
Unifying heterogeneous state-spaces with lenses

Simon Foster1, Frank Zeyda2, and Jim Woodcock1

1 University of York
2 Teesside University

ICTAC 2016

25th of October 2016

Table of Contents

Motivation

Lenses

Lens algebra

Alphabetised predicates

Applications

Conclusions

Table of Contents

Motivation

Lenses

Lens algebra

Alphabetised predicates

Applications

Conclusions

UTP in brief
I framework for formulation of denotational semantic models
I based on the idea of programs-as-predicates
I predicates encode the set of observable behaviours
I alphabetised relational calculus – models expressed as relations
I alpha predicates (αP,P) over input, output variables (x / x ′)
I alphabet gives the domain of possible observations

x := v , x ′ = v ∧ y′ = y

P ; Q , ∃ x0 • P[x0/x ′] ∧ Q[x0/x]

P 2 b 3 Q , (b ∧ P) ∨ (¬b ∧Q)

P∗ , νX • P ; X

I avoids fixing a language’s abstract syntax tree
I enables composition of semantic models (via UTP theories)

UTP in brief
I framework for formulation of denotational semantic models
I based on the idea of programs-as-predicates
I predicates encode the set of observable behaviours
I alphabetised relational calculus – models expressed as relations
I alpha predicates (αP,P) over input, output variables (x / x ′)
I alphabet gives the domain of possible observations

x := v , x ′ = v ∧ y′ = y

P ; Q , ∃ x0 • P[x0/x ′] ∧ Q[x0/x]

P 2 b 3 Q , (b ∧ P) ∨ (¬b ∧Q)

P∗ , νX • P ; X

I avoids fixing a language’s abstract syntax tree
I enables composition of semantic models (via UTP theories)

UTP in brief
I framework for formulation of denotational semantic models
I based on the idea of programs-as-predicates
I predicates encode the set of observable behaviours
I alphabetised relational calculus – models expressed as relations
I alpha predicates (αP,P) over input, output variables (x / x ′)
I alphabet gives the domain of possible observations

x := v , x ′ = v ∧ y′ = y

P ; Q , ∃ x0 • P[x0/x ′] ∧ Q[x0/x]

P 2 b 3 Q , (b ∧ P) ∨ (¬b ∧Q)

P∗ , νX • P ; X

I avoids fixing a language’s abstract syntax tree
I enables composition of semantic models (via UTP theories)

Algebraic laws of programs

(P ; Q) ; R = P ; (Q ; R)

P ; false = false ; P = false

(P 2 b 3 Q) ; R = (P ; R)2 b 3(Q ; R)

while b do P = (P ; while b do P)2 b 3 II

P ; Q = ∃ x0 • P[x/x0] ; P[x ′/x0]

(P ∧ b) ; Q = P ; (b′ ∧Q)

II{x,x′}∪A = (x = x ′) ∧ IIA

(x := e ; y := f) = (y := f ; x := e)(1)

x := e ; P = P[e/x]

(1) x 6= y, x /∈ fv(f), y /∈ fv(e)

Algebraic laws of programs

(P ; Q) ; R = P ; (Q ; R)

P ; false = false ; P = false

(P 2 b 3 Q) ; R = (P ; R)2 b 3(Q ; R)

while b do P = (P ; while b do P)2 b 3 II

P ; Q = ∃ x0 • P[x/x0] ; P[x ′/x0]

(P ∧ b) ; Q = P ; (b′ ∧Q)

II{x,x′}∪A = (x = x ′) ∧ IIA

(x := e ; y := f) = (y := f ; x := e)(1)

x := e ; P = P[e/x]

(1) x 6= y, x /∈ fv(f), y /∈ fv(e)

Algebraic laws of programs

(P ; Q) ; R = P ; (Q ; R)

P ; false = false ; P = false

(P 2 b 3 Q) ; R = (P ; R)2 b 3(Q ; R)

while b do P = (P ; while b do P)2 b 3 II

P ; Q = ∃ x0 • P[x/x0] ; P[x ′/x0]

(P ∧ b) ; Q = P ; (b′ ∧Q)

II{x,x′}∪A = (x = x ′) ∧ IIA

(x := e ; y := f) = (y := f ; x := e)(1)

x := e ; P = P[e/x]

(1) x 6= y, x /∈ fv(f), y /∈ fv(e)

Algebraic laws of programs

(P ; Q) ; R = P ; (Q ; R)

P ; false = false ; P = false

(P 2 b 3 Q) ; R = (P ; R)2 b 3(Q ; R)

while b do P = (P ; while b do P)2 b 3 II

P ; Q = ∃ x0 • P[x/x0] ; P[x ′/x0]

(P ∧ b) ; Q = P ; (b′ ∧Q)

II{x,x′}∪A = (x = x ′) ∧ IIA

(x := e ; y := f) = (y := f ; x := e)(1)

x := e ; P = P[e/x]

(1) x 6= y, x /∈ fv(f), y /∈ fv(e)

Predicate model
I predicates modelled as sets of observations: PS

I the observations that satisfy the predicate
I how to model the state space S of these predicates?
I precise mathematical model required for mechanisation etc.
I e.g. bindings (B) describe states as variable valuations

B = {f : Var → Val | ∀ x ∈ dom(f) • f (x) : xτ}

I but what are the meanings of Var and Val?
I need to fix the syntax of variables and values upfront
I what about naming problems, e.g. α-conversion and aliasing?
I can we reason about S more generically?

Predicate model
I predicates modelled as sets of observations: PS
I the observations that satisfy the predicate
I how to model the state space S of these predicates?

I precise mathematical model required for mechanisation etc.
I e.g. bindings (B) describe states as variable valuations

B = {f : Var → Val | ∀ x ∈ dom(f) • f (x) : xτ}

I but what are the meanings of Var and Val?
I need to fix the syntax of variables and values upfront
I what about naming problems, e.g. α-conversion and aliasing?
I can we reason about S more generically?

Predicate model
I predicates modelled as sets of observations: PS
I the observations that satisfy the predicate
I how to model the state space S of these predicates?
I precise mathematical model required for mechanisation etc.
I e.g. bindings (B) describe states as variable valuations

B = {f : Var → Val | ∀ x ∈ dom(f) • f (x) : xτ}

I but what are the meanings of Var and Val?
I need to fix the syntax of variables and values upfront
I what about naming problems, e.g. α-conversion and aliasing?
I can we reason about S more generically?

Predicate model
I predicates modelled as sets of observations: PS
I the observations that satisfy the predicate
I how to model the state space S of these predicates?
I precise mathematical model required for mechanisation etc.
I e.g. bindings (B) describe states as variable valuations

B = {f : Var → Val | ∀ x ∈ dom(f) • f (x) : xτ}

I but what are the meanings of Var and Val?
I need to fix the syntax of variables and values upfront
I what about naming problems, e.g. α-conversion and aliasing?
I can we reason about S more generically?

Modelling state with lenses
I lenses as a uniform semantic interface for variables

I represent S as suitable Isabelle types (e.g. records)
I identify variables by the position they occupy in the state
I regions of the state can be variously related
I nameless and spatial representation of variables

I operators for transforming and decomposing a state space
I enable algebraic account of state
I approx. meta-logic operators (fresh variables, substitution)
I from this basis can prove UTP’s fundamental laws
I theory of lenses requires only first-order polymorphic typing

Modelling state with lenses
I lenses as a uniform semantic interface for variables

I represent S as suitable Isabelle types (e.g. records)
I identify variables by the position they occupy in the state
I regions of the state can be variously related
I nameless and spatial representation of variables

I operators for transforming and decomposing a state space
I enable algebraic account of state
I approx. meta-logic operators (fresh variables, substitution)
I from this basis can prove UTP’s fundamental laws
I theory of lenses requires only first-order polymorphic typing

Modelling state with lenses
I lenses as a uniform semantic interface for variables

I represent S as suitable Isabelle types (e.g. records)
I identify variables by the position they occupy in the state
I regions of the state can be variously related
I nameless and spatial representation of variables

I operators for transforming and decomposing a state space
I enable algebraic account of state
I approx. meta-logic operators (fresh variables, substitution)
I from this basis can prove UTP’s fundamental laws
I theory of lenses requires only first-order polymorphic typing

Table of Contents

Motivation

Lenses

Lens algebra

Alphabetised predicates

Applications

Conclusions

What is a lens?
I X : V =⇒ S for view type V and (“bigger”) source type S
I allow to focus on V independently of rest of S

V

S

X

I signature consists of two functions:
I get : S → V
I put : S → V → S

I characterised through a number of algebraic laws
I originally created to characterise bidirectional transformations
I example: record lenses

What is a lens?
I X : V =⇒ S for view type V and (“bigger”) source type S
I allow to focus on V independently of rest of S
I signature consists of two functions:

I get : S → V
I put : S → V → S

I characterised through a number of algebraic laws

I originally created to characterise bidirectional transformations
I example: record lenses

What is a lens?
I X : V =⇒ S for view type V and (“bigger”) source type S
I allow to focus on V independently of rest of S
I signature consists of two functions:

I get : S → V
I put : S → V → S

I characterised through a number of algebraic laws
I originally created to characterise bidirectional transformations
I example: record lenses

(| forename : String, surname : String, age : Int |)

What is a lens?
I X : V =⇒ S for view type V and (“bigger”) source type S
I allow to focus on V independently of rest of S
I signature consists of two functions:

I get : S → V
I put : S → V → S

I characterised through a number of algebraic laws
I originally created to characterise bidirectional transformations
I example: record lenses

(| forename : String︸ ︷︷ ︸
lens 1

, surname : String︸ ︷︷ ︸
lens 2

, age : Int︸ ︷︷ ︸
lens 3

|)

What is a lens?
I X : V =⇒ S for view type V and (“bigger”) source type S
I allow to focus on V independently of rest of S
I signature consists of two functions:

I get : S → V
I put : S → V → S

I characterised through a number of algebraic laws
I originally created to characterise bidirectional transformations
I example: record lenses

(| forename : String, surname : String︸ ︷︷ ︸
lens 4

, age : Int |)

Lens laws
get (put s v) = v (PutGet)

put (put s v′) v = put s v (PutPut)
put s (get s) = s (GetPut)

I PutGet + GetPut characterise well-behaved lenses
I addition of PutPut characterise very well-behaved lenses

put s (get s′) = s′ (StrongGetPut)

I StrongGetPut characterises bijective lenses
I we add

I weak lenses (PutGet)
I mainly well-behaved lenses (PutGet + PutPut)
I ineffectual lenses

Lens laws
get (put s v) = v (PutGet)

put (put s v′) v = put s v (PutPut)
put s (get s) = s (GetPut)

I PutGet + GetPut characterise well-behaved lenses
I addition of PutPut characterise very well-behaved lenses

put s (get s′) = s′ (StrongGetPut)

I StrongGetPut characterises bijective lenses
I we add

I weak lenses (PutGet)
I mainly well-behaved lenses (PutGet + PutPut)
I ineffectual lenses

Lens laws
get (put s v) = v (PutGet)

put (put s v′) v = put s v (PutPut)
put s (get s) = s (GetPut)

I PutGet + GetPut characterise well-behaved lenses
I addition of PutPut characterise very well-behaved lenses

put s (get s′) = s′ (StrongGetPut)

I StrongGetPut characterises bijective lenses
I we add

I weak lenses (PutGet)
I mainly well-behaved lenses (PutGet + PutPut)
I ineffectual lenses

Lens laws
get (put s v) = v (PutGet)

put (put s v′) v = put s v (PutPut)
put s (get s) = s (GetPut)

I PutGet + GetPut characterise well-behaved lenses
I addition of PutPut characterise very well-behaved lenses

put s (get s′) = s′ (StrongGetPut)

I StrongGetPut characterises bijective lenses

I we add
I weak lenses (PutGet)
I mainly well-behaved lenses (PutGet + PutPut)
I ineffectual lenses

Lens laws
get (put s v) = v (PutGet)

put (put s v′) v = put s v (PutPut)
put s (get s) = s (GetPut)

I PutGet + GetPut characterise well-behaved lenses
I addition of PutPut characterise very well-behaved lenses

put s (get s′) = s′ (StrongGetPut)

I StrongGetPut characterises bijective lenses
I we add

I weak lenses (PutGet)
I mainly well-behaved lenses (PutGet + PutPut)
I ineffectual lenses

Algebraic hierarchy
I formalised using locales in Isabelle

lens

weak-lens

OO

wb-lens

88

mwb-lens

gg

vwb-lens

ff 77

bij-lens

88

ief-lens

gg

Models
I records – each field
I total functions – each domain element
I partial functions (mwb-lens)
I lists (mwb-lens) – each index

I each are potential state models
I e.g. partial functions to model heaps

Models
I records – each field
I total functions – each domain element
I partial functions (mwb-lens)
I lists (mwb-lens) – each index
I each are potential state models
I e.g. partial functions to model heaps

Table of Contents

Motivation

Lenses

Lens algebra

Alphabetised predicates

Applications

Conclusions

Lens composition
I X # Y : identify the source of X with the view of Y
I e.g. view a record field within a field

I definition simply composes the get and put functions
I # is closed under weak-lens, wb-lens, mwb-lens, and vwb-lens
I 1 : S =⇒ S : the (bijective) identity lens

V
1

V
2

S

X
Y

X ; YX ; Y

I 0 : () =⇒ S : the (ineffectual) unit lens

Lens composition
I X # Y : identify the source of X with the view of Y
I e.g. view a record field within a field
I definition simply composes the get and put functions

I # is closed under weak-lens, wb-lens, mwb-lens, and vwb-lens
I 1 : S =⇒ S : the (bijective) identity lens
I 0 : () =⇒ S : the (ineffectual) unit lens

Lens composition
I X # Y : identify the source of X with the view of Y
I e.g. view a record field within a field
I definition simply composes the get and put functions
I # is closed under weak-lens, wb-lens, mwb-lens, and vwb-lens

I 1 : S =⇒ S : the (bijective) identity lens
I 0 : () =⇒ S : the (ineffectual) unit lens

Lens composition
I X # Y : identify the source of X with the view of Y
I e.g. view a record field within a field
I definition simply composes the get and put functions
I # is closed under weak-lens, wb-lens, mwb-lens, and vwb-lens
I 1 : S =⇒ S : the (bijective) identity lens

I 0 : () =⇒ S : the (ineffectual) unit lens

Lens composition
I X # Y : identify the source of X with the view of Y
I e.g. view a record field within a field
I definition simply composes the get and put functions
I # is closed under weak-lens, wb-lens, mwb-lens, and vwb-lens
I 1 : S =⇒ S : the (bijective) identity lens

(X # Y) # Z = X # (Y # Z)

1 # X = X

X # 1 = X

I 0 : () =⇒ S : the (ineffectual) unit lens

Lens composition
I X # Y : identify the source of X with the view of Y
I e.g. view a record field within a field
I definition simply composes the get and put functions
I # is closed under weak-lens, wb-lens, mwb-lens, and vwb-lens
I 1 : S =⇒ S : the (bijective) identity lens

(X # Y) # Z = X # (Y # Z)

1 # X = X

X # 1 = X

I 0 : () =⇒ S : the (ineffectual) unit lens

Lens difference
I how to compare the behaviour of two or more lenses?

I e.g. are two variables (behaviourally) identical?

I lens independence (X ./ Y)
I X ,Y are independent if they view spatially separate regions
I can give this a purely algebraic characterisation
I avoids syntactic aliasing issues

Lens difference
I how to compare the behaviour of two or more lenses?
I e.g. are two variables (behaviourally) identical?

I lens independence (X ./ Y)
I X ,Y are independent if they view spatially separate regions
I can give this a purely algebraic characterisation
I avoids syntactic aliasing issues

Lens difference
I how to compare the behaviour of two or more lenses?
I e.g. are two variables (behaviourally) identical?

I lens independence (X ./ Y)
I X ,Y are independent if they view spatially separate regions
I can give this a purely algebraic characterisation
I avoids syntactic aliasing issues

Lens independence visualised

V1

V2

S
X

Y

Lens independence definition
I lenses X and Y are independent (X ./ Y) provided

putX (putY s v) u = putY (putX s u) v
getX (putY s v) = getXs
getY (putX s u) = getY s

I for s : S , u : V1, and v : V2
I ./ is symmetric, and irreflexive for effectual lenses

X ./ Y ⇔ Y ./ X
0 ./ X

Lens independence definition
I lenses X and Y are independent (X ./ Y) provided

putX (putY s v) u = putY (putX s u) v
getX (putY s v) = getXs
getY (putX s u) = getY s

I for s : S , u : V1, and v : V2

I ./ is symmetric, and irreflexive for effectual lenses

X ./ Y ⇔ Y ./ X
0 ./ X

Lens independence definition
I lenses X and Y are independent (X ./ Y) provided

putX (putY s v) u = putY (putX s u) v
getX (putY s v) = getXs
getY (putX s u) = getY s

I for s : S , u : V1, and v : V2
I ./ is symmetric, and irreflexive for effectual lenses

X ./ Y ⇔ Y ./ X
0 ./ X

Sublens relation
I X is a sublens of Y (X � Y) if Y ’s view encompasses X ’s

V
1

V
2

S

X

Y

I there exists a “shim” lens Z which allows X to behave like Y

I � is a preorder (reflexive, transitive)
I 0 is the least element, and 1 is the greatest element
I � thus orders the “effect” of a lens on a source
I can induce an equivalence rel on lenses: ≈,� ∩ ⊇L

Sublens relation
I X is a sublens of Y (X � Y) if Y ’s view encompasses X ’s
I there exists a “shim” lens Z which allows X to behave like Y

X � Y , ∃Z .Z ∈ wb-lens ∧ X = Z # Y

I � is a preorder (reflexive, transitive)
I 0 is the least element, and 1 is the greatest element
I � thus orders the “effect” of a lens on a source
I can induce an equivalence rel on lenses: ≈,� ∩ ⊇L

Sublens relation
I X is a sublens of Y (X � Y) if Y ’s view encompasses X ’s
I there exists a “shim” lens Z which allows X to behave like Y

X � Y , ∃Z .Z ∈ wb-lens ∧ X = Z # Y

S

V1

X
>>

Z // V2

Y
``

I � is a preorder (reflexive, transitive)
I 0 is the least element, and 1 is the greatest element
I � thus orders the “effect” of a lens on a source
I can induce an equivalence rel on lenses: ≈,� ∩ ⊇L

Sublens relation
I X is a sublens of Y (X � Y) if Y ’s view encompasses X ’s
I there exists a “shim” lens Z which allows X to behave like Y

X � Y , ∃Z .Z ∈ wb-lens ∧ X = Z # Y

I � is a preorder (reflexive, transitive)
I 0 is the least element, and 1 is the greatest element
I � thus orders the “effect” of a lens on a source

I can induce an equivalence rel on lenses: ≈,� ∩ ⊇L

Sublens relation
I X is a sublens of Y (X � Y) if Y ’s view encompasses X ’s
I there exists a “shim” lens Z which allows X to behave like Y

X � Y , ∃Z .Z ∈ wb-lens ∧ X = Z # Y

I � is a preorder (reflexive, transitive)
I 0 is the least element, and 1 is the greatest element
I � thus orders the “effect” of a lens on a source
I can induce an equivalence rel on lenses: ≈,� ∩ ⊇L

Sublens relation
I X is a sublens of Y (X � Y) if Y ’s view encompasses X ’s
I there exists a “shim” lens Z which allows X to behave like Y

X � Y , ∃Z .Z ∈ wb-lens ∧ X = Z # Y

I � is a preorder (reflexive, transitive)
I 0 is the least element, and 1 is the greatest element
I � thus orders the “effect” of a lens on a source
I can induce an equivalence rel on lenses: ≈,� ∩ ⊇L

Theorem (Sublens preserves independence)
If X � Y and Y ./ Z then also X ./ Z

Lens sum
I X ⊕Y parallel composes two independent lenses

I fst : V1 =⇒ V1 ×V2 injects the first component
I snd : V2 =⇒ V1 ×V2 injects the second component

V1

V2

S
X

Y

Lens sum
I X ⊕Y parallel composes two independent lenses

I fst : V1 =⇒ V1 ×V2 injects the first component
I snd : V2 =⇒ V1 ×V2 injects the second component

S

Y

X Y⊕V1
x V2

V2

V1 X

Lens sum
I X ⊕Y parallel composes two independent lenses
I fst : V1 =⇒ V1 ×V2 injects the first component

I snd : V2 =⇒ V1 ×V2 injects the second component

fst
L

V
1

x
V

2

V
1

Lens sum
I X ⊕Y parallel composes two independent lenses
I fst : V1 =⇒ V1 ×V2 injects the first component
I snd : V2 =⇒ V1 ×V2 injects the second component

snd
L

V
1

x
V

2
V

2

Lens sum
I X ⊕Y parallel composes two independent lenses
I fst : V1 =⇒ V1 ×V2 injects the first component
I snd : V2 =⇒ V1 ×V2 injects the second component

X ⊕ 0 ≈ X
X ⊕Y ≈ Y ⊕X X ./ Y

(X ⊕Y)⊕ Z ≈ X ⊕ (Y ⊕ Z) X ,Y ,Z ./ Y ,Z ,X
X � X ⊕Y

fst # (X ⊕Y) = X X ./ Y
snd # (X ⊕Y) = Y X ./ Y

fst ./ snd
fst⊕ snd = 1

Lens sum
I X ⊕Y parallel composes two independent lenses
I fst : V1 =⇒ V1 ×V2 injects the first component
I snd : V2 =⇒ V1 ×V2 injects the second component

X ⊕ 0 ≈ X
X ⊕Y ≈ Y ⊕X X ./ Y

(X ⊕Y)⊕ Z ≈ X ⊕ (Y ⊕ Z) X ,Y ,Z ./ Y ,Z ,X
X � X ⊕Y

fst # (X ⊕Y) = X X ./ Y
snd # (X ⊕Y) = Y X ./ Y

fst ./ snd
fst⊕ snd = 1

I similarity with separation algebra axioms

Summary
I lens composition: X # Y
I identity lens: 1
I unit lens: 0
I sublens: X � Y
I lens equivalence: X ≈ Y
I lens sum: P ⊕Q
I first, second lens: fst, snd

Table of Contents

Motivation

Lenses

Lens algebra

Alphabetised predicates

Applications

Conclusions

Alphabetised predicates
I recall our basic predicate model PS
I we augment this with lenses to model the variables
I also variable sets using # for ∪
I alphabets are modelled as Isabelle types (S = α)
I based on previous embedding of the UTP (Feliachi, 2010)

I expressions: (τ, α) uexpr , (α⇒ τ)

I predicates: α upred , (bool, α) uexpr
I relations: (α, β) urel , (α× β) upred
I variables: (τ, α) uvar , (τ =⇒ α)

I predicate operators created by lifting Isabelle/HOL equivalents

JtrueK , λ s.True
JP ∧ QK , λ s. JPK(s) ∧ JQK(s)

Alphabetised predicates
I recall our basic predicate model PS
I we augment this with lenses to model the variables
I also variable sets using # for ∪
I alphabets are modelled as Isabelle types (S = α)
I based on previous embedding of the UTP (Feliachi, 2010)

I expressions: (τ, α) uexpr , (α⇒ τ)

I predicates: α upred , (bool, α) uexpr
I relations: (α, β) urel , (α× β) upred
I variables: (τ, α) uvar , (τ =⇒ α)

I predicate operators created by lifting Isabelle/HOL equivalents

JtrueK , λ s.True
JP ∧ QK , λ s. JPK(s) ∧ JQK(s)

Alphabetised predicates
I recall our basic predicate model PS
I we augment this with lenses to model the variables
I also variable sets using # for ∪
I alphabets are modelled as Isabelle types (S = α)
I based on previous embedding of the UTP (Feliachi, 2010)

I expressions: (τ, α) uexpr , (α⇒ τ)

I predicates: α upred , (bool, α) uexpr
I relations: (α, β) urel , (α× β) upred
I variables: (τ, α) uvar , (τ =⇒ α)

I predicate operators created by lifting Isabelle/HOL equivalents

JtrueK , λ s.True
JP ∧ QK , λ s. JPK(s) ∧ JQK(s)

UTP variables
I lens operations model variable manipulations:

x = y x ≈ y
x 6= y x ./ y

x x # fst
x ′ x # snd

I core predicate variable constructs:

JxK , λ s. getx s

J∃ x • PK , (λ s.∃ v.P(putx s v))

J∀ x • PK , (λ s.∀ v.P(putx s v))

UTP variables
I lens operations model variable manipulations:

x = y x ≈ y
x 6= y x ./ y

x x # fst
x ′ x # snd

I core predicate variable constructs:

JxK , λ s. getx s

J∃ x • PK , (λ s.∃ v.P(putx s v))

J∀ x • PK , (λ s.∀ v.P(putx s v))

Quantifier laws

Theorem (Cylindric Algebra)

(∃ x • false)⇔ false
P ⇒ (∃ x • P)

(∃ x • (P ∧ (∃ x • Q)))⇔ ((∃ x • P) ∧ (∃ x • Q))

(∃ x • ∃ y • P)⇔ (∃ y • ∃ x • P)

(x = x)⇔ true
(y = z)⇔ (∃ x • y = x ∧ x = z) x ./ y, x ./ z

false⇔
(

(∃ x • x = y ∧ P) ∧
(∃ x • x = y ∧ ¬P)

)
x ./ y

Theorem (Other quantifier laws)

(∃A⊕ B • P) = (∃A • ∃B • P)

(∃B • ∃A • P) = (∃A • P) B � A
(∃ x • P) = (∃ y • Q) x ≈ y

Quantifier laws

Theorem (Cylindric Algebra)

(∃ x • false)⇔ false
P ⇒ (∃ x • P)

(∃ x • (P ∧ (∃ x • Q)))⇔ ((∃ x • P) ∧ (∃ x • Q))

(∃ x • ∃ y • P)⇔ (∃ y • ∃ x • P)

(x = x)⇔ true
(y = z)⇔ (∃ x • y = x ∧ x = z) x ./ y, x ./ z

false⇔
(

(∃ x • x = y ∧ P) ∧
(∃ x • x = y ∧ ¬P)

)
x ./ y

Theorem (Other quantifier laws)

(∃A⊕ B • P) = (∃A • ∃B • P)

(∃B • ∃A • P) = (∃A • P) B � A
(∃ x • P) = (∃ y • Q) x ≈ y

Fresh variables
I unrestriction: semantic characterisation of fresh variables

I x]P if P’s observations are independent of lens x

x]P ⇔ (∀ s ∈ P • ∀ v : V • putx s v ∈ P)

⇔ P = (∃ x.P)

I proven unrestriction laws:

−
0]P

x�y y]P
x]P

x]P y]P x ./ y
(x⊕y)]P

x ./ y
x] y

−
x] true

−
x] false

x]P x]Q
x]P∧Q

x]P
x]¬P

x ∈mwb-lens
x](∃ x•P)

x ./ y x]P
x](∃ y•P)

x]P
x](P;Q)

x ′]Q
x ′](P;Q)

Fresh variables
I unrestriction: semantic characterisation of fresh variables
I x]P if P’s observations are independent of lens x

x]P ⇔ (∀ s ∈ P • ∀ v : V • putx s v ∈ P)

⇔ P = (∃ x.P)

I proven unrestriction laws:

−
0]P

x�y y]P
x]P

x]P y]P x ./ y
(x⊕y)]P

x ./ y
x] y

−
x] true

−
x] false

x]P x]Q
x]P∧Q

x]P
x]¬P

x ∈mwb-lens
x](∃ x•P)

x ./ y x]P
x](∃ y•P)

x]P
x](P;Q)

x ′]Q
x ′](P;Q)

Fresh variables
I unrestriction: semantic characterisation of fresh variables
I x]P if P’s observations are independent of lens x

x]P ⇔ (∀ s ∈ P • ∀ v : V • putx s v ∈ P)

⇔ P = (∃ x.P)

I proven unrestriction laws:

−
0]P

x�y y]P
x]P

x]P y]P x ./ y
(x⊕y)]P

x ./ y
x] y

−
x] true

−
x] false

x]P x]Q
x]P∧Q

x]P
x]¬P

x ∈mwb-lens
x](∃ x•P)

x ./ y x]P
x](∃ y•P)

x]P
x](P;Q)

x ′]Q
x ′](P;Q)

Substitution
I a substitution (σ : α usubst) is a function on state space α

α usubst , α⇒ α

I identity substitution: id , λ x.x
I update: σ(x 7→s v) for x : (τ, α) uvar, v : (τ, α) uexpr
I substitution application:

σ † P , σ[P]

P[v1 · · · vn/x1 · · · xn] , [x1 7→ v1 · · · xn 7→ vn] † P

I some proven laws:

x ∈ mwb-lens
(∃ x • P)[v/x] = (∃ x • P)

x ./ y, y] v
(∃ y • P)[v/x] = (∃ y • P[v/x])

Laws of programming

Theorem (Unital quantale)
UTP relations form a unital quantale and thus a Kleene algebra
(Armstrong, 2015)

Theorem (Assignment laws)

x := e ; P = P[e/x]

x := e ; x := f = x := f x] f

x := e ; y := f = y := f ; x := e x ./ y, x] f , y] e

x := e ; (P 2 b 3 Q) = (x := e ; P)2 b[e/x]3

(x := e ; Q) 1′] b

Laws of programming

Theorem (Unital quantale)
UTP relations form a unital quantale and thus a Kleene algebra
(Armstrong, 2015)

Theorem (Assignment laws)

x := e ; P = P[e/x]

x := e ; x := f = x := f x] f

x := e ; y := f = y := f ; x := e x ./ y, x] f , y] e

x := e ; (P 2 b 3 Q) = (x := e ; P)2 b[e/x]3

(x := e ; Q) 1′] b

Table of Contents

Motivation

Lenses

Lens algebra

Alphabetised predicates

Applications

Conclusions

Parallel by merge
I P ‖M Q – general scheme for parallelism with merge M

I can use lenses to express division of state space (A)
I i.e. B1 ⊕ B2 ≈ A for disjoint alphabets B1 ./ B2
I merge relation type: M : (A× B1 × B2,A) urel

Parallel by merge
I P ‖M Q – general scheme for parallelism with merge M

I can use lenses to express division of state space (A)
I i.e. B1 ⊕ B2 ≈ A for disjoint alphabets B1 ./ B2
I merge relation type: M : (A× B1 × B2,A) urel

Parallel by merge
I P ‖M Q – general scheme for parallelism with merge M

I can use lenses to express division of state space (A)
I i.e. B1 ⊕ B2 ≈ A for disjoint alphabets B1 ./ B2

I merge relation type: M : (A× B1 × B2,A) urel

Parallel by merge
I P ‖M Q – general scheme for parallelism with merge M

I can use lenses to express division of state space (A)
I i.e. B1 ⊕ B2 ≈ A for disjoint alphabets B1 ./ B2
I merge relation type: M : (A× B1 × B2,A) urel

Differential equations
I hybrid systems combine computation + continuous dynamics
I we have developed a UTP theory of hybrid relations
I divide state into discrete (x, x ′) and continuous (x)

x = F(x, ẋ, x, y)

I x is a vector of real variables (Rn)
I use lenses to focus on particular continuous variables
I allows to change how dynamics described

Table of Contents

Motivation

Lenses

Lens algebra

Alphabetised predicates

Applications

Conclusions

Conclusion
I presented a general scheme for modelling state
I variables become entities in a larger abstract space
I through a theory of lenses and associated algebra
I have generically proved many of the laws of programming
I lenses can unify a variety of state-space models
I are there other applications of the theory?
I need to explore links (e.g. Back’s variable calculus)

I Isabelle/UTP:
github.com/isabelle-utp/utp-main

I Lenses:
../utils/Lenses.thy

Lens quotient
I X /L Y the dual operation of X # Y
I assuming X � Y , chop Y off from the end of X

Lens quotient
I X /L Y the dual operation of X # Y
I assuming X � Y , chop Y off from the end of X

V
1

V
2

S

X

Y

Lens quotient
I X /L Y the dual operation of X # Y
I assuming X � Y , chop Y off from the end of X

V
1

V
2X /L Y

Lens quotient
I X /L Y the dual operation of X # Y
I assuming X � Y , chop Y off from the end of X

(X /L Y) # Y = X
(X # Y) /L Y = X

(X /L X) = 1
(X /L 1) = X
(0 /L X) = 0

(X ⊕Y) /L Z = (X /L Z)⊕ (Y /L Z)

Alphabet extrusion and restriction
I describe the extension and contraction of the state space

⊕p : β upred⇒ (β =⇒ α)⇒ α upred
P ⊕p A = {s | getA s ∈ P}

�p : α upred⇒ (β =⇒ α)⇒ β upred
P �p A = {s | createA s ∈ P}

I distributes through most predicate operators

P ⊕p 1 = P �p 1 = P
true⊕p A = true

(P ⊕p A) �p A = P

A ∈ mwb-lens, (A⊕ B) ∈ bij-lens, A ./ B, B]P
(P �p A)⊕p A = P

	Motivation
	Lenses
	Lens algebra
	Alphabetised predicates
	Applications
	Conclusions

