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Unifying Theories of Programming
I modelling languages have heterogeneous semantics
I UTP: framework for definition and study of formal semantics
I based on “programs-as-predicates”; enables unification
I look at different theoretical aspects in isolation
I formalise aspects as UTP theories

I alphabet – observational variables
I signature – operators of the language
I healthiness conditions – define the theory’s domain

I build the theory supermarket – enable reuse
I study relationships between different modelling languages
I unify different semantic presentations

I denotational, operational, algebraic, axiomatic ...
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Programs as Predicates
I observable behaviour encoded in first-order predicate calculus
I relational predicates over input, output variables (x / x ′)
I alphabet gives the domain of possible observations
I we thus denote the core programming operators

x := v , x ′ = v ∧ y ′ = y

P ; Q , ∃ x0 • P [x0/x
′] ∧ Q [x0/x ]

P uQ , P ∨ Q

P 2 b 3Q , (b ∧ P) ∨ (¬b ∧Q)

Pω , µX • P ; X

I definitions support proof of algebraic laws of programming
I natural notion of refinement: P v Q ⇔ P = P uQ
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UTP theory example
I simple language for real-time programs
I alphabet: what is observable in particular model

I clock: time, time ′ : N
I program state: st , st ′ : Σ

I healthiness conditions: time ≤ time ′

I encoded as idempotent and montonic functions
I HT (P) = P ∧ time ≤ time ′

I theory elements are fixed-points: {P | HT (P) = P}
I give rise to complete lattices etc.

I signature: operators for building programs
I Wait(n : N) =̂ time ′ = time + n ∧ st ′ = st
I + relational operators ;, 2−3, x := v etc.
I HT -healthy relations are closed under these operators
I e.g. HT (Wait(n)) = Wait(n)
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Verification
I unified language for both specification and programs
I apply automated theorem provers to verification
I Isabelle/UTP: putting UTP to work
I semantic embedding of UTP in Isabelle/HOL
I syntax to enable description of programs
I specify theories and mechanically prove algebraic laws
I tactics directly leveraging Isabelle’s proof automation
I proven laws support verification calculi
I e.g. support for reasoning about CSP and Circus processes
I all laws presented herein have been mechanically verified
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Isabelle/UTP time theory example
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Circus Example
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Reactive Processes
I UTP theory for description of reactive programs
I basis of languages such as CSP and Circus
I imperative programs have initial and final states
I reactive programs additionally have intermediate states
I intermediate programs await interaction with the environment
I observational variables:

I wait ,wait ′ : B – distinguish intermediate and final states
I tr , tr ′ : seqEvent – discrete history of interaction

I portion of trace contributed by present process: tt =̂ tr ′ − tr

I example: do(a) =̂ II2wait 3(tr ′ = tr a 〈a〉 ∧ ¬wait ′)

11



INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Reactive Healthiness Conditions

R1(P) =̂ P ∧ tr ≤ tr ′

R2c(P) =̂ P [ε, tt/tr , tr ′]2 tr ≤ tr ′3P

R3(P) =̂ II2wait 3P

R =̂ R3 ◦ R2c ◦ R1

I R1: trace is monotonically increasing
I R2c : no dependence on trace history
I R3: if predecessor is waiting then do nothing
I R is closed under relational calculus operators (e.g. ; and u)
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Reactive Design Contracts
I building on reactive processes we have reactive designs
I ok , ok ′ : B distinguish possible erroneous behaviour
I a reactive design is a triple: [ pre |- peri | post ]

I precondition (pre) is a predicate encoding assumptions on
state and environment required for correct execution

I pericondition (peri) encodes commitments on trace that are
satisfied by all intermediate states

I postcondition (post) encodes commitments on trace and
variables that are satisfied in all final states

I contractual specifications have a natural notion of refinement:

P1 ⇒ Q1 Q2 ∧ P1 ⇒ P2 Q3 ∧ P1 ⇒ P3

[P1 |- P2 | P3 ] v [Q1 |- Q2 | Q3 ]

I objective: use reactive designs to encode Simulink blocks
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Reactive Design Examples
I CSP examples use ref ′ : PEvent to encode refusals

a → Skip =
[

true
∣∣- a /∈ ref ′ ∧ tt = 〈〉

∣∣ st ′ = st ∧ tt = 〈a〉
]

Stop = [ true |- tt = 〈〉 | false ]

a → Chaos 2 b → Skip =[
¬(〈a〉 ≤ tt)

∣∣- tt = 〈〉 ∧ a /∈ ref ′ ∧ b /∈ ref ′
∣∣ tt = 〈b〉 ∧ st ′ = st

]
Chaos = [ false |- false | false ]

IIR = [ true |- false | II ]
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Laws of reactive designs

[P1 |- P2 | P3 ] u [Q1 |- Q2 | Q3 ] = [P1 ∧ Q1 |- P2 ∨ Q2 | P3 ∨ Q3 ]

Chaos u P = Chaos

l

i∈I

[P1(i) |- P2(i) | P3(i) ] =

[∧
i∈I

P1(i)

∣∣∣∣∣- ∨
i∈I

P2(i)

∣∣∣∣∣ ∨
i∈I

P3(i)

]

[P1 |- P2 | P3 ] ; [Q1 |- Q2 | Q3 ] = [P1 ∧ P3 wp Q1 |- P2 ∨ P3 ; Q2 | P3 ; Q3 ]

IIR ; P = P ; IIR = P

[P1 |- P2 | false ] ; Q = [P1 |- P2 | false ]

Chaos ; P = Chaos

[P |- Q | R ]n+1 =

 ∧
i≤n

(Ri wp P)

∣∣∣∣∣∣-
∨

i≤n

Ri

 ; Q

∣∣∣∣∣∣ Rn+1


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Parallel composition
I defined wrt. a merge predicate M

I describes how state and traces should be merged
I rather complicated...

[P1 |- P2 | P3 ] ‖R
M [Q1 |- Q2 | Q3 ] =

[ P2 wrM Q1 ∧ P3 wrM Q1 ∧ Q2 wrM P1 ∧ Q3 wrM P1∣∣- P2 ‖E
M Q2 ∧ P3 ‖E

M Q2 ∧ P2 ‖E
M Q3

| P3 ‖M Q3 ]

I P wrM Q is the weakest assumption under which process Q
will not violate condition P

I ‖E
M merges only traces; ‖M merges both states and traces

I parallel composition is always monotonic
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Verification of reactive designs
I involves solving a conjecture: [P1 |- P2 | P3 ] v System
I [P1 |- P2 | P3 ]: contract with assumptions and commitments

(1) perform algebraic simplification of model

(2) calculate pre-, peri-, and postconditions of System

(3) apply refinement law to yield three proof obligations

(4) discharge (or refute) POs using Isabelle tactics

I we’ve implemented tactics to facilitate this
I rdes-calc – calculate a reactive design
I rel-auto – solve relational calculus
I + Isabelle provides access to ATPs with sledgehammer
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Hybrid Computation
I how to use reactive contracts to specify hybrid systems?
I need to augment relational calculus with continuous variables
I i.e. piecewise continuous functions x : R≥0 → R
I desire to support specification in style of duration calculus
I additional operators for constructing ODEs and DAEs
I we achieve this by generalising the trace model (tr , tr ′)
I will enable a contractual approach for Simulink
I inspirations:

I Hybrid CSP (He, Zhan et al.) — DAEs and pre-emption
I HRML (He) — tri-partite alphabet
I Duration Calculus (Zhou et al.) — interval operator
I Timed Reactive Designs (Hayes et al.) — timed trace model
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Trace algebra
I we first abstractly characterise the trace operators

Definition (Trace algebra)

A trace algebra (T ,a, ε) is a cancellative monoid satisfying:

x a (y a z ) = (x a y) a z (TA1)

εa x = x a ε = x (TA2)

x a y = x a z ⇒ y = z (TA3)

x a z = y a z ⇒ x = y (TA4)

x a y = ε ⇒ x = ε (TA5)

I cancellation laws (TA3, TA4) allow us to decompose a trace
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Trace operators

Definition (Trace prefix and subtraction)

x ≤ y ⇔ ∃ z • y = x a z

y − x =̂

{
ιz • y = x a z if x ≤ y

ε otherwise

I trace prefix (x ≤ y): there is a z that extends x to yield y

I trace minus (y − x ): if y ≤ x then obtain the difference
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Trace prefix laws

Theorem (Trace prefix laws)

(T ,≤) is a partial order (TP1)

ε ≤ x (TP2)

x ≤ x a y (TP3)

x a y ≤ x a z ⇔ y ≤ z (TP4)

Theorem (Trace subtraction laws)

x − ε = x (TS1)

ε− x = ε (TS2)

x − x = ε (TS3)

(x a y)− x = y (TS4)

(x − y)− z = x − (y a z ) (TS5)
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Generalised Reactive Designs
I redefine healthiness condition R using trace algebra
I define operators in terms of abstract trace behaviours
I reprove the laws of reactive designs in general context
I gives rise to generalised reactive design contracts
I different models support different reactive languages
I e.g. sequences form a trace algebra⇒ Circus
I allows import of law library into specialised theory
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Continuous Time Traces
I model for hybrid systems is piecewise continuous functions
I finite number of left-closed/right-open continuous segments
I adapted from the work of (Hayes, 2006)

x

time
0 lt

0
t
1
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Mathematical Model

Definition (Timed traces)

TT =̂


f : R≥0 7→ Σ
| ∃ t • dom(f ) = [0, t)
∧ t > 0⇒ ∃ I : Roseq

•
(

ran(I ) ⊆ [0, t ] ∧ {0, t} ⊆ ran(I )
∧
(
∀n < #I − 1 • f cont-on [In , In+1)

) )


Roseq =̂ {x : seqR | ∀n < #x − 1 • xn < xn+1}

f cont-on [m,n) =̂ ∀ t ∈ [m,n) • lim
x→t

f (x ) = f (t)

I I : a finite sequence of continuous intervals
I Σ: a topological space denoting the continuous state (e.g. Rn )
I continuous variables are projections (lenses) on Σ
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Operators

Definition (Timed-trace operators)

f � n =̂ λ x • f (x − n)

end(f ) =̂ min(R≥0 \ dom(f ))

〈〉 =̂ ∅

f a g =̂ f ∪ (g � end(f ))

I f � n shifts f : R 7→ A to the right by n : R
I end(f ) obtains the limit point of a trace
I theorem: (TT,a, 〈〉) forms a trace algebra
I key lemma: TT is closed under a

I we have now obtained a model of hybrid reactive processes
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Hybrid relational calculus
I kernel language of relational hybrid programs
I augments relational calculus with continuous variables (x )
I linked to discrete copies via coupling invariants
I continuous alphabet: conα(P), discrete alphabet: disα(P)

I operators denoted in terms of hybrid reactive processes

I retain standard relational operators
I composition (;), assignment (x := v ), if-then-else etc.

I add continuous evolution operators
I differential algebraic equations — 〈 v̇1 = f1; · · · ; v̇n = fn |B 〉
I pre-emption — P [B ]Q
I interval (continuous specification) — dPe
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Example 1: Simple Bouncing Ball

Bouncing ball in Modelica

model BouncingBal l
Real p ( s t a r t =2 , f i x e d = true ) , v ( s t a r t =0 , f i x e d = true ) ;

equation
der ( v ) = −9.81 ;
der ( p ) = v ;
when p <= 0 then

r e i n i t ( v , −0.8∗v ) ;
end when ;

end BouncingBal l ;

Bouncing ball in hybrid relational calculus

p, v := 2, 0 ;
(〈

ṗ = v ; v̇ = −9.81
〉 [

p ≤ 0
]
v := −v ∗ .8)

)ω
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Hybrid denotational semantics

tt , tr ′ − tr

x (t) , tt(t).x

` , end(tt)

P @ τ , {x 7→ tt(τ).x | x ∈ conα(P) \ {t}} † P

I σ † P applies substitution function σ to P

I P @ τ lifts continuous variables to instant τ
I e.g. (x > 1 ∧ y = x · 3) @ τ = (x (τ) > 1 ∧ y(τ) = x (τ) · 3)

I borrowed from timed refinement calculus

29



INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Interval operator

dP(τ)e , tr ′ ≥ tr ∧ (∀ t ∈ [0, `) • P(t) @ t)

I cf. Duration Calculus (Zhou, Ravn, and Hanzen, 1993)
I continuous spec: states that P holds on the interval [0, `)

I e.g. d15 < temp ∧ temp ≤ 30e

Theorem (Interval laws)

dP(τ) ∧ Q(τ)e = dP(τ)e ∧ dQ(τ)e
dP(τ) ∨ Q(τ)e v dP(τ)e ∨ dQ(τ)e

dtruee = R1(true)

dfalsee = (tr ′ = tr)

(∀ τ • P(τ)⇒ Q(τ))⇒ dQ(τ)e v dP(τ)e
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Hybrid specification

ddPee , dPe ∧ ` > 0 ∧
∧

v∈conα(P)

(
v = v(0) ∧ v ′ = lim

t→`
(v(t))

)
∧IIdisα(P)

I continuous state evolves according to P
I must make non-zero progress to avoid certain Zeno effects
I initial condition for v taken from discrete copy
I final condition for v taken from limit construction

x

time

0 l

x

t
0

t
1

x'
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Hybrid specification

ddPee , dPe ∧ ` > 0 ∧
∧

v∈conα(P)

(
v = v(0) ∧ v ′ = lim

t→`
(v(t))

)
∧IIdisα(P)

I continuous state evolves according to P
I must make non-zero progress to avoid certain Zeno effects
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Hybrid Evolution

〈
ẋ = F ′(x , ẋ )

∣∣B(x )
〉

, ∃F •
⌈⌈
F ′ has-derivF at τ ∧ x = F(τ) ∧ B(x )

⌉⌉
P [B ]Q , (Q 2B @ 03(P ∧ d¬Be)) ∨ ((P ∧ d¬Be ∧ B ′) ; Q)

I differential-algebraic equation: 〈 ẋ = F ′(x , ẋ ) |B(x ) 〉
I there exists a solution (F ) satisfying the ODE and constraint
I pre-emption: P [B ]Q

I P evolves until B becomes true, then Q is enabled
I remember: all constructs boil down to constraints on the

continuous trace

32



INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Mechanisation in Isabelle/UTP
I based on Multivariate Analysis and HOL-ODE packages
I support for limits, ODEs, DAEs, and their solutions
I solutions can be verified but not generated
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Recap
I we have presented reactive design contracts
I with an intuitive notion of refinement
I we then generalised the underlying trace semantics
I new model based on piecewise-continuous functions
I and constructed a hybrid relational calculus
I we can now combine these to describe Simulink blocks
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Overview
I each block is a parametric reactive design
I parameters are constants and shared wires
I wires are modelled as continuous variables
I blocks constrain the behaviours of the wires
I preconditions prevent erroneous behaviour (e.g. div by zero)
I parallel compose instantiated blocks to give overall diagram
I yields a system of differential and algebraic equations
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Simulink blocks (tentative!)

Source(x , v) =̂ [ true |- dx = ve | false ]

Term(x ) =̂ [ true |- true | false ]

Add(x , y , z ) =̂ [ true |- dz = x + ye | false ]

Gain(x , y , v) =̂ [ true |- dy = v · xe | false ]

Divide(x , y , z ) =̂ [ dy 6= 0e |- dz = x/ye | false ]

Integrate(x , y , y
0
, r) =̂ x := x0 ; (〈 ẏ = x 〉 [ r ] x := x0)

ω

InitVal(x , y , v) =̂ [ true |- dy = v 2 τ = 0 3 y = xe | false ]

Cond(x , y , f ) =̂ [ true |- dy = f (x )e | false ]

I all instances of general pattern: Init ; (Cont [Cond] Disc)ω
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Bouncing Ball Example

I from https://uk.mathworks.com/help/simulink/
examples/simulation-of-a-bouncing-ball.html

38
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Translation
I we need to give each wire an identifier in the alphabet
I alphabet: g , v , v0, v1, p, p0, p1 : R and r : B
I diagram described by following parallel composition of blocks:

Source(g ,−9.81) ‖ Integrate(g , v0, v , r) ‖ Gain(v , v1,−0.8)

‖ InitVal(v1, v0, 15) ‖ Integrate(v , p, p
0
, r) ‖ Source(p1, 0)

‖ InitVal(p
1
, p

0
, 10) ‖ Cond(p, r , λ x • x ≤ 0) ‖ Term(p)

I verification requires calculation of pre- and periconditions
I this involves flattening and solving the system of equations
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Conclusion
I reactive designs facilitate contractual specifications
I Isabelle/UTP provides verification infrastructure
I generalised trace model facilitates hybrid models
I combining these provides denotational foundations for

Simulink
I UTP enables combination of models from different languages

I programming languages (for controller implementation)
I modelling languages (Modelica, SysML etc.)

I enable a multi-disciplinary approach to system design
I could apply to justify optimisations and transformations
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Future work
I investigate correct merge predicate for Simulink
I lots more algebraic laws to prove
I alternative trace models (superdense-time?)
I automated flattening of Simulink diagrams
I reasoning about ODEs in Isabelle/HOL (incl. approximations)

I cf. work of Fabian Immler and Johannes Hölzl

I integration of CAS with Isabelle
I static analysis of Simulink diagrams
I combination with existing work with Circus
I unifying with our Modelica semantics
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