
Isabelle/HOL and the UTP
Part 2: Deduction, Classes and Isar

Simon Foster

University of York

February 1, 2013



Deduction rules

I Simplification rules of the form JA1 · · ·AnK =⇒ B = C
I Introduction rules

I of the form JA1 · · ·AnK =⇒ B
I split a goal matching into n goals, modulo suitable

substitutions
I applied using rule or rule tac x=A in

I Destruction/Forward rules
I of the form A⇒ B
I adds B as an assumption, removing A if destruction
I applied using drule and frule

I Elimination rules
I of the form JA; B1 =⇒ P · · ·Bn =⇒ PK =⇒ P
I splits assumption A into n assumptions, from which P must be

proved
I applied using erule
I induction and case split are key examples



Automated Deduction

I blast applies deduction rules recursively with backtracking

I very good solver for set theoretic/first order logic problems

I all-or-nothing – must fully solve goal applied on

I lemmas can be tagged with [intro], [elim] and [dest]

I care is required – blast can loop

I auto combines blast with simp
I not all-or-nothing, applies to all subgoals

I force is all-or-nothing auto on a single goal

I clarify applies rules which do not split the goal

I safe applies rules marked as safe (append with !)



Axiomatic type-classes

I A type-class is a polymorphic signature of constants

class equal =
fixes eq :: α⇒ α⇒ bool (infixr ≈ 25)

I Isabelle/HOL allows axioms about these constants

assumes refl : x ≈ x
and sym : x ≈ y =⇒ y ≈ x
and trans : Jx ≈ y ; y ≈ zK =⇒ x ≈ z

I A type-class can extend other type-classes e.g.
linorder ⊆ order ⊆ preorder

I instantiation with a type
I requires declaration of constants + proof of axioms
I exports all internal definitions and proofs



Sledgehammer

I solve a goal by calling automated theorem provers

I the problem is submitted to 5 ATPs, which may solve it

I the internal theorem prover metis reconstructs the proof

I alternatively, Z3 can be used via smt command

I only useful for first-order problems (e.g. no induction)

I a very helpful tool if you’re stuck



Isar

I a natural proof language for Isabelle

I acts as an alternate syntax for proof scripts

Isar Isabelle

lemma my goal :
assumes P
shows A = B

proof −
from assms have Q

by blast

thus ?thesis
by force

qed

lemma my goal : P =⇒ A = B
apply(subgoal tac Q)
apply(force)
apply(blast)

qed


