INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=LA

INTO-CPS

Isabelle/UTP

A Verification Toolbox for Unifying Theories

Simon Foster Jim Woodcock Kangfeng Ye
{firstname.lastname}@york.ac.uk

University of York, UK

Friday 22" September, 2017

INTO-CPS =2

into-cps.au.dk

into-cps.au.dk

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

VeTSS Project =

INTO-CPS

“Mechanised Assume-Guarantee Reasoning
for Control Law Diagrams via Circus”

AG proof support for discrete time Simulink diagrams
Circus: stateful reactive language extending CSP

use of reactive contracts to specify properties

develop a library of examples and two case studies
mechanised proof support for Simulink in Isabelle/UTP
researcher: Dr. Kangfeng Ye (Randall)

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=

INTO-CPS

Unifying Theories of Programming

» formal semantics framework from Tony Hoare and He Jifeng

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

INTO-CPS

Unifying Theories of Programming

» formal semantics framework from Tony Hoare and He Jifeng
» drives to find theories that unify computational paradigms
» imperative and functional programming
sequential and concurrent computation
data structures and object orientation
real-time and hybrid systems

v VvYyy

R Horizon 2020 3
Programme

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Unifying Theories of Programming %?—?%z

» formal semantics framework from Tony Hoare and He Jifeng
» drives to find theories that unify computational paradigms

» imperative and functional programming
sequential and concurrent computation
data structures and object orientation
real-time and hybrid systems

can we find fundamental laws that characterise their
commonalities and highlight their differences?

v VvYyy

mﬂorimn 2020 3
Programme

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

INTO-CPS

Unifying Theories of Programming

» formal semantics framework from Tony Hoare and He Jifeng
» drives to find theories that unify computational paradigms
» imperative and functional programming
sequential and concurrent computation
data structures and object orientation
real-time and hybrid systems

can we find fundamental laws that characterise their
commonalities and highlight their differences?

> use alphabetised relational calculus as a lingua franca

v VvYyy

» programs-as-predicates: specification + implementation
» link different semantic models (operational, axiomatic etc.)
» build verification tools for various paradigms

mﬂorimn 2020 3
Programme

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

INTO-CPS

Example: Operational Semantics and Hoare Calculus

Definition (Transition Relation)
(01, P1) = (02, P2) £ (01); P1 C (02) ; P

Theorem (Operational Laws)
(0,P) = (p, Q)
(0,P; R) = (p, Q; R)

ocEc
(o,ifc then P else Q)) — (o, P)

SEQ-STEP

COND-TRUE

(0,2 :=v) = (o(z:=0Tfw), IO)

ocEc
(o, while c do P) — (o, P ; while c do P)

ASSIGN

ITER-COPY

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Example: Operational Semantics and Hoare CalculusT=?

INTO-CPS

Definition (Transition Relation)
(01, P1) = (02, P2) £ (o1); P1E {02) ; Pe

Definition (Hoare Calculus)

{r}e{r} = @=rCQ

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=

INTO-CPS

Example: Operational Semantics and Hoare Calculus

Definition (Transition Relation)
(o1, P1) = (02, P2) £ (01); P1 C (02) ; Ps

Definition (Hoare Calculus)

{r}e{r} = @=rCQ

Theorem (Linking)

orEp (01,Q)— (02, II)
{rte{r} < -

» operators are denotations, laws are theorems

» we apply this technique to more complex computational
paradigms, such as concurrent and hybrid systems

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

INTO-CPS Multi-Modelling =

INTO-CPS
[e B - B
b'yz(nlr;(u,) maiees /i /i S
i o feose)] N | e
[y] =¥ [uin(w)] ‘

INtegrated TOolchain for Cyber-Physical Systems

Vision: UTP CPS

Verification Foundations

b=

T

(wr —wy)

[=v [z

Graphical Object
Notations Orientation

Contracts

Hybrid
Systems

State Real-time

Unify

- Horizon 2020
Programme

http://into-cps.au.dk/

INTO-CPS

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=LA

INTO-CPS

Isabelle/UTP

» a verification toolbox for the UTP based on Isabelle/HOL
» relational calculus, proof tactics, and algebraic laws

R Horizon 2020 7
Programme

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Isabelle/UTP -

» a verification toolbox for the UTP based on Isabelle/HOL
relational calculus, proof tactics, and algebraic laws

v

v

define syntax for programs and create verification calculi
via formalisation of semantic “building blocks” (UTP theories)
utilise Isabelle’s powerful proof automation for verification

v

v

u Horizon 2020 7
Programme

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Isabelle/UTP

=,

INTO-CPS
a verification toolbox for the UTP based on Isabelle/HOL
relational calculus, proof tactics, and algebraic laws
define syntax for programs and create verification calculi
via formalisation of semantic “building blocks” (UTP theories)
utilise Isabelle’s powerful proof automation for verification
formalise links between domains using Galois connection
large library of formalised algebraic laws of programming

Horizon 2020 7

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

INTO-CPS

Examples

lemma hoare_ex_1:
"Jtrue}(z := &) < (& >, &y) o, (z := &y){&z =, max,(&x, &y)[."
by (hoare_auto)

lemma hoare_ex_2:

assumes "X > 0" "Y > Q"

shows

"fEx =, «X» A &y =, «Y»}
while —(&x =, &y)
invr & >, 0 A & >, 0 A (gcd,(&x,&y) =, gcd, («X»,«Y»))
do

(x := (&x - &y)) < (& >, &) =0 (y i= (& - &X))

od
{&x =, gcd,(«X», «¥»)[},"

using assms by (hoare_auto, (metis gecd.commute gcd_diffl)+)

mﬂorimn 2020 8
Programme

INtegrated TOolchain for Cyber-Physical Systems

Examples

http://into-cps.au.dk/

=,

INTO-CPS

definition Pay ::
"Pay i j n =
pay. ((«i»,«j»,«n»),) —
((reject. («i») — Skip)
4 «i» =, «j» V «i» ¢, dom,(&accts) V «n» <
({accts[«i»]} :=c (&accts(«ix»), - «n») ;;
{accts[«j»]} :=¢ (&accts(«j»), + «n») ;;
accept. («i») — Skip))"

"index = index = money = action_mdx" where

definition PaySet :: "index = (index x index x money) set" where
[upred_defs]: "PaySet cardhum =

definition AllPay ::
"AllPay cardNum =

"index = action_mdx" where
([(1, i, n) € PaySet cardhum s Pay i j n)"

<, 0 V «n» >, &ccts(«i»), o

{(i,j,k). i < cardNum A j < cardNum A i # j}"

mﬂorimn 2020
Programme

n for Cyber-Physical Systems http://into-cps.au.dk/

Examples

=,

INTO-CPS

theorem money_constant:
assumes "finite cards" "i € cards" "j € cards" "i # j"
shows "[dom,(&accts) =, «cards» I true | sum,($accts) =, sum,($accts’)]c C Pay i j n"

== {* We first calculate the reactive design contract and apply refinement introduction *}
proof (simp add: assms Pay_contract, rule CRD_refine_rdes)

== {* Three proof obligations result for the pre/peri/postconditions. The first requires us to
show that the contract's precondition is weakened by the implementation precondition.
It is because the implementation's precondition is under the assumption of receiving an
input and the money amount constraints. We discharge by first calculating the precondition,
as done above, and then using the relational calculus tactic. *}

from assms
show " [dom,(&accts) =, «cards»]c. =
Z(true, ((pay-(«i», «j», «n»)y)y)) =

[(«i» ¢, dom,(&accts) Vv «n» <, 0 Vv &accts(«i»), <, «n») Vv

«i» €, domy(&accts) A «j» €, dom,(&accts)]s.™ "
by (rel_auto)

Horizon 2020
Programme

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

INTO-CPS

Examples

theorem extChoice_ commute:
assumes "P is NCSP" "Q is NCSP"
shows "P 0 Q =Q O P"
by (rdes_eq cls: assms)

theorem extChoice_assign:
assumes "P is NCSP" "Q is NCSP"
shows "x :=c v ;; (POQ) = (x :=cv ;; P) O (x:=cv;; Q"
by (rdes_eq cls: assms)

theorem stop_seq:
assumes "P is NCSP"
shows "Stop ;; P = Stop"
by (rdes_eq cls: assms)

m Horizon 2020 8
Programme

Examples

Physical Systems

http://into-cps.au.dk/
=

INTO-CPS

definition

"BrakingTrain =
c:accel, c:vel, c:pos :=

= «hormal_deceleration», «max_speed», «0» ;;
({&accel, &vel, &pos} e «train_ode»), until, ($vel” <, 0) ;; c:accel := 0"

theorem braking_train_pos_le:

"($ciaccel” =, 0 A [$pos’ <, 44],) C BrakingTrain" (is "?lhs C ?rhs")
proof -

== {* Solve ODE, replacing it with an explicit solution: @{term train_sol}. *}
have "?rhs =

c:accel, c:vel, cipos = «-1.4», «4,16», «0» ;;

{&accel, &vel, &pos} <, «train_sols(&accel, &vel, &pos) . («time»), untily, ($vel” =, 0) ;
ciaccel := 0"

by (simp only: BrakingTrain_def train_sol)

-- {* Sset up initial values for the ODE solution using assigned variables. *}
also have "... =

{&accel, &vel, &pos} « «train_sol(-1.4,4.16,0) (time)» untily ($vel”

<, 0) ;; c:accel := 0"

=u
by (simp add: assigns_r_comp usubst unrest alpha, literalise, simp)

Horizon 2020
Programme

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

. = 2
Conclusion C=f
» UTP enables a holistic approach to formal semantics

» Isabelle/UTP: computational theories — verification tools

» wide spectrum of paradigms supported

R Horizon 2020 9
Programme

https://www-users.cs.york.ac.uk/~simonf/utp-isabelle/
https://github.com/isabelle-utp/utp-main
mailto:simon.foster@york.ac.uk

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/
=

INTO-CPS

Conclusion

UTP enables a holistic approach to formal semantics
Isabelle/UTP: computational theories — verification tools
wide spectrum of paradigms supported

still much more work to be done

more UTP theories to mechanise (objects, real-time, etc.)
performance and scalability

VeTSS: reasoning about discrete-time Simulink diagrams

Horizon 2020 9

https://www-users.cs.york.ac.uk/~simonf/utp-isabelle/
https://github.com/isabelle-utp/utp-main
mailto:simon.foster@york.ac.uk

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Conclusion g?:%
» UTP enables a holistic approach to formal semantics

» Isabelle/UTP: computational theories — verification tools

» wide spectrum of paradigms supported

» still much more work to be done

» more UTP theories to mechanise (objects, real-time, etc.)

» performance and scalability

» VeTSS: reasoning about discrete-time Simulink diagrams

> Isabelle/UTP: http://www.cs.york.ac.uk/~simonf/utp-isabelle
» GitHub: https://github.com/isabelle-utp/utp-main
» Email: simon.foster@york.ac.uk

https://www-users.cs.york.ac.uk/~simonf/utp-isabelle/
https://github.com/isabelle-utp/utp-main
mailto:simon.foster@york.ac.uk

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/
=

INTO-CPS

References

» C. A. R. Hoare and J. He. Unifying Theories of Programming.

Prentice Hall, 1998

A. Cavalcanti and J. Woodcock. A Tutorial Introduction to CSP in
Unifying Theories of Programming. PSSE 2004. LNCS 3167.

S. Foster, B. Thiele, A. Cavalcanti, and J. Woodcock. Towards a
UTP semantics for Modelica. UTP 2016. LNCS 10134.

S. Foster, F. Zeyda, and J. Woodcock. Unifying heterogeneous
state-spaces with lenses. ICTAC 2016. LNCS 9965.

A. Cavalcanti, P. Clayton, and C. O’Halloran. From control law
diagrams to Ada via Circus. Formal Aspects of Computing,
23(4):465-512, Jul 2011.

Isabelle/UTP. https://github.com/isabelle-utp/utp-main

Horizon 2020 10

https://github.com/isabelle-utp/utp-main

