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Introduction

Consider the following method for shuffling a pack of n cards:

• Right hand chooses a card uniformly at random;

• Left hand chooses a card uniformly from below the Right

hand;

• The two chosen cards are transposed.

Natural question

How many shuffles does it take to

“randomize” the deck?

(What is this shuffle’s mixing time?)
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Card shuffles as random walks

Most interesting card shuffles can be viewed as random walks on

the symmetric group, Sn, with uniform stationary distribution πn:

• top-to-random

• riffle shuffle

• random k-cycles

• adjacent transpositions

• semi-random transpositions (Right hand uniform, Left hand

follows some other rule independently of the Right hand)

Methods of bounding the rate of convergence to equilibrium

include:

• coupling

• strong uniform times

• eigenanalysis

• representation theory



Card shuffles as random walks

Measure distance from equilibrium using the total variation metric:

dn(t) = sup
B⊂Sn

(
Pt
n(B)− πn(B)

)
=

1

2

∑
σ∈Sn

|Pt
n(σ)− πn(σ)| .

• takes values in [0, 1]

• in general, will depend upon the starting state, but not if (as

here) the Markov chain is transitive.

Define the ε-mixing time to be

tmix
n (ε) = min{t : dn(t) ≤ ε} .



The cutoff phenomenon

Many shuffles exhibit somewhat surprising convergence behaviour...

Definition

The sequence of shuffles generated by (Pn)n∈N exhibits a cutoff at

time tn with window of size wn if wn = o(tn) and:

lim
c→∞

lim inf
n→∞

dn(tn − cwn) = 1

lim
c→∞

lim sup
n→∞

dn(tn + cwn) = 0 .

Cutoff implies that

tmix
n (ε) ∼ tn for all ε > 0.
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The cutoff phenomenon

Previous results:

• top-to-random

→ cutoff at n log n

• riffle shuffle

→ cutoff at 3
2 log2 n

• random k-cycles

→ cutoff at n
k log n

• adjacent transpositions

→ cutoff at n2

2π2 log n

• semi-random transpositions (Right hand uniform, Left hand

follows some other rule independently of the Right hand)

→ universal upper bound of O(n log n)



The one-sided transposition shuffle

Our shuffle transposes cards in positions (i , j) with probability

Pn(i , j) =
1

jn
, for all 1 ≤ i ≤ j ≤ n.

This differs significantly from previously studied shuffles which

have been analysed using group representation theory:

• dependence between Left and

Right hands

• generating set is entire conjugacy

class of transpositions, but Pn is

far from uniform on this set

j

i

1

n



The one-sided transposition shuffle

Our shuffle transposes cards in positions (i , j) with probability

Pn(i , j) =
1

jn
, for all 1 ≤ i ≤ j ≤ n.

This differs significantly from previously studied shuffles which

have been analysed using group representation theory:

• dependence between Left and

Right hands

• generating set is entire conjugacy

class of transpositions, but Pn is

far from uniform on this set

j

i

1

n



Our main results

Theorem

The one-sided transposition shuffle exhibits a cutoff at tn = n log n.

Diaconis & Shahshahani (1981) showed that the standard

transposition shuffle exhibits a cutoff at time n
2 log n.

By biasing the Right hand, we can recover this result as a special

case of the following:

Theorem

Suppose that the Right hand chooses card j with probability

proportional to jα. Then we see a cutoff at time tn:

α (−∞,−1) −1 (−1, 1] (1,∞)

tn ζ(−α)n−α log n n(log n)2 1
1+αn log n α

1+αn log n
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Upper bound

We use the classical `2 bound on total variation distance.

Lemma

Let the eigenvalues of Pn be 1 = β1 > β2 ≥ · · · ≥ βm > −1. Then

dn(t)2 ≤ 1

4

∑
i 6=1

β2ti .

Our analysis is inspired by work of Dieker & Saliola (2018) and

Bernstein & Nestoridi (2019) on the Random-to-Random shuffle.

To get a handle on the eigenvalues of Pn we need to introduce the

concept of Young tableaux.



Young tableaux

Definition

A partition of n is a decreasing tuple λ = (λ1, λ2, . . . , λl) such that∑
i λi = n and λ1 ≥ · · · ≥ λl . We denote this by λ ` n.

We may represent a partition using a Young diagram, e.g.

(3, 2) = (2, 2, 1) = (5) =

A standard Young tableau (SYT) is an allocation of 1, . . . , n to a

Young diagram, such that rows and columns are increasing, e.g.

1 2 3
4 5

1 2 4
3 5

1 2 5
3 4

1 3 4
2 5

1 3 5
2 4

The dimension of λ, dλ, is the number of tableaux of shape λ.
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Link to eigenvalues

Theorem

The eigenvalues of Pn are labelled by standard Young tableaux of size

n, and the eigenvalue represented by a tableau of shape λ appears

dλ times.

Lemma

The eigenvalue corresponding to a tableau T is given by

eig(T ) =
1

n

∑
boxes
(i ,j)∈T

j − i + 1

T (i , j)
.

Example: if T =

1 2 3
4 5 then eig(T ) = 1

5

(
1
1 + 2

2 + 3
3 + 0

4 + 1
5

)
.



Main ideas:

1. Natural recursive structure:

• a deck of (n + 1) cards contains a deck labelled 1, . . . , n;

• this corresponds to a natural embedding of Sn inside Sn+1;

• we can obtain Young diagrams for partitions of (n + 1) by

adding boxes to diagrams representing partitions of n.

2. Commutation relation between the operator on n cards and
the operator on (n + 1) cards:

• arises when we consider the difference between

adding a card and shuffling

versus

shuffling and then adding a card.



Upshot: we may lift the eigenvalues of Pn to obtain those of Pn+1

by following paths through Young’s lattice.
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Upper bound on the mixing time

Combining these results we obtain the bound:

dn(t)2 ≤ 1

4

∑
i 6=1

β2ti =
1

4

∑
λ`n
λ 6=(n)

dλ
∑

T∈SYT(λ)

eig(T )2t

To establish how large t must be to make this small, we need to

understand how the dimensions and eigenvalues behave for large n.

Theorem

For any c > 0,

lim sup
n→∞

dn(n log n + cn) ≤
√

2e−c .
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Two helpful types of monotonicity.

1. Fixed λ, different tableaux.

Construct T ↓λ by filling boxes of λ from top to bottom, and T→λ by

filling boxes from left to right.

For any T ∈ SYT(λ),

eig(T ↓λ) ≤ eig(T ) ≤ eig(T→λ )

T

1 3 5
2 4

1 3 4
2 5

1 2 5
3 4

1 2 4
3 5

1 2 3
4 5

eig(T ) 0.503 0.523 0.57 0.59 0.64



2. Dominance ordering of partitions.

Write µ E λ if we can form λ by moving boxes of µ up and right.

E E

If µ E λ then

eig(T→µ ) ≤ eig(T→λ ) and eig(T ↓µ) ≤ eig(T ↓λ)

So it makes sense to deal with large (λ1 ≥ 3n/4) and small

partitions separately, exploiting the above.



Upper bound insight: consider the partition λ = (n − 1, 1). This
has dimension (n − 1) and there are (n − 1) tableaux with this
shape, with the largest eigenvalue coming from the tableau

1 2 3 . . . n − 2 n − 1

n

The corresponding eigenvalue is 1− 1
n , and so this partition makes

a contribution to the upper bound of at most

dλ
∑

T∈SYT(λ)

eig(T )2t ≤ (n − 1)2
(

1− 1

n

)2t

,

which at time t = n log n + cn is no greater than e−2c .



Lower bound

Theorem

For any c > 2,

lim inf
n→∞

dn(n log n − n log log n − cn) ≥ 1− π2

6(c − 2)2
.

Sketch proof

For any set of permutations Bn ⊂ Sn,

dn(t) ≥ Pt
n(Bn)− πn(Bn) .

Focus on cards near the top of the deck, since intuitively these

should take longer to mix.
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Let

Bn = {ρ ∈ Sn : ρ has ≥ 1 fixed point in top n/ log n cards} .

Then

• πn(Bn) ≤ 1/ log n

• Pt
n(Bn) ≥ P (not all top n/ log n cards touched by time t)

Now estimate how many shuffles it takes for all top n/ log n cards

to be touched, by coupling with a counting process.

This is similar to the standard coupon-collector problem, but:

• the Right and Left hands don’t “collect” cards independently

• the counting process can increment by either one or two.
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Final remarks

• Our analysis yields an exact formula for all of the eigenvalues

of the one-sided transposition shuffle

• The results give both the cutoff time and a bound on the size

of the cutoff window

• Weighting the distribution of the Right hand is possible, and

shows that the fastest mixing time is obtained when Right

and Left hands are independent
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