyeq \ldots \preccurlyeq \mathsf{Upper}_{\mathsf{early}} \preccurlyeq \mathsf{Upper}_{\mathsf{late}}$

- dominating process
 - draw from equilibrium
 - simulate backwards in time
- sandwiching

 $\mathsf{Lower}_{\mathsf{late}} \preccurlyeq \mathsf{Lower}_{\mathsf{early}} \preccurlyeq \ldots \preccurlyeq \mathsf{Target} \preccurlyeq \ldots \preccurlyeq \mathsf{Upper}_{\mathsf{earlv}} \preccurlyeq \mathsf{Upper}_{\mathsf{late}}$

- dominating process
 - draw from equilibrium
 - simulate backwards in time
- sandwiching

 $\mathsf{Lower}_{\mathsf{late}} \preccurlyeq \mathsf{Lower}_{\mathsf{early}} \preccurlyeq \ldots \preccurlyeq \mathsf{Target} \preccurlyeq \ldots \preccurlyeq \mathsf{Upper}_{\mathsf{early}} \preccurlyeq \mathsf{Upper}_{\mathsf{late}}$

- dominating process
 - draw from equilibrium
 - simulate backwards in time
- sandwiching

 $\mathsf{Lower}_{\mathsf{late}} \preccurlyeq \mathsf{Lower}_{\mathsf{early}} \preccurlyeq \ldots \preccurlyeq \mathsf{Target} \preccurlyeq \ldots \preccurlyeq \mathsf{Upper}_{\mathsf{early}} \preccurlyeq \mathsf{Upper}_{\mathsf{late}}$

coalescence
 eventually a Lower and an Upper process must coalesce

M/G/c queue

- Customers arrive at times of a Poisson process: interarrival times $T_n \sim \mathsf{Exp}(\lambda)$
- Service durations S_n are i.i.d. with $\mathbb{E}\left[S\right]=1/\mu$ (and we assume that $\mathbb{E}\left[S^2\right]<\infty$)
- Customers are served by c servers, on a First Come First Served (FCFS) basis

Queue is *stable* iff $\lambda/\mu < c$, and *super-stable* if $\lambda/\mu < 1$.

The (ordered) workload vector just before the arrival of the n^{th} customer satisfies the *Kiefer-Wolfowitz* recursion:

$$\mathbf{W}_{n+1} = R(\mathbf{W}_n + S_n \delta_1 - T_n \mathbf{1})^+$$
 for $n \ge 0$

- ullet add workload S_n to first coordinate of \mathbf{W}_n (server currently with least work)
- subtract T_n from every coordinate (work done between arrivals)
- reorder the coordinates in increasing order
- replace negative values by zeros.

domCFTP for $\overline{M/G/c}$ queues

- Sigman (2011) showed how to do this for super-stable queues:
 - (stable) M/G/1 can be simulated in reverse-time by changing to *processor-sharing* discipline
 - so identify time $\tau < 0$ when M/G/1 is empty, and then use path of M/G/1 to dominate M/G/c over $[\tau, 0]$

domCFTP for $\overline{M/G/c}$ queues

- Sigman (2011) showed how to do this for super-stable queues:
 - (stable) M/G/1 can be simulated in reverse-time by changing to *processor-sharing* discipline
 - so identify time $\tau < 0$ when M/G/1 is empty, and then use path of M/G/1 to dominate M/G/c over $[\tau,0]$
- C. & Kendall (2015) extended this to **stable** M/G/c:
 - dominate M/G/c [FCFS] by M/G/c [RA], where RA = Random Assignment
 - important to assign service duration S_n to the n^{th} initiation of service in order to maintain sample-path domination
 - two possible algorithms presented . . .

Algorithm 1: wait for dominating process to empty

① Simulate M/G/c [RA] backwards, in equilibrium, until it empties at time $\tau < 0$

Algorithm 1: wait for dominating process to empty

- ① Simulate M/G/c [RA] backwards, in equilibrium, until it empties at time $\tau < 0$
- ② Use this to evolve an M/G/c [FCFS] process, over $[\tau,0]$, started from empty
- Return X₀

Algorithm 1: wait for dominating process to empty

- ① Simulate M/G/c [RA] backwards, in equilibrium, until it empties at time $\tau < 0$
- ② Use this to evolve an M/G/c [FCFS] process, over $[\tau,0]$, started from empty
- Return X₀

(Simple, but inefficient!)

- **1** Set T = -1.
- ② Generate a path of a stationary M/G/c [RA] process Y over [T,0]

- **1** Set T = -1.
- ② Generate a path of a stationary M/G/c [RA] process Y over [T,0]
- Construct upper and lower sandwiching processes, U and L:
 - these are workload vectors of M/G/c [FCFS] queues
 - L starts from empty
 - \bullet U is instantiated using **residual workloads** from Y_T

- **1** Set T = -1.
- ② Generate a path of a stationary M/G/c [RA] process Y over [T,0]
- Onstruct upper and lower sandwiching processes, U and L:
 - these are workload vectors of M/G/c [FCFS] queues
 - L starts from empty
 - ullet U is instantiated using **residual workloads** from Y_T
- **3** Check for **coalescence of workload vectors**; if $L(0) \neq U(0)$ then set $T \leftarrow 2T$ and return to step 2 (binary backoff). Else return U(0).

- **1** Set T = -1.
- ② Generate a path of a stationary M/G/c [RA] process Y over [T,0]
- Onstruct upper and lower sandwiching processes, U and L:
 - these are workload vectors of M/G/c [FCFS] queues
 - L starts from empty
 - U is instantiated using residual workloads from Y_T
- **3** Check for **coalescence of workload vectors**; if $L(0) \neq U(0)$ then set $T \leftarrow 2T$ and return to step 2 (binary backoff). Else return U(0).

(Much more efficient!)

Omnithermal domCFTP

Question

Is it possible to carry out domCFTP *simultaneously* for systems with varying numbers of servers?

In other words, can we use our algorithm for the c-server system to also obtain perfect draws for the M/G/(c+j) system, for $j=1,2,\ldots$?

Omnithermal domCFTP

Question

Is it possible to carry out domCFTP *simultaneously* for systems with varying numbers of servers?

In other words, can we use our algorithm for the c-server system to also obtain perfect draws for the M/G/(c+j) system, for $j=1,2,\ldots$?

- This is trivial if we use **Algorithm 1**: once we have identified $\tau < 0$ at which the M/G/c [RA] is empty, we can (carefully) run the M/G/(c+j) [FCFS] from empty at time τ .
- But what about using Algorithm 2?

- call the upper and lower M/G/c [FCFS] bounding processes used U^c and L^c respectively;
- recall that L^c is started from **empty**, and that U^c is instantiated using **residual workloads** from the dominating RA process at time T < 0.

- call the upper and lower M/G/c [FCFS] bounding processes used U^c and L^c respectively;
- recall that L^c is started from **empty**, and that U^c is instantiated using **residual workloads** from the dominating RA process at time T < 0.

Observation 1

If we instantiate U_T^{c+j} using the same set of residual workloads, and define $L_T^{c+j}=0$, then these FCFS processes will sandwich our M/G/(c+j) process of interest.

- call the upper and lower M/G/c [FCFS] bounding processes used U^c and L^c respectively;
- recall that L^c is started from **empty**, and that U^c is instantiated using **residual workloads** from the dominating RA process at time T < 0.

Observation 1

If we instantiate U_T^{c+j} using the same set of residual workloads, and define $L_T^{c+j}=0$, then these FCFS processes will sandwich our M/G/(c+j) process of interest.

Moreover, $U_t^{c+j}(i+j) \leq U_t^c(i)$, for i = 1, ..., c and $t \in [T, 0]$.

- call the upper and lower M/G/c [FCFS] bounding processes used U^c and L^c respectively;
- recall that L^c is started from **empty**, and that U^c is instantiated using **residual workloads** from the dominating RA process at time T < 0.

Observation 1

If we instantiate U_T^{c+j} using the same set of residual workloads, and define $L_T^{c+j}=0$, then these FCFS processes will sandwich our M/G/(c+j) process of interest.

Moreover, $U_t^{c+j}(i+j) \leq U_t^c(i)$, for i = 1, ..., c and $t \in [T, 0]$.

But will U^{c+j} and L^{c+j} necessarily coalesce before time 0?

- Let $D^c = U^c L^c$;
- termination of the algorithm means we have established a backoff time T such that D^c hits zero in the interval [T, 0];
- write T^c for this coalescence time:

$$T^c = \inf\{t > T : D_t^c = 0\} < 0.$$

We seek conditions (which can be checked using only output from Algorithm 2 for the c-server system) that ensure $T^{c+j} \leq T^c$.

It will be important to consider the set of coordinates in which U^c and L^c agree:

$$A_t^c = \{k \le c : D_t^c(k) = 0\}$$
.

It will be important to consider the set of coordinates in which U^c and L^c agree:

$$\mathcal{A}_t^c = \{k \leq c : D_t^c(k) = 0\} .$$

Now write C_t^c for the remaining time (at time t) until coalescence of U_t^c and L_t^c under the assumption of no more arrivals:

$$C_t^c = \max_{k \notin \mathcal{A}_t^c} U_t^c(k) = U_t^c(m_t^c)$$

where $m_t^c = \max\{1 \le k \le c : k \notin \mathcal{A}_t^c\}$.

It will be important to consider the set of coordinates in which U^c and L^c agree:

$$\mathcal{A}_t^c = \{k \leq c : D_t^c(k) = 0\} .$$

Now write C_t^c for the remaining time (at time t) until coalescence of U_t^c and L_t^c under the assumption of no more arrivals:

$$C_t^c = \max_{k \notin \mathcal{A}_t^c} U_t^c(k) = U_t^c(m_t^c)$$

where $m_t^c = \max\{1 \le k \le c : k \notin \mathcal{A}_t^c\}$.

Observation 2

Since (i) $C_T^{c+j} \leq C_T^c$ (ii) $C_{T^c}^c = 0$ (iii) $C_t^{c+j} = 0$ iff $D_t^{c+j} = 0$, we will be assured of coalescence if we can show that $C_t^{c+j} \leq C_t^c$ for all $t \in [T, T^c]$.

Suppose that we see an arrival (in both U^c and L^c) at time t, with associated workload S.

Suppose that we see an arrival (in both U^c and L^c) at time t, with associated workload S.

ullet if $1 \in \mathcal{A}^c_{t-}$ then arrival does not affect the time to coalescence;

Suppose that we see an arrival (in both U^c and L^c) at time t, with associated workload S.

Queues

- ullet if $1 \in \mathcal{A}^c_{t-}$ then arrival does not affect the time to coalescence;
- if $1 \notin \mathcal{A}^c_{t-}$ then we will see an increase in the time to coalescence iff the new service is placed at some coordinate $k \geq m^c_{t-}$ in U^c .

Suppose that we see an arrival (in both U^c and L^c) at time t, with associated workload S.

- ullet if $1 \in \mathcal{A}_{t-}^c$ then arrival does not affect the time to coalescence;
- if $1 \notin \mathcal{A}_{t-}^c$ then we will see an increase in the time to coalescence iff the new service is placed at some coordinate $k \geq m_{t-}^c$ in U^c .

Suppose that we see an arrival (in both U^c and L^c) at time t, with associated workload S.

- ullet if $1 \in \mathcal{A}_{t-}^c$ then arrival does not affect the time to coalescence;
- if $1 \notin \mathcal{A}_{t-}^c$ then we will see an increase in the time to coalescence iff the new service is placed at some coordinate $k \geq m_{t-}^c$ in U^c .

- ullet if $1 \in \mathcal{A}_{t-}^c$ then arrival does not affect the time to coalescence;
- if $1 \notin \mathcal{A}_{t-}^c$ then we will see an increase in the time to coalescence iff the new service is placed at some coordinate $k \geq m_{t-}^c$ in U^c .

- ullet if $1 \in \mathcal{A}_{t-}^c$ then arrival does not affect the time to coalescence;
- if $1 \notin \mathcal{A}_{t-}^c$ then we will see an increase in the time to coalescence iff the new service is placed at some coordinate $k \geq m_{t-}^c$ in U^c .

- ullet if $1 \in \mathcal{A}_{t-}^c$ then arrival does not affect the time to coalescence;
- if $1 \notin \mathcal{A}_{t-}^c$ then we will see an increase in the time to coalescence iff the new service is placed at some coordinate $k \geq m_{t-}^c$ in U^c .

- ullet if $1 \in \mathcal{A}_{t-}^c$ then arrival does not affect the time to coalescence;
- if $1 \notin \mathcal{A}_{t-}^c$ then we will see an increase in the time to coalescence iff the new service is placed at some coordinate $k \geq m_{t-}^c$ in U^c .

- ullet if $1 \in \mathcal{A}_{t-}^c$ then arrival does not affect the time to coalescence;
- if $1 \notin \mathcal{A}_{t-}^c$ then we will see an increase in the time to coalescence iff the new service is placed at some coordinate $k \geq m_{t-}^c$ in U^c .

- ullet if $1 \in \mathcal{A}_{t-}^c$ then arrival does not affect the time to coalescence;
- if $1 \notin \mathcal{A}_{t-}^c$ then we will see an increase in the time to coalescence iff the new service is placed at some coordinate $k \geq m_{t-}^c$ in U^c .

- ullet if $1 \in \mathcal{A}_{t-}^c$ then arrival does not affect the time to coalescence;
- if $1 \notin \mathcal{A}_{t-}^c$ then we will see an increase in the time to coalescence iff the new service is placed at some coordinate $k \geq m_{t-}^c$ in U^c .

- ullet if $1 \in \mathcal{A}_{t-}^c$ then arrival does not affect the time to coalescence;
- if $1 \notin \mathcal{A}_{t-}^c$ then we will see an increase in the time to coalescence iff the new service is placed at some coordinate $k \geq m_{t-}^c$ in U^c .

- ullet if $1 \in \mathcal{A}_{t-}^c$ then arrival does not affect the time to coalescence;
- if $1 \notin \mathcal{A}_{t-}^c$ then we will see an increase in the time to coalescence iff the new service is placed at some coordinate $k \geq m_{t-}^c$ in U^c .

- ullet if $1 \in \mathcal{A}_{t-}^c$ then arrival does not affect the time to coalescence;
- if $1 \notin \mathcal{A}_{t-}^c$ then we will see an increase in the time to coalescence iff the new service is placed at some coordinate $k \geq m_{t-}^c$ in U^c .

$$C_t^c = \max\left\{C_{t-}^c\,,\; (U_{t-}^c(1)+S)\mathbf{1}_{\left[1
otin\mathcal{A}_{t-}^c
ight]}
ight\}$$

$$C_t^c = \max\left\{C_{t-}^c\,,\; (U_{t-}^c(1)+S)\mathbf{1}_{\left[1
otin\mathcal{A}_{t-}^c
ight]}
ight\}$$

Observation 3

$$C_t^c = \max\left\{C_{t-}^c\,,\; (U_{t-}^c(1)+S)\mathbf{1}_{\left[1
otin\mathcal{A}_{t-}^c
ight]}
ight\}$$

Observation 3

$$C_t^c = \max\left\{C_{t-}^c\,,\; (U_{t-}^c(1)+S)\mathbf{1}_{\left[1
otin\mathcal{A}_{t-}^c
ight]}
ight\}$$

Observation 3

$$C_t^c = \max\left\{C_{t-}^c\,,\; (U_{t-}^c(1)+S)\mathbf{1}_{\left[1
otin\mathcal{A}_{t-}^c
ight]}
ight\}$$

Observation 3

$$C^c_t = \max\left\{C^c_{t-}\,,\; (U^c_{t-}(1)+S)\mathbf{1}_{\left[1
otin\mathcal{A}^c_{t-}
ight]}
ight\}$$

Observation 3

$$C_t^c = \max\left\{C_{t-}^c\,,\; \left(U_{t-}^c(1) + S
ight)\mathbf{1}_{\left[1
otin \mathcal{A}_{t-}^c
ight]}
ight\}$$

Observation 3

$$C_t^c = \max\left\{C_{t-}^c\,,\; (U_{t-}^c(1)+S)\mathbf{1}_{\left[1
otin\mathcal{A}_{t-}^c
ight]}
ight\}$$

Observation 3

$$C^c_t = \max\left\{C^c_{t-}\,,\; (U^c_{t-}(1)+S)\mathbf{1}_{\left[1
otin\mathcal{A}^c_{t-}
ight]}
ight\}$$

Observation 3

$$C^c_t = \max\left\{C^c_{t-}\,,\; (U^c_{t-}(1)+S)\mathbf{1}_{\left[1
otin\mathcal{A}^c_{t-}
ight]}
ight\}$$

Observation 3

$$C_t^c = \max\left\{C_{t-}^c\,,\; (U_{t-}^c(1)+S)\mathbf{1}_{\left[1
otin\mathcal{A}_{t-}^c
ight]}
ight\}$$

Observation 3

It is **not** true in general that $C_t^{c+j} \leq C_t^c$ for all $t \in [T, T^c]$.

3rd

$$C^c_t = \max\left\{C^c_{t-}\,,\; (U^c_{t-}(1)+S)\mathbf{1}_{\left[1
otin\mathcal{A}^c_{t-}
ight]}
ight\}$$

Observation 3

$$C_t^c = \max\left\{C_{t-}^c\,,\; (U_{t-}^c(1)+S)\mathbf{1}_{\left[1
otin\mathcal{A}_{t-}^c
ight]}
ight\}$$

Observation 3

However...

Theorem

If **no** customer arriving during the interval $[T, T^c]$ finds $1 \in \mathcal{A}^c$ with $U^c(1) > 0$, then $C^{c+j}_t \leq C^c_t$ for all $j \geq 0$ and for all $t \in [T, T^c]$. In particular, $T^{c+j} \leq T^c < 0$.

However...

Theorem

If **no** customer arriving during the interval $[T, T^c]$ finds $1 \in \mathcal{A}^c$ with $U^c(1) > 0$, then $C^{c+j}_t \leq C^c_t$ for all $j \geq 0$ and for all $t \in [T, T^c]$. In particular, $T^{c+j} \leq T^c < 0$.

This gives us a method for performing omnithermal domCFTP:

- ① for a given run of **Algorithm 2** with c servers, check to see whether the condition of the Theorem holds. If not, backoff further $(T \leftarrow 2T)$ and keep doing this until the condition is satisfied.
- ② then run M/G/(c+j) (for any choice of $j \ge 0$) over [T,0] and return state at time 0.

What does this cost?

How expensive is this in practice? Not very!

- Simulations seem to indicate that the condition is satisfied
 95% of the time
- In addition, runs in which the condition fails typically don't require significant extension

What does this cost?

How expensive is this in practice? Not very!

- \bullet Simulations seem to indicate that the condition is satisfied >95% of the time
- In addition, runs in which the condition fails typically don't require significant extension

e.g. 5,000 runs of M/M/c with $\lambda=10$, $\mu=2$ and c=10:

- 108 (2.1%) runs needed extending
- none more than 3 times

Extensions

This idea can be applied in other settings.

- Consider keeping c fixed, but increasing the rate at which servers work (this corresponds to decreasing the arrival rate). Same analysis as above holds.
- Moreover, there's no need to restrict attention to Poisson arrivals! Blanchet, Pei & Sigman (2015) show how to implement domCFTP for GI/GI/c queues, again using a random assignment dominating process.

Conclusions

- It is highly feasible to produce **perfect** simulations of stable GI/GI/c queues using domCFTP
- Furthermore, with minimal additional effort this can be accomplished in an omnithermal way, allowing us to simultaneously sample from the equilibrium distribution when
 - using c + j servers, $j = 1, 2, \dots$
 - increasing the service rate
 - or both.