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UTP in brief
I framework for formulation of denotational semantic models
I based on the idea of programs-as-predicates
I predicates encode the set of observable behaviours
I alphabetised relational calculus – models expressed as relations
I alpha predicates (αP,P) over input, output variables (x / x ′)
I alphabet gives the domain of possible observations

x := v , x ′ = v ∧ y′ = y

P ; Q , ∃ x0 • P[x0/x ′] ∧ Q[x0/x]

P 2 b 3 Q , (b ∧ P) ∨ (¬b ∧Q)

P∗ , νX • P ; X

I avoids fixing a language’s abstract syntax tree
I enables composition of semantic models (via UTP theories)
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Algebraic laws of programs

(P ; Q) ; R = P ; (Q ; R)

P ; false = false ; P = false

(P 2 b 3 Q) ; R = (P ; R)2 b 3(Q ; R)

while b do P = (P ; while b do P)2 b 3 II

P ; Q = ∃ x0 • P[x/x0] ; P[x ′/x0]

(P ∧ b) ; Q = P ; (b′ ∧Q)

II{x,x′}∪A = (x = x ′) ∧ IIA

(x := e ; y := f ) = (y := f ; x := e)(1)

x := e ; P = P[e/x]

(1) x 6= y, x /∈ fv(f ), y /∈ fv(e)
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Predicate model
I predicates modelled as sets of observations: PS

I the observations that satisfy the predicate
I how to model the state space S of these predicates?
I precise mathematical model required for mechanisation etc.
I e.g. bindings (B) describe states as variable valuations

B = {f : Var → Val | ∀ x ∈ dom(f ) • f (x) : xτ}

I but what are the meanings of Var and Val?
I need to fix the syntax of variables and values upfront
I what about naming problems, e.g. α-conversion and aliasing?
I can we reason about S more generically?
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Modelling state with lenses
I lenses as a uniform semantic interface for variables

I represent S as suitable Isabelle types (e.g. records)
I identify variables by the position they occupy in the state
I regions of the state can be variously related
I nameless and spatial representation of variables

I operators for transforming and decomposing a state space
I enable algebraic account of state
I approx. meta-logic operators (fresh variables, substitution)
I from this basis can prove UTP’s fundamental laws
I theory of lenses requires only first-order polymorphic typing
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What is a lens?
I X : V =⇒ S for view type V and (“bigger”) source type S
I allow to focus on V independently of rest of S

V

S

X

I signature consists of two functions:
I get : S → V
I put : S → V → S

I characterised through a number of algebraic laws
I originally created to characterise bidirectional transformations
I example: record lenses
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Lens laws
get (put s v) = v (PutGet)

put (put s v′) v = put s v (PutPut)
put s (get s) = s (GetPut)

I PutGet + GetPut characterise well-behaved lenses
I addition of PutPut characterise very well-behaved lenses

put s (get s′) = s′ (StrongGetPut)

I StrongGetPut characterises bijective lenses
I we add

I weak lenses (PutGet)
I mainly well-behaved lenses (PutGet + PutPut)
I ineffectual lenses



Lens laws
get (put s v) = v (PutGet)

put (put s v′) v = put s v (PutPut)
put s (get s) = s (GetPut)

I PutGet + GetPut characterise well-behaved lenses
I addition of PutPut characterise very well-behaved lenses

put s (get s′) = s′ (StrongGetPut)

I StrongGetPut characterises bijective lenses
I we add

I weak lenses (PutGet)
I mainly well-behaved lenses (PutGet + PutPut)
I ineffectual lenses



Lens laws
get (put s v) = v (PutGet)

put (put s v′) v = put s v (PutPut)
put s (get s) = s (GetPut)

I PutGet + GetPut characterise well-behaved lenses
I addition of PutPut characterise very well-behaved lenses

put s (get s′) = s′ (StrongGetPut)

I StrongGetPut characterises bijective lenses
I we add

I weak lenses (PutGet)
I mainly well-behaved lenses (PutGet + PutPut)
I ineffectual lenses



Lens laws
get (put s v) = v (PutGet)

put (put s v′) v = put s v (PutPut)
put s (get s) = s (GetPut)

I PutGet + GetPut characterise well-behaved lenses
I addition of PutPut characterise very well-behaved lenses

put s (get s′) = s′ (StrongGetPut)

I StrongGetPut characterises bijective lenses

I we add
I weak lenses (PutGet)
I mainly well-behaved lenses (PutGet + PutPut)
I ineffectual lenses



Lens laws
get (put s v) = v (PutGet)

put (put s v′) v = put s v (PutPut)
put s (get s) = s (GetPut)

I PutGet + GetPut characterise well-behaved lenses
I addition of PutPut characterise very well-behaved lenses

put s (get s′) = s′ (StrongGetPut)

I StrongGetPut characterises bijective lenses
I we add

I weak lenses (PutGet)
I mainly well-behaved lenses (PutGet + PutPut)
I ineffectual lenses



Algebraic hierarchy
I formalised using locales in Isabelle

lens

weak-lens

OO

wb-lens

88

mwb-lens

gg

vwb-lens

ff 77

bij-lens

88

ief-lens

gg



Models
I records – each field
I total functions – each domain element
I partial functions (mwb-lens)
I lists (mwb-lens) – each index

I each are potential state models
I e.g. partial functions to model heaps
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Lens composition
I X # Y : identify the source of X with the view of Y
I e.g. view a record field within a field

I definition simply composes the get and put functions
I # is closed under weak-lens, wb-lens, mwb-lens, and vwb-lens
I 1 : S =⇒ S : the (bijective) identity lens

V
1

V
2

S

X
Y

X ; YX ; Y

I 0 : () =⇒ S : the (ineffectual) unit lens
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Lens difference
I how to compare the behaviour of two or more lenses?

I e.g. are two variables (behaviourally) identical?

I lens independence (X ./ Y )
I X ,Y are independent if they view spatially separate regions
I can give this a purely algebraic characterisation
I avoids syntactic aliasing issues
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Lens independence visualised

V1

V2

S
X

Y



Lens independence definition
I lenses X and Y are independent (X ./ Y ) provided

putX (putY s v) u = putY (putX s u) v
getX (putY s v) = getXs
getY (putX s u) = getY s

I for s : S , u : V1, and v : V2
I ./ is symmetric, and irreflexive for effectual lenses

X ./ Y ⇔ Y ./ X
0 ./ X
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Sublens relation
I X is a sublens of Y (X � Y ) if Y ’s view encompasses X ’s

V
1

V
2

S

X

Y

I there exists a “shim” lens Z which allows X to behave like Y

I � is a preorder (reflexive, transitive)
I 0 is the least element, and 1 is the greatest element
I � thus orders the “effect” of a lens on a source
I can induce an equivalence rel on lenses: ≈,� ∩ ⊇L
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Sublens relation
I X is a sublens of Y (X � Y ) if Y ’s view encompasses X ’s
I there exists a “shim” lens Z which allows X to behave like Y

X � Y , ∃Z .Z ∈ wb-lens ∧ X = Z # Y

I � is a preorder (reflexive, transitive)
I 0 is the least element, and 1 is the greatest element
I � thus orders the “effect” of a lens on a source
I can induce an equivalence rel on lenses: ≈,� ∩ ⊇L

Theorem (Sublens preserves independence)
If X � Y and Y ./ Z then also X ./ Z



Lens sum
I X ⊕Y parallel composes two independent lenses

I fst : V1 =⇒ V1 ×V2 injects the first component
I snd : V2 =⇒ V1 ×V2 injects the second component

V1

V2

S
X

Y



Lens sum
I X ⊕Y parallel composes two independent lenses

I fst : V1 =⇒ V1 ×V2 injects the first component
I snd : V2 =⇒ V1 ×V2 injects the second component

S

Y

X  Y⊕V1 
x V2

V2

V1 X



Lens sum
I X ⊕Y parallel composes two independent lenses
I fst : V1 =⇒ V1 ×V2 injects the first component

I snd : V2 =⇒ V1 ×V2 injects the second component

fst
L

V
1

x 
V

2

V
1



Lens sum
I X ⊕Y parallel composes two independent lenses
I fst : V1 =⇒ V1 ×V2 injects the first component
I snd : V2 =⇒ V1 ×V2 injects the second component
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Lens sum
I X ⊕Y parallel composes two independent lenses
I fst : V1 =⇒ V1 ×V2 injects the first component
I snd : V2 =⇒ V1 ×V2 injects the second component

X ⊕ 0 ≈ X
X ⊕Y ≈ Y ⊕X X ./ Y

(X ⊕Y )⊕ Z ≈ X ⊕ (Y ⊕ Z ) X ,Y ,Z ./ Y ,Z ,X
X � X ⊕Y

fst # (X ⊕Y ) = X X ./ Y
snd # (X ⊕Y ) = Y X ./ Y

fst ./ snd
fst⊕ snd = 1



Lens sum
I X ⊕Y parallel composes two independent lenses
I fst : V1 =⇒ V1 ×V2 injects the first component
I snd : V2 =⇒ V1 ×V2 injects the second component

X ⊕ 0 ≈ X
X ⊕Y ≈ Y ⊕X X ./ Y

(X ⊕Y )⊕ Z ≈ X ⊕ (Y ⊕ Z ) X ,Y ,Z ./ Y ,Z ,X
X � X ⊕Y

fst # (X ⊕Y ) = X X ./ Y
snd # (X ⊕Y ) = Y X ./ Y

fst ./ snd
fst⊕ snd = 1

I similarity with separation algebra axioms



Summary
I lens composition: X # Y
I identity lens: 1
I unit lens: 0
I sublens: X � Y
I lens equivalence: X ≈ Y
I lens sum: P ⊕Q
I first, second lens: fst, snd
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Alphabetised predicates
I recall our basic predicate model PS
I we augment this with lenses to model the variables
I also variable sets using # for ∪
I alphabets are modelled as Isabelle types (S = α)
I based on previous embedding of the UTP (Feliachi, 2010)

I expressions: (τ, α) uexpr , (α⇒ τ)

I predicates: α upred , (bool, α) uexpr
I relations: (α, β) urel , (α× β) upred
I variables: (τ, α) uvar , (τ =⇒ α)

I predicate operators created by lifting Isabelle/HOL equivalents

JtrueK , λ s.True
JP ∧ QK , λ s. JPK(s) ∧ JQK(s)
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UTP variables
I lens operations model variable manipulations:

x = y  x ≈ y
x 6= y  x ./ y

x  x # fst
x ′  x # snd

I core predicate variable constructs:

JxK , λ s. getx s

J∃ x • PK , (λ s.∃ v.P(putx s v))

J∀ x • PK , (λ s.∀ v.P(putx s v))
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Quantifier laws

Theorem (Cylindric Algebra)

(∃ x • false)⇔ false
P ⇒ (∃ x • P)

(∃ x • (P ∧ (∃ x • Q)))⇔ ((∃ x • P) ∧ (∃ x • Q))

(∃ x • ∃ y • P)⇔ (∃ y • ∃ x • P)

(x = x)⇔ true
(y = z)⇔ (∃ x • y = x ∧ x = z) x ./ y, x ./ z

false⇔
(

(∃ x • x = y ∧ P) ∧
(∃ x • x = y ∧ ¬P)

)
x ./ y

Theorem (Other quantifier laws)

(∃A⊕ B • P) = (∃A • ∃B • P)

(∃B • ∃A • P) = (∃A • P) B � A
(∃ x • P) = (∃ y • Q) x ≈ y
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Fresh variables
I unrestriction: semantic characterisation of fresh variables

I x ]P if P’s observations are independent of lens x

x ]P ⇔ (∀ s ∈ P • ∀ v : V • putx s v ∈ P)

⇔ P = (∃ x.P)

I proven unrestriction laws:

−
0 ]P

x�y y ]P
x ]P

x ]P y ]P x ./ y
(x⊕y) ]P

x ./ y
x ] y

−
x ] true

−
x ] false

x ]P x ]Q
x ]P∧Q

x ]P
x ]¬P

x ∈mwb-lens
x ](∃ x•P)

x ./ y x ]P
x ](∃ y•P)

x ]P
x ](P;Q)

x ′ ]Q
x ′ ](P;Q)
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Substitution
I a substitution (σ : α usubst) is a function on state space α

α usubst , α⇒ α

I identity substitution: id , λ x.x
I update: σ(x 7→s v) for x : (τ, α) uvar, v : (τ, α) uexpr
I substitution application:

σ † P , σ[P]

P[v1 · · · vn/x1 · · · xn ] , [x1 7→ v1 · · · xn 7→ vn ] † P

I some proven laws:

x ∈ mwb-lens
(∃ x • P)[v/x] = (∃ x • P)

x ./ y, y ] v
(∃ y • P)[v/x] = (∃ y • P[v/x])



Laws of programming

Theorem (Unital quantale)
UTP relations form a unital quantale and thus a Kleene algebra
(Armstrong, 2015)

Theorem (Assignment laws)

x := e ; P = P[e/x]

x := e ; x := f = x := f x ] f

x := e ; y := f = y := f ; x := e x ./ y, x ] f , y ] e

x := e ; (P 2 b 3 Q) = (x := e ; P)2 b[e/x]3

(x := e ; Q) 1′ ] b
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Parallel by merge
I P ‖M Q – general scheme for parallelism with merge M

I can use lenses to express division of state space (A)
I i.e. B1 ⊕ B2 ≈ A for disjoint alphabets B1 ./ B2
I merge relation type: M : (A× B1 × B2,A) urel
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Differential equations
I hybrid systems combine computation + continuous dynamics
I we have developed a UTP theory of hybrid relations
I divide state into discrete (x, x ′) and continuous (x)

x = F(x, ẋ, x, y)

I x is a vector of real variables (Rn)
I use lenses to focus on particular continuous variables
I allows to change how dynamics described
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Conclusion
I presented a general scheme for modelling state
I variables become entities in a larger abstract space
I through a theory of lenses and associated algebra
I have generically proved many of the laws of programming
I lenses can unify a variety of state-space models
I are there other applications of the theory?
I need to explore links (e.g. Back’s variable calculus)

I Isabelle/UTP:
github.com/isabelle-utp/utp-main

I Lenses:
../utils/Lenses.thy



Lens quotient
I X /L Y the dual operation of X # Y
I assuming X � Y , chop Y off from the end of X
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Lens quotient
I X /L Y the dual operation of X # Y
I assuming X � Y , chop Y off from the end of X

(X /L Y ) # Y = X
(X # Y ) /L Y = X

(X /L X) = 1
(X /L 1) = X
(0 /L X) = 0

(X ⊕Y ) /L Z = (X /L Z )⊕ (Y /L Z )



Alphabet extrusion and restriction
I describe the extension and contraction of the state space

⊕p : β upred⇒ (β =⇒ α)⇒ α upred
P ⊕p A = {s | getA s ∈ P}

�p : α upred⇒ (β =⇒ α)⇒ β upred
P �p A = {s | createA s ∈ P}

I distributes through most predicate operators

P ⊕p 1 = P �p 1 = P
true⊕p A = true

(P ⊕p A) �p A = P

A ∈ mwb-lens, (A⊕ B) ∈ bij-lens, A ./ B, B ]P
(P �p A)⊕p A = P
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