Stephen Connor University of York

Joint work with Wilfrid Kendall (University of Warwick)

Statistics Seminar **Durham University** 15 Feb 2015

- Introduction
- 2 Dominated CFTF
- \bigcirc M/G/c Queues
- 4 Conclusions

Markov chain Monte Carlo (MCMC)

- ullet AIM: to obtain a sample from a particular distribution π
- METHOD:
 - (i) design a Markov chain with stationary distribution π
 - (ii) run chain until near equilibrium
 - (iii) sample from the chain
- PROBLEM: How long is the 'burn-in' period? i.e. how long should we wait in step (ii)?

Markov chain Monte Carlo (MCMC)

- ullet AIM: to obtain a sample from a particular distribution π
- METHOD:
 - (i) design a Markov chain with stationary distribution π
 - (ii) run chain until near equilibrium
 - (iii) sample from the chain
- PROBLEM: How long is the 'burn-in' period? i.e. how long should we wait in step (ii)?
- POSSIBLE SOLUTIONS:
 - guess from simulation output
 - estimate it analytically

Markov chain Monte Carlo (MCMC)

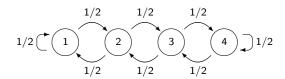
- ullet AIM: to obtain a sample from a particular distribution π
- METHOD:
 - (i) design a Markov chain with stationary distribution π
 - (ii) run chain until near equilibrium
 - (iii) sample from the chain
- PROBLEM: How long is the 'burn-in' period? i.e. how long should we wait in step (ii)?
- POSSIBLE SOLUTIONS:
 - guess from simulation output
 - estimate it analytically

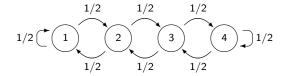
Or use perfect simulation!

Modify an MCMC algorithm so as to produce an exact draw from π , at the cost of a random length run-time

Think of a (hypothetical) version of the chain, \tilde{X} , which was started by your (presumably distant) ancestor from some state x at time $-\infty$:

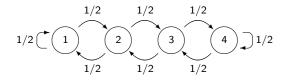
- at time zero this chain is in equilibrium: $\tilde{X}_0^{x,-\infty} \sim \pi$
- most perfect simulation algorithms try to determine the value of $\tilde{X}_{0}^{x,-\infty}$ by looking into the past only a *finite* number of steps...





Run chains from all states using a common update function f (and the same source of randomness u for all chains):

$$f(x, u) = \begin{cases} \min(x + 1, 4) & \text{if } u \le 1/2 \\ \max(x - 1, 1) & \text{if } u > 1/2 \,. \end{cases}$$



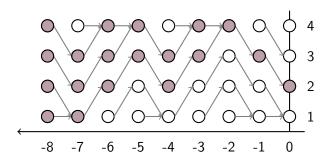
Run chains from all states using a common update function f (and the same source of randomness u for all chains):

$$f(x,u) = \begin{cases} \min(x+1,4) & \text{if } u \le 1/2\\ \max(x-1,1) & \text{if } u > 1/2 \,. \end{cases}$$

Algorithm:

- set n = 1:
- run chains $X^{x,-n}$ for all x=1,2,3,4 up to time 0;
 - if $X_0^{x,-n} = X_0$ for all x, return X_0 ;
 - else set $n \leftarrow 2n$ and repeat, re-using randomness over [-n, 0].

For this realisation, when n = 8 is reached, all of the target chains have the same value at time zero: $X_0^{x,-8} = 2$ in this case. Coalescence time is $T^* = 7$.



For this realisation, when n = 8 is reached, all of the target chains have the same value at time zero: $X_0^{x,-8} = 2$ in this case. Coalescence time is $T^* = 7$.

Claim

0000

$$X_0 := X_0^{\times, -T^*} \sim \pi$$

This is Coupling From The Past!

Dominated CFTP

- 1 Introduction
- 2 Dominated CFTP
- \bigcirc M/G/c Queues
- 4 Conclusions

Dominated CFTP

This really only works when the state space is (essentially) bounded. (Foss & Tweedie, 1998: CFTP is theoretically possible $\Leftrightarrow X$ is *uniformly ergodic*.)

The idea is to identify a time in the past from which "chains from all possible starting states have coalesced by time zero".

This really only works when the state space is (essentially) bounded. (Foss & Tweedie, 1998: CFTP is theoretically possible $\Leftrightarrow X$ is *uniformly ergodic*.)

Queues

The idea is to identify a time in the past from which "chains from all possible starting states have coalesced by time zero".

But we could also obtain a sample from π by identifying a time in the past such that "all earlier starts from a specific state \times lead to the same result at time zero".

Dominated CFTP

This really only works when the state space is (essentially) bounded. (Foss & Tweedie, 1998: CFTP is theoretically possible $\Leftrightarrow X$ is *uniformly ergodic*.)

The idea is to identify a time in the past from which "chains from all possible starting states have coalesced by time zero".

But we could also obtain a sample from π by identifying a time in the past such that "all earlier starts from a specific state \times lead to the same result at time zero".

Main idea

Replace upper and lower processes by *random* processes in statistical equilibrium ('envelope processes')

• X is nonlinear immigration-death process:

$$X \rightarrow X - 1$$
 at rate μX ;

$$X \to X + 1$$
 at rate α_X , where $\alpha_X \le \alpha_\infty < \infty$.

No max means not uniformly ergodic, so no classic CFTP!

• X is nonlinear immigration-death process:

$$X \rightarrow X - 1$$
 at rate μX :

$$X \to X + 1$$
 at rate α_X , where $\alpha_X \le \alpha_\infty < \infty$.

No max means not uniformly ergodic, so no classic CFTP!

Bound by *linear* immigration-death process Y:

$$Y \rightarrow Y - 1$$
 at rate μY ;

$$Y \to Y + 1$$
 at rate α_{∞} .

• X is nonlinear immigration-death process:

$$X \rightarrow X - 1$$
 at rate μX :

$$X \to X + 1$$
 at rate α_X , where $\alpha_X \le \alpha_\infty < \infty$.

No max means not uniformly ergodic, so no classic CFTP!

Bound by *linear* immigration-death process Y:

$$Y \rightarrow Y - 1$$
 at rate μY ;

$$Y \to Y + 1$$
 at rate α_{∞} .

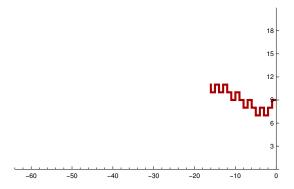
• Produce X from Y by censoring births and deaths:

if
$$Y \to Y - 1$$
 then $X \to X - 1$ with cond. prob. X/Y ;

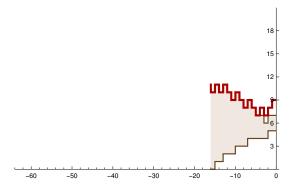
if
$$Y \to Y + 1$$
 then $X \to X + 1$ with cond. prob. α_X/α_∞ .

- Because Y is reversible, with known equilibrium (via detailed balance), we can simulate Y backwards.
- Given a (forwards) trajectory of Y over [-n, 0], we can build trajectories of X starting at every $0 \le X_{-n} \le Y_{-n}$ staying below Y until time 0.
- These can be checked for coalescence!

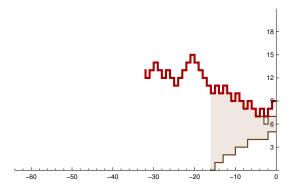
- Given a (forwards) trajectory of Y over [-n, 0], we can build trajectories of X starting at every $0 \le X_{-n} \le Y_{-n}$ staying below Y until time 0.
- These can be checked for coalescence!



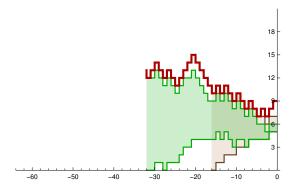
- Because Y is reversible, with known equilibrium (via detailed balance), we can simulate Y backwards.
- Given a (forwards) trajectory of Y over [-n, 0], we can build trajectories of X starting at every $0 \le X_{-n} \le Y_{-n}$ staying below Y until time 0.
- These can be checked for coalescence!



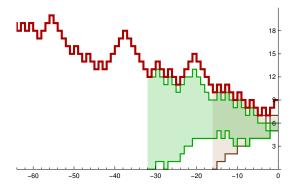
- Because Y is reversible, with known equilibrium (via detailed balance), we can simulate Y backwards.
- Given a (forwards) trajectory of Y over [-n, 0], we can build trajectories of X starting at every $0 < X_{-n} < Y_{-n}$ staying below Y until time 0.
- These can be checked for coalescence!



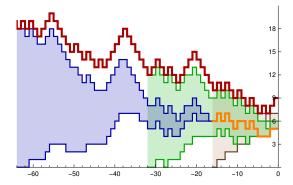
- Because Y is reversible, with known equilibrium (via detailed balance), we can simulate Y backwards.
- Given a (forwards) trajectory of Y over [-n, 0], we can build trajectories of X starting at every $0 \le X_{-n} \le Y_{-n}$ staying below Y until time 0.
- These can be checked for coalescence!



- Because Y is reversible, with known equilibrium (via detailed balance), we can simulate Y backwards.
- Given a (forwards) trajectory of Y over [-n,0], we can build trajectories of X starting at every $0 \le X_{-n} \le Y_{-n}$ staying below Y until time 0.
- These can be checked for coalescence!



- Because Y is reversible, with known equilibrium (via detailed balance), we can simulate Y backwards.
- Given a (forwards) trajectory of Y over [-n, 0], we can build trajectories of X starting at every $0 < X_{-n} < Y_{-n}$ staying below Y until time 0.
- These can be checked for coalescence!



Basic ingredients:

- dominating process
 - draw from equilibrium
 - simulate backwards in time
- sandwiching

```
\mathsf{Lower}_{\mathsf{late}} \preccurlyeq \mathsf{Lower}_{\mathsf{early}} \preccurlyeq \ldots \preccurlyeq \mathsf{Targets} \preccurlyeq \ldots \preccurlyeq \mathsf{Upper}_{\mathsf{early}} \preccurlyeq \mathsf{Upper}_{\mathsf{late}}
```

coalescence
 eventually a Lower and an Upper process must coalesce

Dominated CFTP summary

Basic ingredients:

- dominating process
 - draw from equilibrium
 - simulate backwards in time
- sandwiching

```
Lower_{late} \preceq Lower_{early} \preceq ... \preceq Targets \preceq ... \preceq Upper_{early} \preceq Upper_{late}
```

 coalescence eventually a Lower and an Upper process must coalesce

Surprisingly general!

- domCFTP has been applied in numerous practical settings
- Kendall (2004) shows domCFTP possible in principle for all geometrically ergodic (GE) chains
- C. & Kendall (2007) extend this to a class of non-GE positive-recurrent chains

Queues

- \bigcirc M/G/c Queues

M/G/c Queues

- Customers arrive at times of a Poisson process: interarrival times $T_n \sim \mathsf{Exp}(\lambda)$
- Service durations S_n are i.i.d. with $\mathbb{E}[S] = 1/\mu$ (and we assume that $\mathbb{E}[S^2] < \infty$)
- Customers are served by c servers, on a First Come First Served (FCFS) basis

Queue is *stable* iff $\lambda/\mu < c$, and *super-stable* if $\lambda/\mu < 1$.

The (ordered) workload vector just before the arrival of the n^{th} customer satisfies the *Kiefer-Wolfowitz* recursion:

$$\mathbf{W}_{n+1} = R(\mathbf{W}_n + S_n \delta_1 - T_n \mathbf{1})^+$$
 for $n \ge 0$

- add workload S_n to first coordinate of \mathbf{W}_n (server currently with least work)
- subtract T_n from every coordinate (work done between arrivals)
- reorder the coordinates in increasing order
- replace negative values by zeros.

Our goal is to sample from the equilibrium distribution of this workload vector.

Sigman (2011) pioneered domCFTP for multiserver queues. Key step: find amenable dominating process.

• Restrict to super-stable case

- Restrict to super-stable case
- Workload of M/G/c dominated by that of M/G/1

- Restrict to super-stable case
- Workload of M/G/c dominated by that of M/G/1
- Time-reversal: same M/G/1 workload if use **PS** not **FCFS**

Super-stable M/G/c and domCFTP

- Restrict to super-stable case
- Workload of M/G/c dominated by that of M/G/1
- Time-reversal: same M/G/1 workload if use **PS** not **FCFS**
- But M/G/1 [PS] is **dynamically reversible** (so we can reverse time in equilibrium)

Super-stable M/G/c and domCFTP

- Restrict to super-stable case
- Workload of M/G/c dominated by that of M/G/1
- Time-reversal: same M/G/1 workload if use **PS** not **FCFS**
- But M/G/1 [PS] is **dynamically reversible** (so we can reverse time in equilibrium)
- Recover M/G/1 [FCFS] from workload of M/G/1 [PS]

Super-stable M/G/c and domCFTP

- Restrict to super-stable case
- Workload of M/G/c dominated by that of M/G/1
- Time-reversal: same M/G/1 workload if use **PS** not **FCFS**
- But M/G/1 [PS] is dynamically reversible (so we can reverse time in equilibrium)
- Recover M/G/1 [FCFS] from workload of M/G/1 [PS]
- \bullet M/G/c [FCFS] workload smaller than M/G/1 [FCFS]

Super-stable M/G/c and domCFTP

Sigman (2011) pioneered domCFTP for multiserver queues. Key step: find amenable dominating process.

- Restrict to super-stable case
- Workload of M/G/c dominated by that of M/G/1
- Time-reversal: same M/G/1 workload if use **PS** not **FCFS**
- But M/G/1 [PS] is dynamically reversible (so we can reverse time in equilibrium)
- Recover M/G/1 [FCFS] from workload of M/G/1 [PS]
- M/G/c [FCFS] workload smaller than M/G/1 [FCFS]
- Coalescence forced when M/G/1[PS] empties. (Finite mean if finite second moment of service time.)

However...

This idea is great, but has some drawbacks.

① Coalescence is achieved by running backwards in time until M/G/1 [PS] empties.

This will be inefficient if the target M/G/c workload is such that M/G/1 is nearly unstable.

However...

This idea is great, but has some drawbacks.

- ① Coalescence is achieved by running backwards in time until M/G/1 [PS] empties.

 This will be inefficient if the target M/G/c workload is such that M/G/1 is nearly unstable.
- ② Worse, the interesting case for M/G/c is exactly when the M/G/1 is **not** stable!

However...

This idea is great, but has some drawbacks.

- ① Coalescence is achieved by running backwards in time until M/G/1 [PS] empties. This will be inefficient if the target M/G/c workload is such that M/G/1 is nearly unstable.
- ② Worse, the interesting case for M/G/c is exactly when the M/G/1 is **not** stable!
- Sigman (2012) uses an importance-sampling approach for the stable case, but this algorithm has a run-time with infinite mean!

Dominated CFTP for stable M/G/c queues

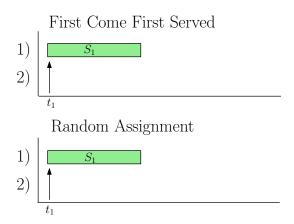
We need to find a dominating process for our $M_{\lambda}/G/c$ [FCFS] queue X.

C. & Kendall (2015): dominate with M/G/c [RA]

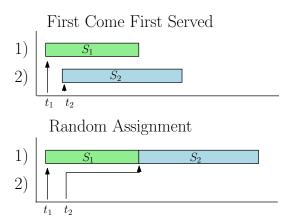
- RA = random assignment, so c independent copies of $M_{\lambda/c}/G/1$.
- Evidently stable iff M/G/c is stable.
- Easy to simulate in equilibrium, and in reverse.
- Care needed with domination arguments...

Let Y be a M/G/c [RA] queue. If Y uses the same arrival times and service durations as X (our M/G/c [FCFS] queue), even though its allocation rule is less efficient it doesn't follow that the number of customers who have departed from X by time t will be at least as big as the number who have departed from Y...

Let Y be a M/G/c [RA] queue. If Y uses the same arrival times and service durations as X (our M/G/c [FCFS] queue), even though its allocation rule is less efficient it doesn't follow that the number of customers who have departed from X by time t will be at least as big as the number who have departed from Y...



Let Y be a M/G/c [RA] queue. If Y uses the same arrival times and service durations as X (our M/G/c [FCFS] queue), even though its allocation rule is less efficient it doesn't follow that the number of customers who have departed from X by time t will be at least as big as the number who have departed from Y...



 t_2 t_3

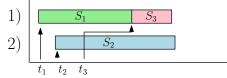
Let Y be a M/G/c [RA] queue. If Y uses the same arrival times and service durations as X (our M/G/c [FCFS] queue), even though its allocation rule is less efficient it doesn't follow that the number of customers who have departed from X by time t will be at least as big as the number who have departed from Y...

First Come First Served 1) S_2 t_2 t_3 Random Assignment 1) S_3

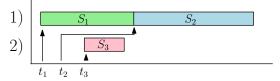
It is true that queue length under FCFS is stochastically dominated by that under RA. But the result does **not** hold for sample path domination!

00000000000

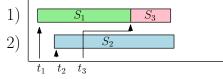
But we can get this domination if we assign service S_n to the n^{th} initiation of service!



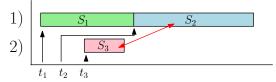
Random Assignment



But we can get this domination if we assign service S_n to the n^{th} initiation of service!

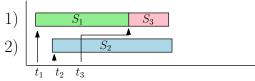


Random Assignment

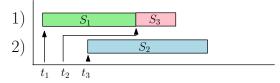


It is true that queue length under FCFS is stochastically dominated by that under RA. But the result does **not** hold for sample path domination!

But we can get this domination if we assign service S_n to the n^{th} initiation of service!



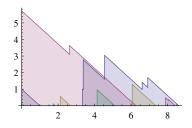
Random Assignment



Algorithm 1

(Processes run backwards are crowned with a hat.)

① Simulate a $[M/G/1\,PS]^c$ process \hat{Y} , in statistical equilibrium, until it first empties (at time $\hat{\tau}$)

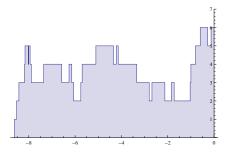




'Algorithm 1

(Processes run backwards are crowned with a hat.)

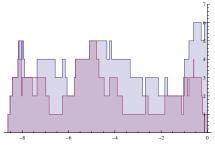
- ① Simulate a $[M/G/1\,PS]^c$ process \hat{Y} , in statistical equilibrium, until it first empties (at time $\hat{\tau}$)
- ② Set $\tau = -\hat{\tau}$, and use the path of \hat{Y} to construct its (dynamic) time reversal: thus build $(Y(t): \tau \leq t \leq 0)$, an M/G/c [RA] process



Algorithm 1

(Processes run backwards are crowned with a hat.)

- ① Simulate a $[M/G/1\,PS]^c$ process \hat{Y} , in statistical equilibrium, until it first empties (at time $\hat{\tau}$)
- ② Set $\tau = -\hat{\tau}$, and use the path of \hat{Y} to construct its (dynamic) time reversal: thus build $(Y(t): \tau \leq t \leq 0)$, an M/G/c [RA] process
- ① Use Y to evolve X, an M/G/c [FCFS] process, over $[\tau, 0]$, started from empty

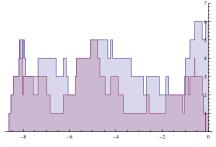


University of York

Algorithm 1

(Processes run backwards are crowned with a hat.)

- ① Simulate a $[M/G/1\,PS]^c$ process \hat{Y} , in statistical equilibrium, until it first empties (at time $\hat{\tau}$)
- ② Set $\tau = -\hat{\tau}$, and use the path of \hat{Y} to construct its (dynamic) time reversal: thus build $(Y(t): \tau \leq t \leq 0)$, an M/G/c [RA] process
- ① Use Y to evolve X, an M/G/c [FCFS] process, over $[\tau, 0]$, started from empty
- Return X₀



- works!
- has finite mean run-time (time taken for \hat{Y} to empty is finite iff $\mathbb{E}\left[S^2\right]<\infty$)

Queues

000000000000

• is inefficient: if $1 \ll \rho < c$ then \hat{Y} will take a long time to empty completely

Algorithm 1

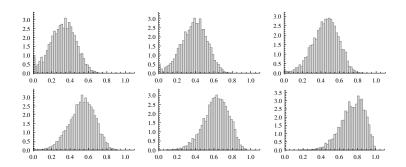
- works!
- ullet has finite mean run-time (time taken for \hat{Y} to empty is finite iff $\mathbb{E}\left[S^2
 ight]<\infty$)
- \bullet is inefficient: if $1 \ll \rho < c$ then \hat{Y} will take a long time to empty completely

We can do better than this by simulating our dominating process \hat{Y} until **each server** has emptied at least once, and then using **sandwiching processes** to try to establish coalescence much faster.

Algorithm 2

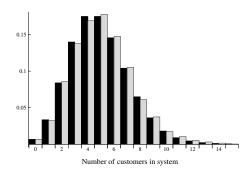
- ② Simulate a $[M/G/1\ PS]^c$ process \hat{Y} , in statistical equilibrium as follows: evolve the queue for server j (independently of all other servers) until the first time $\hat{\tau}_j \geq \hat{T}$ that **this server** is empty, for $j=1,\ldots,c$.
- **③** Construct Y_j , an M/G/1 [FCFS] process over $[-\hat{\tau}_j, 0]$, for $j = 1, \ldots, c$.
- ① Construct upper and lower sandwiching processes, $U_{[T,0]}$ and $L_{[T,0]}$. (M/G/c [FCFS]] queues.)
- **⑤** Check for **coalescence of workload vectors**; if $L_{[T,0]}(0) \neq U_{[T,0]}(0)$ then set $\hat{T} \leftarrow 2\hat{T}$ and repeat

Simulation output: workload at busiest six servers



Equilibrium distribution of final 6 coordinates of Kiefer-Wolfowitz workload vector: $\lambda=c=25,\ S\sim {\sf Uniform}[0,1].$ (5,000 draws, Algorithm 2)

Simulation output: number of people in system



Queues

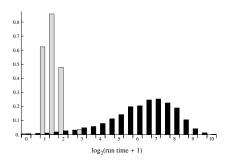
Number of customers for M/M/c queue in equilibrium.

$$\lambda = 10$$
, $\mu = 2$, $c = 10$.

Black bars show theoretical number of customers in system; grey bars give results of 5,000 draws using Algorithm 2. χ^2 -test: p-value 0.62.

Introduction

M/M/c queue. (5,000 runs, $\lambda = 10$, $\mu = 2$, c = 10.)



Black bars show $\log_2(\tilde{\tau}+1)$ for Algorithm 1 $(\tilde{\tau} = \text{first time at which } \tilde{Y} \text{ empties}).$ Grey bars show distribution of $\log_2(\tilde{T}+1)$ for Algorithm 2 ($ilde{\mathcal{T}} = extstyle{\mathsf{smallest}}$ time needed to detect coalescence using binary back-off). UNIVERSITY of York

We can bound run-times using

- alternating renewal process theory for Algorithm 1
- supermartingale ideas for Algorithm 2 (heuristic for M/M/cqueues only)

We can bound run-times using

- alternating renewal process theory for Algorithm 1
- supermartingale ideas for Algorithm 2 (heuristic for M/M/cqueues only)

λ	С	ρ	lower bound	upper bound
			Algorithm 1	Algorithm 2
10	10	5		
20	20	10		
30	30	15		
40	40	20		
50	50	25		
30	30	5		
30	30	10		
30	30	20		
30	30	25		
30	30	29.5		

We can bound run-times using

- alternating renewal process theory for Algorithm 1
- supermartingale ideas for Algorithm 2 (heuristic for M/M/cqueues only)

ı	λ	С	ρ	lower bound	upper bound
	/\	C	Ρ		
				Algorithm 1	Algorithm 2
ĺ	10	10	5	102	
	20	20	10	52429	
	30	30	15	3.58×10^{7}	
	40	40	20	2.75×10^{10}	
	50	50	25	2.25×10^{13}	
	30	30	5		
	30	30	10		
	30	30	20		
	30	30	25		
	30	30	29.5		

We can bound run-times using

- alternating renewal process theory for Algorithm 1
- supermartingale ideas for Algorithm 2 (heuristic for M/M/cqueues only)

λ	С	ρ	lower bound	upper bound
			Algorithm 1	Algorithm 2
10	10	5	102	5
20	20	10	52429	10
30	30	15	3.58×10^{7}	15
40	40	20	2.75×10^{10}	20
50	50	25	2.25×10^{13}	25
30	30	5		
30	30	10		
30	30	20		
30	30	25		
30	30	29.5		

We can bound run-times using

- alternating renewal process theory for Algorithm 1
- supermartingale ideas for Algorithm 2 (heuristic for M/M/cqueues only)

λ	С	ρ	lower bound	upper bound
			Algorithm 1	Algorithm 2
10	10	5	102	5
20	20	10	52429	10
30	30	15	3.58×10^{7}	15
40	40	20	2.75×10^{10}	20
50	50	25	2.25×10^{13}	25
30	30	5	7.88	
30	30	10	6392	
30	30	20	$6.86 imes 10^{12}$	
30	30	25	$7.37 imes 10^{21}$	
30	30	29.5	$7.37 imes 10^{51}$	

- alternating renewal process theory for Algorithm 1
- supermartingale ideas for Algorithm 2 (heuristic for M/M/cqueues only)

λ	С	ho	lower bound	upper bound
			Algorithm 1	Algorithm 2
10	10	5	102	5
20	20	10	52429	10
30	30	15	3.58×10^{7}	15
40	40	20	$2.75 imes 10^{10}$	20
50	50	25	2.25×10^{13}	25
30	30	5	7.88	1
30	30	10	6392	5
30	30	20	$6.86 imes 10^{12}$	41
30	30	25	$7.37 imes 10^{21}$	132
30	30	29.5	$7.37 imes 10^{51}$	4854

Conclusions

- Introduction
- 2 Dominated CFTF
- \bigcirc M/G/c Queues
- 4 Conclusions

Conclusions

Introduction

- It is highly feasible to produce perfect simulations of stable M/G/c queues using domCFTP
 - ullet mean run-time is finite iff $\mathbb{E}\left[S^2
 ight]<\infty$
 - Algorithm 1 is inefficient when the queue is not super-stable
 - Algorithm 2 is more complex to implement, but more efficient
- More recent work (Blanchet, Dong & Pei, 2015) uses domCFTP to sample from equilibrium of GI/GI/c queues: finite expected run-time requires $2 + \varepsilon$ moments