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Markov chain Monte Carlo (MCMC)

AIM: to obtain a sample from a particular distribution π

METHOD:

(i) design a Markov chain with stationary distribution π
(ii) run chain until near equilibrium
(iii) sample from the chain

PROBLEM: How long is the ‘burn-in’ period? i.e. how long
should we wait in step (ii)?

POSSIBLE SOLUTIONS:

guess from simulation output
estimate it analytically

Or use perfect simulation!

Modify an MCMC algorithm so as to produce an exact draw from
π, at the cost of a random length run-time
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Heuristic idea

Think of a (hypothetical) version of the chain, X̃ , which was
started by your (presumably distant) ancestor from some state x at
time −∞:

at time zero this chain is in equilibrium: X̃ x ,−∞
0 ∼ π

most perfect simulation algorithms try to determine the value
of X̃ x ,−∞

0 by looking into the past only a finite number of
steps...



Introduction Dominated CFTP Queues Conclusions

Simple example
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Run chains from all states using a common update function f (and
the same source of randomness u for all chains):

f (x , u) =

{
min(x + 1, 4) if u ≤ 1/2

max(x − 1, 1) if u > 1/2 .

Algorithm:
set n = 1;

run chains X x ,−n for all x = 1, 2, 3, 4 up to time 0;

if X x,−n
0 = X0 for all x , return X0;

else set n← 2n and repeat, re-using randomness over [−n, 0].
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1

2
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4

-8 -7 -6 -5 -4 -3 -2 -1 0

For this realisation, when n = 8 is reached, all of the target chains
have the same value at time zero: X x ,−8

0 = 2 in this case.
Coalescence time is T ∗ = 7.

Claim

X0 := X x ,−T∗

0 ∼ π

This is Coupling From The Past!
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Dominated CFTP

This really only works when the state space is (essentially)
bounded. (Foss & Tweedie, 1998: CFTP is theoretically possible
⇔ X is uniformly ergodic.)
The idea is to identify a time in the past from which “chains from
all possible starting states have coalesced by time zero”.

But we could also obtain a sample from π by identifying a time in
the past such that “all earlier starts from a specific state x lead to
the same result at time zero”.

Main idea

Replace upper and lower processes by random processes in statistical
equilibrium (‘envelope processes’)
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Example (adapted from Kendall, 1997)

X is nonlinear immigration-death process:
X → X − 1 at rate µX ;
X → X + 1 at rate αX , where αX ≤ α∞ <∞.
No max means not uniformly ergodic, so no classic CFTP!

Bound by linear immigration-death process Y :
Y → Y − 1 at rate µY ;
Y → Y + 1 at rate α∞.

Produce X from Y by censoring births and deaths:
if Y → Y − 1 then X → X − 1 with cond. prob. X/Y ;
if Y → Y + 1 then X → X + 1 with cond. prob. αX/α∞.
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Because Y is reversible, with known equilibrium (via detailed
balance), we can simulate Y backwards.

Given a (forwards) trajectory of Y over [−n, 0], we can build
trajectories of X starting at every 0 ≤ X−n ≤ Y−n staying
below Y until time 0.

These can be checked for coalescence!
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Dominated CFTP summary

Basic ingredients:

dominating process

draw from equilibrium
simulate backwards in time

sandwiching

Lowerlate 4 Lowerearly 4 . . . 4 Targets 4 . . . 4 Upperearly 4 Upperlate

coalescence
eventually a Lower and an Upper process must coalesce

Surprisingly general!

domCFTP has been applied in numerous practical settings

Kendall (2004) shows domCFTP possible in principle for all
geometrically ergodic (GE) chains

C. & Kendall (2007) extend this to a class of non-GE
positive-recurrent chains
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M/G/c Queues

Customers arrive at times of a Poisson process: interarrival
times Tn ∼ Exp(λ)

Service durations Sn are i.i.d. with E [S ] = 1/µ (and we
assume that E

[
S2
]
<∞)

Customers are served by c servers, on a First Come First
Served (FCFS) basis

Queue is stable iff λ/µ < c , and super-stable if λ/µ < 1.
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The (ordered) workload vector just before the arrival of the nth

customer satisfies the Kiefer-Wolfowitz recursion:

Wn+1 = R(Wn + Snδ1 − Tn1)+ for n ≥ 0

add workload Sn to first coordinate of Wn (server currently with
least work)

subtract Tn from every coordinate (work done between arrivals)

reorder the coordinates in increasing order

replace negative values by zeros.

Our goal is to sample from the equilibrium distribution of this
workload vector.
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Super-stable M/G/c and domCFTP

Sigman (2011) pioneered domCFTP for multiserver queues. Key
step: find amenable dominating process.

Restrict to super-stable case

Workload of M/G/c dominated by that of M/G/1

Time-reversal: same M/G/1 workload if use PS not FCFS

But M/G/1 [PS ] is dynamically reversible (so we can
reverse time in equilibrium)

Recover M/G/1 [FCFS ] from workload of M/G/1 [PS ]

M/G/c [FCFS ] workload smaller than M/G/1 [FCFS ]

Coalescence forced when M/G/1 [PS ] empties.
(Finite mean if finite second moment of service time.)
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However...

This idea is great, but has some drawbacks.

1 Coalescence is achieved by running backwards in time until
M/G/1 [PS ] empties.
This will be inefficient if the target M/G/c workload is such
that M/G/1 is nearly unstable.

2 Worse, the interesting case for M/G/c is exactly when the
M/G/1 is not stable!

3 Sigman (2012) uses an importance-sampling approach for the
stable case, but this algorithm has a run-time with infinite
mean!
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Dominated CFTP for stable M/G/c queues

We need to find a dominating process for our Mλ/G/c [FCFS ]
queue X .

C. & Kendall (2015): dominate with M/G/c [RA]

RA = random assignment, so c independent copies of
Mλ/c/G/1.

Evidently stable iff M/G/c is stable.

Easy to simulate in equilibrium, and in reverse.

Care needed with domination arguments...
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Let Y be a M/G/c [RA] queue. If Y uses the same arrival times
and service durations as X (our M/G/c [FCFS ] queue), even
though its allocation rule is less efficient it doesn’t follow that the
number of customers who have departed from X by time t will be
at least as big as the number who have departed from Y ...
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It is true that queue length under FCFS is stochastically dominated
by that under RA. But the result does not hold for sample path
domination!

But we can get this domination if we assign service Sn to the nth

initiation of service!
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Algorithm 1

(Processes run backwards are crowned with a hat.)

1 Simulate a [M/G/1 PS ]c process Ŷ , in statistical equilibrium,
until it first empties (at time τ̂)
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2 Set τ = −τ̂ , and use the path of Ŷ to construct its (dynamic)
time reversal: thus build (Y (t) : τ ≤ t ≤ 0), an M/G/c [RA]
process

3 Use Y to evolve X , an M/G/c [FCFS ] process, over [τ, 0],
started from empty

4 Return X0
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time reversal: thus build (Y (t) : τ ≤ t ≤ 0), an M/G/c [RA]
process

3 Use Y to evolve X , an M/G/c [FCFS ] process, over [τ, 0],
started from empty

4 Return X0

-8 -6 -4 -2 0

1

2

3

4

5

6

7



Introduction Dominated CFTP Queues Conclusions

Algorithm 1

(Processes run backwards are crowned with a hat.)

1 Simulate a [M/G/1 PS ]c process Ŷ , in statistical equilibrium,
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Algorithm 1

works!

has finite mean run-time (time taken for Ŷ to empty is finite
iff E

[
S2
]
<∞)

is inefficient: if 1� ρ < c then Ŷ will take a long time to
empty completely

We can do better than this by simulating our dominating process
Ŷ until each server has emptied at least once, and then using
sandwiching processes to try to establish coalescence much
faster.
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Algorithm 2

1 Set T̂ = 1.

2 Simulate a [M/G/1 PS ]c process Ŷ , in statistical equilibrium
as follows: evolve the queue for server j (independently of all
other servers) until the first time τ̂j ≥ T̂ that this server is
empty, for j = 1, . . . , c .

3 Construct Yj , an M/G/1 [FCFS ] process over [−τ̂j , 0], for
j = 1, . . . , c.

4 Construct upper and lower sandwiching processes, U[T ,0]

and L[T ,0]. (M/G/c [FCFS ] queues.)

5 Check for coalescence of workload vectors; if
L[T ,0](0) 6= U[T ,0](0) then set T̂ ← 2T̂ and repeat
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Simulation output: workload at busiest six servers
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Equilibrium distribution of final 6 coordinates of Kiefer-Wolfowitz
workload vector: λ = c = 25, S ∼ Uniform[0, 1].
(5,000 draws, Algorithm 2)
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Simulation output: number of people in system
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Number of customers for M/M/c queue in equilibrium.
λ = 10, µ = 2, c = 10.

Black bars show theoretical number of customers in system;
grey bars give results of 5,000 draws using Algorithm 2.
χ2-test: p-value 0.62.
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Algorithm performance

M/M/c queue. (5,000 runs, λ = 10, µ = 2, c = 10.)
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Black bars show log2(τ̃ + 1) for Algorithm 1
(τ̃ = first time at which Ỹ empties).
Grey bars show distribution of log2(T̃ + 1) for Algorithm 2
(T̃ = smallest time needed to detect coalescence using binary
back-off).
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We can bound run-times using

alternating renewal process theory for Algorithm 1

supermartingale ideas for Algorithm 2 (heuristic for M/M/c
queues only)

Mean run-time:

λ c ρ lower bound upper bound
Algorithm 1 Algorithm 2

10 10 5
20 20 10
30 30 15
40 40 20
50 50 25

30 30 5
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30 30 25
30 30 29.5
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We can bound run-times using

alternating renewal process theory for Algorithm 1

supermartingale ideas for Algorithm 2 (heuristic for M/M/c
queues only)

Mean run-time:

λ c ρ lower bound upper bound
Algorithm 1 Algorithm 2

10 10 5 102 5
20 20 10 52429 10
30 30 15 3.58× 107 15
40 40 20 2.75× 1010 20
50 50 25 2.25× 1013 25

30 30 5 7.88 1
30 30 10 6392 5
30 30 20 6.86× 1012 41
30 30 25 7.37× 1021 132
30 30 29.5 7.37× 1051 4854
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Conclusions

It is highly feasible to produce perfect simulations of stable
M/G/c queues using domCFTP

mean run-time is finite iff E
[
S2
]
<∞

Algorithm 1 is inefficient when the queue is not super-stable
Algorithm 2 is more complex to implement, but more efficient

More recent work (Blanchet, Dong & Pei, 2015) uses
domCFTP to sample from equilibrium of GI/GI/c queues:
finite expected run-time requires 2 + ε moments
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