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Dominated CFTP Queues Omnithermal

Dominated CFTP in a nutshell

Suppose that we’re interested in simulating from the equilbrium
distribution of some ergodic Markov chain X .

Think of a (hypothetical) version of the chain, X̃ , which was
started by your (presumably distant) ancestor from some state x at
time −∞:

at time zero this chain is in equilibrium: X̃0 ∼ π;

dominated CFTP (domCFTP) tries to determine the value of
X̃0 by looking into the past only a finite number of steps;

do this by identifying a time in the past such that all earlier
starts from x lead to the same result at time zero.
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Dominated CFTP Queues Omnithermal

Basic ingredients:
dominating process

draw from equilibrium
simulate backwards in time

sandwiching

Lowerlate 4 Lowerearly 4 . . . 4 Target 4 . . . 4 Upperearly 4 Upperlate

coalescence
eventually a Lower and an Upper process must coalesce
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Dominated CFTP Queues Omnithermal

M/G/c queue

Customers arrive at times of a Poisson process: interarrival
times Tn ∼ Exp(λ)

Service durations Sn are i.i.d. with E [S ] = 1/µ (and we
assume that E

[
S2
]
<∞)

Customers are served by c servers, on a First Come First
Served (FCFS) basis

Queue is stable iff λ/µ < c , and super-stable if λ/µ < 1.
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Dominated CFTP Queues Omnithermal

The (ordered) workload vector just before the arrival of the nth

customer satisfies the Kiefer-Wolfowitz recursion:

Wn+1 = R(Wn + Snδ1 − Tn1)+ for n ≥ 0

add workload Sn to first coordinate of Wn (server currently with
least work)

subtract Tn from every coordinate (work done between arrivals)

reorder the coordinates in increasing order

replace negative values by zeros.
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Dominated CFTP Queues Omnithermal

domCFTP for M/G/c queues

Sigman (2011) showed how to do this for super-stable
queues:

(stable) M/G/1 can be simulated in reverse-time by changing
to processor-sharing discipline

so identify time τ < 0 when M/G/1 is empty, and then use
path of M/G/1 to dominate M/G/c over [τ, 0]

C. & Kendall (2015) extended this to stable M/G/c :

dominate M/G/c [FCFS ] by M/G/c [RA], where RA =
Random Assignment

important to assign service duration Sn to the nth initiation of
service in order to maintain sample-path domination

two possible algorithms presented . . .
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Dominated CFTP Queues Omnithermal

Algorithm 1: wait for dominating process to empty

1 Simulate M/G/c [RA] backwards, in equilibrium, until it
empties at time τ < 0

2 Use this to evolve an M/G/c [FCFS ] process, over [τ, 0],
started from empty

3 Return X0
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(Simple, but inefficient!)
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Algorithm 2: backoff and sandwich

1 Set T = −1.

2 Generate a path of a stationary M/G/c [RA] process Y over
[T , 0]

3 Construct upper and lower sandwiching processes, U and L:

these are workload vectors of M/G/c [FCFS ] queues

L starts from empty

U is instantiated using residual workloads from YT

4 Check for coalescence of workload vectors; if L(0) 6= U(0)
then set T ← 2T and return to step 2 (binary backoff).
Else return U(0).

(Much more efficient!)
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Dominated CFTP Queues Omnithermal

Omnithermal domCFTP

Question

Is it possible to carry out domCFTP simultaneously for systems with
varying numbers of servers?

In other words, can we use our algorithm for the c-server system to
also obtain perfect draws for the M/G/(c + j) system, for
j = 1, 2, . . . ?

This is trivial if we use Algorithm 1: once we have identified
τ < 0 at which the M/G/c [RA] is empty, we can (carefully)
run the M/G/(c + j) [FCFS ] from empty at time τ .

But what about using Algorithm 2?
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Suppose that we have implemented Algorithm 2 with c servers:

call the upper and lower M/G/c [FCFS ] bounding processes
used Uc and Lc respectively;

recall that Lc is started from empty, and that Uc is
instantiated using residual workloads from the dominating
RA process at time T < 0.

Observation 1

If we instantiate Uc+j
T using the same set of residual workloads,

and define Lc+j
T = 0, then these FCFS processes will sandwich our

M/G/(c + j) process of interest.

Moreover, Uc+j
t (i + j) ≤ Uc

t (i), for i = 1, . . . , c and t ∈ [T , 0].

But will Uc+j and Lc+j necessarily coalesce before time 0?
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Let Dc = Uc − Lc ;
termination of the algorithm means we have established a
backoff time T such that Dc hits zero in the interval [T , 0];
write T c for this coalescence time:

T c = inf{t > T : Dc
t = 0} < 0 .

We seek conditions (which can be checked using only output from
Algorithm 2 for the c-server system) that ensure T c+j ≤ T c .
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It will be important to consider the set of coordinates in which Uc

and Lc agree:
Ac

t = {k ≤ c : Dc
t (k) = 0} .

Now write C c
t for the remaining time (at time t) until coalescence

of Uc
t and Lc

t under the assumption of no more arrivals:

C c
t = max

k /∈Ac
t

Uc
t (k) = Uc

t (mc
t )

where mc
t = max {1 ≤ k ≤ c : k /∈ Ac

t }.

Observation 2

Since (i) C c+j
T ≤ C c

T (ii) C c
T c = 0 (iii) C c+j

t = 0 iff Dc+j
t = 0,

we will be assured of coalescence if we can show that C c+j
t ≤ C c

t

for all t ∈ [T ,T c ].
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Evolution of C c
t

Suppose that we see an arrival (in both Uc and Lc) at time t, with
associated workload S .

if 1 ∈ Ac
t− then arrival does not affect the time to coalescence;

if 1 /∈ Ac
t− then we will see an increase in the time to

coalescence iff the new service is placed at some coordinate
k ≥ mc

t− in Uc .
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It follows that

C c
t = max

{
C c
t− , (Uc

t−(1) + S)1[1/∈Ac
t−]

}

Observation 3

It is not true in general that C c+j
t ≤ C c

t for all t ∈ [T ,T c ].
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However...

Theorem

If no customer arriving during the interval [T ,T c ] finds 1 ∈ Ac

with Uc(1) > 0, then C c+j
t ≤ C c

t for all j ≥ 0 and for all
t ∈ [T ,T c ]. In particular, T c+j ≤ T c < 0.

This gives us a method for performing omnithermal domCFTP:

1 for a given run of Algorithm 2 with c servers, check to see
whether the condition of the Theorem holds. If not, backoff
further (T ← 2T ) and keep doing this until the condition is
satisfied.

2 then run M/G/(c + j) (for any choice of j ≥ 0) over [T , 0]
and return state at time 0.
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What does this cost?

How expensive is this in practice? Not very!

Simulations seem to indicate that the condition is satisfied
> 95% of the time

In addition, runs in which the condition fails typically don’t
require significant extension

e.g. 5,000 runs of
M/M/c with λ = 10,
µ = 2 and c = 10:

108 (2.1%) runs
needed extending

none more than 3
times

4 8 16 32

2

4 8 16 32

4

4 8 16 32

8

0

10

20

30

40

50

60

70

Stephen Connor (University of York, UK) “Omnithermal” perfect simulation for M/G/c queues 16 / 18



Dominated CFTP Queues Omnithermal

What does this cost?

How expensive is this in practice? Not very!

Simulations seem to indicate that the condition is satisfied
> 95% of the time

In addition, runs in which the condition fails typically don’t
require significant extension

e.g. 5,000 runs of
M/M/c with λ = 10,
µ = 2 and c = 10:

108 (2.1%) runs
needed extending

none more than 3
times

4 8 16 32

2

4 8 16 32

4

4 8 16 32

8

0

10

20

30

40

50

60

70

Stephen Connor (University of York, UK) “Omnithermal” perfect simulation for M/G/c queues 16 / 18



Dominated CFTP Queues Omnithermal

Extensions

This idea can be applied in other settings.

1 Consider keeping c fixed, but increasing the rate at which
servers work (this corresponds to decreasing the arrival rate).
Same analysis as above holds.

2 Moreover, there’s no need to restrict attention to Poisson
arrivals! Blanchet, Pei & Sigman (2015) show how to
implement domCFTP for GI/GI/c queues, again using a
random assignment dominating process.
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Conclusions

It is highly feasible to produce perfect simulations of stable
GI/GI/c queues using domCFTP

Furthermore, with minimal additional effort this can be
accomplished in an omnithermal way, allowing us to
simultaneously sample from the equilibrium distribution when

using c + j servers, j = 1, 2, . . .

increasing the service rate

or both.
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