
INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Foundations for Simulink diagrams in UTP
Unifying Theories of Hybrid and Reactive Programming

Simon Foster Jeremy Jacob
Jim Woodcock Frank Zeyda

University of York, UK
(with thanks to University of Teesside, UK)

Tuesday 30th May, 2017

into-cps.au.dk

1

into-cps.au.dk

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Outline

Background

Reactive Systems

Unifying Reactive and Hybrid

Towards Simulink Block Semantics

Conclusion

2

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Outline

Background

Reactive Systems

Unifying Reactive and Hybrid

Towards Simulink Block Semantics

Conclusion

3

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Unifying Theories of Programming
I modelling languages have heterogeneous semantics
I UTP: framework for definition and study of formal semantics
I based on “programs-as-predicates”; enables unification
I look at different theoretical aspects in isolation
I formalise aspects as UTP theories

I alphabet – observational variables
I signature – operators of the language
I healthiness conditions – define the theory’s domain

I build the theory supermarket – enable reuse
I study relationships between different modelling languages
I unify different semantic presentations

I denotational, operational, algebraic, axiomatic ...

4

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Programs as Predicates
I observable behaviour encoded in first-order predicate calculus
I relational predicates over input, output variables (x / x ′)
I alphabet gives the domain of possible observations
I we thus denote the core programming operators

x := v , x ′ = v ∧ y ′ = y

P ; Q , ∃ x0 • P [x0/x
′] ∧ Q [x0/x]

P uQ , P ∨ Q

P 2 b 3Q , (b ∧ P) ∨ (¬b ∧Q)

Pω , µX • P ; X

I definitions support proof of algebraic laws of programming
I natural notion of refinement: P v Q ⇔ P = P uQ

5

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

UTP theory example
I simple language for real-time programs
I alphabet: what is observable in particular model

I clock: time, time ′ : N
I program state: st , st ′ : Σ

I healthiness conditions: time ≤ time ′

I encoded as idempotent and montonic functions
I HT (P) = P ∧ time ≤ time ′

I theory elements are fixed-points: {P | HT (P) = P}
I give rise to complete lattices etc.

I signature: operators for building programs
I Wait(n : N) =̂ time ′ = time + n ∧ st ′ = st
I + relational operators ;, 2−3, x := v etc.
I HT -healthy relations are closed under these operators
I e.g. HT (Wait(n)) = Wait(n)

6

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Verification
I unified language for both specification and programs
I apply automated theorem provers to verification
I Isabelle/UTP: putting UTP to work
I semantic embedding of UTP in Isabelle/HOL
I syntax to enable description of programs
I specify theories and mechanically prove algebraic laws
I tactics directly leveraging Isabelle’s proof automation
I proven laws support verification calculi
I e.g. support for reasoning about CSP and Circus processes
I all laws presented herein have been mechanically verified

7

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Isabelle/UTP time theory example

8

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Circus Example

9

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Outline

Background

Reactive Systems

Unifying Reactive and Hybrid

Towards Simulink Block Semantics

Conclusion

10

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Reactive Processes
I UTP theory for description of reactive programs
I basis of languages such as CSP and Circus
I imperative programs have initial and final states
I reactive programs additionally have intermediate states
I intermediate programs await interaction with the environment
I observational variables:

I wait ,wait ′ : B – distinguish intermediate and final states
I tr , tr ′ : seqEvent – discrete history of interaction

I portion of trace contributed by present process: tt =̂ tr ′ − tr

I example: do(a) =̂ II2wait 3(tr ′ = tr a 〈a〉 ∧ ¬wait ′)

11

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Reactive Healthiness Conditions

R1(P) =̂ P ∧ tr ≤ tr ′

R2c(P) =̂ P [ε, tt/tr , tr ′]2 tr ≤ tr ′3P

R3(P) =̂ II2wait 3P

R =̂ R3 ◦ R2c ◦ R1

I R1: trace is monotonically increasing
I R2c : no dependence on trace history
I R3: if predecessor is waiting then do nothing
I R is closed under relational calculus operators (e.g. ; and u)

12

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Reactive Design Contracts
I building on reactive processes we have reactive designs
I ok , ok ′ : B distinguish possible erroneous behaviour
I a reactive design is a triple: [pre |- peri | post]

I precondition (pre) is a predicate encoding assumptions on
state and environment required for correct execution

I pericondition (peri) encodes commitments on trace that are
satisfied by all intermediate states

I postcondition (post) encodes commitments on trace and
variables that are satisfied in all final states

I contractual specifications have a natural notion of refinement:

P1 ⇒ Q1 Q2 ∧ P1 ⇒ P2 Q3 ∧ P1 ⇒ P3

[P1 |- P2 | P3] v [Q1 |- Q2 | Q3]

I objective: use reactive designs to encode Simulink blocks

13

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Reactive Design Examples
I CSP examples use ref ′ : PEvent to encode refusals

a → Skip =
[

true
∣∣- a /∈ ref ′ ∧ tt = 〈〉

∣∣ st ′ = st ∧ tt = 〈a〉
]

Stop = [true |- tt = 〈〉 | false]

a → Chaos 2 b → Skip =[
¬(〈a〉 ≤ tt)

∣∣- tt = 〈〉 ∧ a /∈ ref ′ ∧ b /∈ ref ′
∣∣ tt = 〈b〉 ∧ st ′ = st

]
Chaos = [false |- false | false]

IIR = [true |- false | II]

14

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Laws of reactive designs

[P1 |- P2 | P3] u [Q1 |- Q2 | Q3] = [P1 ∧ Q1 |- P2 ∨ Q2 | P3 ∨ Q3]

Chaos u P = Chaos

l

i∈I

[P1(i) |- P2(i) | P3(i)] =

[∧
i∈I

P1(i)

∣∣∣∣∣- ∨
i∈I

P2(i)

∣∣∣∣∣ ∨
i∈I

P3(i)

]

[P1 |- P2 | P3] ; [Q1 |- Q2 | Q3] = [P1 ∧ P3 wp Q1 |- P2 ∨ P3 ; Q2 | P3 ; Q3]

IIR ; P = P ; IIR = P

[P1 |- P2 | false] ; Q = [P1 |- P2 | false]

Chaos ; P = Chaos

[P |- Q | R]n+1 =

 ∧
i≤n

(Ri wp P)

∣∣∣∣∣∣-
∨

i≤n

Ri

 ; Q

∣∣∣∣∣∣ Rn+1



15

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Parallel composition
I defined wrt. a merge predicate M

I describes how state and traces should be merged
I rather complicated...

[P1 |- P2 | P3] ‖R
M [Q1 |- Q2 | Q3] =

[P2 wrM Q1 ∧ P3 wrM Q1 ∧ Q2 wrM P1 ∧ Q3 wrM P1∣∣- P2 ‖E
M Q2 ∧ P3 ‖E

M Q2 ∧ P2 ‖E
M Q3

| P3 ‖M Q3]

I P wrM Q is the weakest assumption under which process Q
will not violate condition P

I ‖E
M merges only traces; ‖M merges both states and traces

I parallel composition is always monotonic

16

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Verification of reactive designs
I involves solving a conjecture: [P1 |- P2 | P3] v System
I [P1 |- P2 | P3]: contract with assumptions and commitments

(1) perform algebraic simplification of model

(2) calculate pre-, peri-, and postconditions of System

(3) apply refinement law to yield three proof obligations

(4) discharge (or refute) POs using Isabelle tactics

I we’ve implemented tactics to facilitate this
I rdes-calc – calculate a reactive design
I rel-auto – solve relational calculus
I + Isabelle provides access to ATPs with sledgehammer

17

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Outline

Background

Reactive Systems

Unifying Reactive and Hybrid

Towards Simulink Block Semantics

Conclusion

18

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Hybrid Computation
I how to use reactive contracts to specify hybrid systems?
I need to augment relational calculus with continuous variables
I i.e. piecewise continuous functions x : R≥0 → R
I desire to support specification in style of duration calculus
I additional operators for constructing ODEs and DAEs
I we achieve this by generalising the trace model (tr , tr ′)
I will enable a contractual approach for Simulink
I inspirations:

I Hybrid CSP (He, Zhan et al.) — DAEs and pre-emption
I HRML (He) — tri-partite alphabet
I Duration Calculus (Zhou et al.) — interval operator
I Timed Reactive Designs (Hayes et al.) — timed trace model

19

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Trace algebra
I we first abstractly characterise the trace operators

Definition (Trace algebra)

A trace algebra (T ,a, ε) is a cancellative monoid satisfying:

x a (y a z) = (x a y) a z (TA1)

εa x = x a ε = x (TA2)

x a y = x a z ⇒ y = z (TA3)

x a z = y a z ⇒ x = y (TA4)

x a y = ε ⇒ x = ε (TA5)

I cancellation laws (TA3, TA4) allow us to decompose a trace

20

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Trace operators

Definition (Trace prefix and subtraction)

x ≤ y ⇔ ∃ z • y = x a z

y − x =̂

{
ιz • y = x a z if x ≤ y

ε otherwise

I trace prefix (x ≤ y): there is a z that extends x to yield y

I trace minus (y − x): if y ≤ x then obtain the difference

21

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Trace prefix laws

Theorem (Trace prefix laws)

(T ,≤) is a partial order (TP1)

ε ≤ x (TP2)

x ≤ x a y (TP3)

x a y ≤ x a z ⇔ y ≤ z (TP4)

Theorem (Trace subtraction laws)

x − ε = x (TS1)

ε− x = ε (TS2)

x − x = ε (TS3)

(x a y)− x = y (TS4)

(x − y)− z = x − (y a z) (TS5)

22

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Generalised Reactive Designs
I redefine healthiness condition R using trace algebra
I define operators in terms of abstract trace behaviours
I reprove the laws of reactive designs in general context
I gives rise to generalised reactive design contracts
I different models support different reactive languages
I e.g. sequences form a trace algebra⇒ Circus
I allows import of law library into specialised theory

23

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Continuous Time Traces
I model for hybrid systems is piecewise continuous functions
I finite number of left-closed/right-open continuous segments
I adapted from the work of (Hayes, 2006)

x

time
0 lt

0
t
1

24

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Mathematical Model

Definition (Timed traces)

TT =̂


f : R≥0 7→ Σ
| ∃ t • dom(f) = [0, t)
∧ t > 0⇒ ∃ I : Roseq

•
(

ran(I) ⊆ [0, t] ∧ {0, t} ⊆ ran(I)
∧
(
∀n < #I − 1 • f cont-on [In , In+1)

))


Roseq =̂ {x : seqR | ∀n < #x − 1 • xn < xn+1}

f cont-on [m,n) =̂ ∀ t ∈ [m,n) • lim
x→t

f (x) = f (t)

I I : a finite sequence of continuous intervals
I Σ: a topological space denoting the continuous state (e.g. Rn)
I continuous variables are projections (lenses) on Σ

25

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Operators

Definition (Timed-trace operators)

f � n =̂ λ x • f (x − n)

end(f) =̂ min(R≥0 \ dom(f))

〈〉 =̂ ∅

f a g =̂ f ∪ (g � end(f))

I f � n shifts f : R 7→ A to the right by n : R
I end(f) obtains the limit point of a trace
I theorem: (TT,a, 〈〉) forms a trace algebra
I key lemma: TT is closed under a

I we have now obtained a model of hybrid reactive processes

26

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Hybrid relational calculus
I kernel language of relational hybrid programs
I augments relational calculus with continuous variables (x)
I linked to discrete copies via coupling invariants
I continuous alphabet: conα(P), discrete alphabet: disα(P)

I operators denoted in terms of hybrid reactive processes

I retain standard relational operators
I composition (;), assignment (x := v), if-then-else etc.

I add continuous evolution operators
I differential algebraic equations — 〈 v̇1 = f1; · · · ; v̇n = fn |B 〉
I pre-emption — P [B]Q
I interval (continuous specification) — dPe

27

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Hybrid relational calculus
I kernel language of relational hybrid programs
I augments relational calculus with continuous variables (x)
I linked to discrete copies via coupling invariants
I continuous alphabet: conα(P), discrete alphabet: disα(P)

I operators denoted in terms of hybrid reactive processes
I retain standard relational operators

I composition (;), assignment (x := v), if-then-else etc.

I add continuous evolution operators
I differential algebraic equations — 〈 v̇1 = f1; · · · ; v̇n = fn |B 〉
I pre-emption — P [B]Q
I interval (continuous specification) — dPe

27

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Hybrid relational calculus
I kernel language of relational hybrid programs
I augments relational calculus with continuous variables (x)
I linked to discrete copies via coupling invariants
I continuous alphabet: conα(P), discrete alphabet: disα(P)

I operators denoted in terms of hybrid reactive processes
I retain standard relational operators

I composition (;), assignment (x := v), if-then-else etc.
I add continuous evolution operators

I differential algebraic equations — 〈 v̇1 = f1; · · · ; v̇n = fn |B 〉
I pre-emption — P [B]Q
I interval (continuous specification) — dPe

27

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Hybrid relational calculus
I kernel language of relational hybrid programs
I augments relational calculus with continuous variables (x)
I linked to discrete copies via coupling invariants
I continuous alphabet: conα(P), discrete alphabet: disα(P)

I operators denoted in terms of hybrid reactive processes
I retain standard relational operators

I composition (;), assignment (x := v), if-then-else etc.
I add continuous evolution operators

I differential algebraic equations — 〈 v̇1 = f1; · · · ; v̇n = fn |B 〉
I pre-emption — P [B]Q
I interval (continuous specification) — dPe

27

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Example 1: Simple Bouncing Ball

Bouncing ball in Modelica

model BouncingBal l
Real p (s t a r t =2 , f i x e d = true) , v (s t a r t =0 , f i x e d = true) ;

equation
der (v) = −9.81 ;
der (p) = v ;
when p <= 0 then

r e i n i t (v , −0.8∗v) ;
end when ;

end BouncingBal l ;

Bouncing ball in hybrid relational calculus

p, v := 2, 0 ;
(〈

ṗ = v ; v̇ = −9.81
〉 [

p ≤ 0
]
v := −v ∗ .8)

)ω

28

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Hybrid denotational semantics

tt , tr ′ − tr

x (t) , tt(t).x

` , end(tt)

P @ τ , {x 7→ tt(τ).x | x ∈ conα(P) \ {t}} † P

I σ † P applies substitution function σ to P

I P @ τ lifts continuous variables to instant τ
I e.g. (x > 1 ∧ y = x · 3) @ τ = (x (τ) > 1 ∧ y(τ) = x (τ) · 3)

I borrowed from timed refinement calculus

29

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Interval operator

dP(τ)e , tr ′ ≥ tr ∧ (∀ t ∈ [0, `) • P(t) @ t)

I cf. Duration Calculus (Zhou, Ravn, and Hanzen, 1993)
I continuous spec: states that P holds on the interval [0, `)

I e.g. d15 < temp ∧ temp ≤ 30e

Theorem (Interval laws)

dP(τ) ∧ Q(τ)e = dP(τ)e ∧ dQ(τ)e
dP(τ) ∨ Q(τ)e v dP(τ)e ∨ dQ(τ)e

dtruee = R1(true)

dfalsee = (tr ′ = tr)

(∀ τ • P(τ)⇒ Q(τ))⇒ dQ(τ)e v dP(τ)e

30

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Hybrid specification

ddPee , dPe ∧ ` > 0 ∧
∧

v∈conα(P)

(
v = v(0) ∧ v ′ = lim

t→`
(v(t))

)
∧IIdisα(P)

I continuous state evolves according to P
I must make non-zero progress to avoid certain Zeno effects
I initial condition for v taken from discrete copy
I final condition for v taken from limit construction

x

time

0 l

x

t
0

t
1

x'

31

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Hybrid specification

ddPee , dPe ∧ ` > 0 ∧
∧

v∈conα(P)

(
v = v(0) ∧ v ′ = lim

t→`
(v(t))

)
∧IIdisα(P)

I continuous state evolves according to P
I must make non-zero progress to avoid certain Zeno effects
I initial condition for v taken from discrete copy
I final condition for v taken from limit construction

x

time

0 l

x

t
0

t
1

x'

31

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Hybrid Evolution

〈
ẋ = F ′(x , ẋ)

∣∣B(x)
〉

, ∃F •
⌈⌈
F ′ has-derivF at τ ∧ x = F(τ) ∧ B(x)

⌉⌉
P [B]Q , (Q 2B @ 03(P ∧ d¬Be)) ∨ ((P ∧ d¬Be ∧ B ′) ; Q)

I differential-algebraic equation: 〈 ẋ = F ′(x , ẋ) |B(x) 〉
I there exists a solution (F) satisfying the ODE and constraint
I pre-emption: P [B]Q

I P evolves until B becomes true, then Q is enabled
I remember: all constructs boil down to constraints on the

continuous trace

32

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Mechanisation in Isabelle/UTP
I based on Multivariate Analysis and HOL-ODE packages
I support for limits, ODEs, DAEs, and their solutions
I solutions can be verified but not generated

33

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Outline

Background

Reactive Systems

Unifying Reactive and Hybrid

Towards Simulink Block Semantics

Conclusion

34

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Recap
I we have presented reactive design contracts
I with an intuitive notion of refinement
I we then generalised the underlying trace semantics
I new model based on piecewise-continuous functions
I and constructed a hybrid relational calculus
I we can now combine these to describe Simulink blocks

35

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Overview
I each block is a parametric reactive design
I parameters are constants and shared wires
I wires are modelled as continuous variables
I blocks constrain the behaviours of the wires
I preconditions prevent erroneous behaviour (e.g. div by zero)
I parallel compose instantiated blocks to give overall diagram
I yields a system of differential and algebraic equations

36

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Simulink blocks (tentative!)

Source(x , v) =̂ [true |- dx = ve | false]

Term(x) =̂ [true |- true | false]

Add(x , y , z) =̂ [true |- dz = x + ye | false]

Gain(x , y , v) =̂ [true |- dy = v · xe | false]

Divide(x , y , z) =̂ [dy 6= 0e |- dz = x/ye | false]

Integrate(x , y , y
0
, r) =̂ x := x0 ; (〈 ẏ = x 〉 [r] x := x0)

ω

InitVal(x , y , v) =̂ [true |- dy = v 2 τ = 0 3 y = xe | false]

Cond(x , y , f) =̂ [true |- dy = f (x)e | false]

I all instances of general pattern: Init ; (Cont [Cond] Disc)ω

37

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Bouncing Ball Example

I from https://uk.mathworks.com/help/simulink/
examples/simulation-of-a-bouncing-ball.html

38

https://uk.mathworks.com/help/simulink/examples/simulation-of-a-bouncing-ball.html
https://uk.mathworks.com/help/simulink/examples/simulation-of-a-bouncing-ball.html

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Translation
I we need to give each wire an identifier in the alphabet
I alphabet: g , v , v0, v1, p, p0, p1 : R and r : B
I diagram described by following parallel composition of blocks:

Source(g ,−9.81) ‖ Integrate(g , v0, v , r) ‖ Gain(v , v1,−0.8)

‖ InitVal(v1, v0, 15) ‖ Integrate(v , p, p
0
, r) ‖ Source(p1, 0)

‖ InitVal(p
1
, p

0
, 10) ‖ Cond(p, r , λ x • x ≤ 0) ‖ Term(p)

I verification requires calculation of pre- and periconditions
I this involves flattening and solving the system of equations

39

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Outline

Background

Reactive Systems

Unifying Reactive and Hybrid

Towards Simulink Block Semantics

Conclusion

40

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Conclusion
I reactive designs facilitate contractual specifications
I Isabelle/UTP provides verification infrastructure
I generalised trace model facilitates hybrid models
I combining these provides denotational foundations for

Simulink
I UTP enables combination of models from different languages

I programming languages (for controller implementation)
I modelling languages (Modelica, SysML etc.)

I enable a multi-disciplinary approach to system design
I could apply to justify optimisations and transformations

41

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Future work
I investigate correct merge predicate for Simulink
I lots more algebraic laws to prove
I alternative trace models (superdense-time?)
I automated flattening of Simulink diagrams
I reasoning about ODEs in Isabelle/HOL (incl. approximations)

I cf. work of Fabian Immler and Johannes Hölzl

I integration of CAS with Isabelle
I static analysis of Simulink diagrams
I combination with existing work with Circus
I unifying with our Modelica semantics

42

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

References
I A. Cavalcanti and J. Woodcock. A Tutorial Introduction to CSP in

Unifying Theories of Programming. PSSE 2004. LNCS 3167.
I S. Foster, B. Thiele, A. Cavalcanti, and J. Woodcock. Towards a

UTP semantics for Modelica. UTP 2016. LNCS 10134.
I S. Foster, F. Zeyda, and J. Woodcock. Unifying heterogeneous

state-spaces with lenses. ICTAC 2016. LNCS 9965.
I Isabelle/UTP. https://github.com/isabelle-utp/utp-main
I F. Immler and J. Hölzl. HOL-ODE. https://www.isa-

afp.org/entries/Ordinary Differential Equations.shtml
I C. Zhou, A. P. Ravn, M. R. Hansen. An extended Duration Calculus

for hybrid real-time systems. Hybrid Systems. LNCS 736. 1993.
I I. J. Hayes, S. E. Dunne, and L. Meinicke. Unifying theories of

programming that distinguish nontermination and abort. MPC 2010.
LNCS 6120. pp. 178–194.

I C. Zhou, J. Wang, A. P. Ravn. A formal description of hybrid
systems. Hybrid Systems III: Verification and Control. LNCS 1066.

I J. He. HRML: a hybrid relational modelling language. QRS 2015.

43

https://github.com/isabelle-utp/utp-main
https://www.isa-afp.org/entries/Ordinary_Differential_Equations.shtml
https://www.isa-afp.org/entries/Ordinary_Differential_Equations.shtml

	Background
	Reactive Systems
	Unifying Reactive and Hybrid
	Towards Simulink Block Semantics
	Conclusion

