INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=

INTO-CPS

Verification with Automated Reasoning

Simon Foster

Monday 6" March, 2017

INTO-CPS =2

into-cps.au.dk

http://into-cps.au.dk
into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Outline g;o_;s
Motivation

Automated Reasoning and Isabelle

Verification by Unifying Theories of Programming

RSN Horizon 2020 2
Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=

INTO-CPS

Outline

Motivation

S Horizon 2020 3
|Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

What is automated reasoning? g%,f
» natural language can have ambiguities and imprecision

» formal logic: a branch of mathematics that explores
construction of propositions, theorems, and proofs

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

INTO-CPS

What is automated reasoning?

» natural language can have ambiguities and imprecision

» formal logic: a branch of mathematics that explores
construction of propositions, theorems, and proofs

time € {23:30...04:00} = dark
Ve:Nedy:Ney >z
Vi,y: Qez<y= F2z:Qez<zAz<y)

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/
=

INTO-CPS

What is automated reasoning?

>

>

natural language can have ambiguities and imprecision

formal logic: a branch of mathematics that explores
construction of propositions, theorems, and proofs

time € {23:30...04:00} = dark
Ve:Nedy:Ney >z
Vi,y: Qez<y=(F2z:Qez<zAz<y)

allow to precisely form properties, as in Z and Circus
prove (or falsify) properties using formal deduction rules
theorem provers allow to (partially) automate this process
apply to formally verify models and programs

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/
- =
Why theorem proving? C=f

» model checkers like FDR4 struggle with data structures
and infinite state systems

» it is thus difficult to model check Circus
» state explosion problem — limit on the number of states

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Why theorem proving? %T—Zf:?i

model checkers like FDR4 struggle with data structures
and infinite state systems

it is thus difficult to model check Circus

state explosion problem — limit on the number of states
theorem provers allow to tackle problems symbolically

no explicit representation of the state

e.g. “the current state has x > 5 and x < 10”
complementary to model checking: not quite “push button”

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Cyber-Physical Systems (CPSs)

>

>

>

=,

INTO-CPS
current “hot topic” in computer science research

combine discrete computation (cyber-) with physical world
interract with environment using sensors and actuators

a controller makes decisions about behaviour

can communicate with other systems via a network

e.g. automated driverless cars

INTO-CPS explores modelling and verification of CPS

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/
=t

INTO-CPS

Agricultural Robot

» example: Robotti agricultural robot (http://agrointelli.com/)

R Horizon 2020 7
Programme

http://into-cps.au.dk
http://agrointelli.com/
https://www.youtube.com/watch?v=ErvVxOLp8SY
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/
=

INTO-CPS

Agricultural Robot

» example: Robotti agricultural robot (http://agrointelli.com/)

» immersive simulation and design space exploration

m Horizon 2020 8
Programme

http://into-cps.au.dk
http://agrointelli.com/
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Agricultural Robot =2

INTO-CPS

» example: Robotti agricultural robot (http://agrointelli.com/)

http://into-cps.au.dk
http://agrointelli.com/
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Verifying CPSs =

» such systems are complex to model and verify

» controller specified using a discrete notation like Circus
» environment modelled by differential equations

» very large state-space

» complex reasoning about real-numbers (R)

» not simply infinite state, but uncountably infinite

» theorem proving thus an essential verification technique

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Outline =t

INTO-CPS

Automated Reasoning and Isabelle

S Horizon 2020 11
|Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Formal Proof §§’%§
» conjecture: under some assumptions, a formula is true

» e.g. “assuming z > 0 then z is a natural number”

» proof shows how to derive conclusion from assumptions

» by application of existing theorems and deduction rules

» analogy with function mapping inputs to outputs

» turns a conjecture into a theorem (or lemma)

» theorem provers and proof assistants aid us in this process

mﬂoﬁmn 2020 12
Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

INTO-CPS

Yes + Proof
Conjecture —»{ ATP —>£: No + Counterexample

vx. 3y. P(x,y) 1
'- - » Nothing (runs forever)

Automated Theorem Provers

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

INTO-CPS

Yes + Proof
Conjecture —»1 ATP —>£: No + Counterexample

vx. y. P(x,y) 1
'- - » Nothing (runs forever)

Automated Theorem Provers

v

can also use SMT solvers to prove arithmetic theorems etc.
usually limited to first-order logic

e.g. in general cannot handle induction

induction required for proofs about failures-divergences

» thus we also need Interactive Theorem Proving

v

v

v

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

INTO-CPS

Isabelle/HOL

2260
&P

http://isabelle.in.tum.de

» an interactive theorem prover for Higher Order Logic (HOL)
» HOL = a functional specification language

» similarities to both Z and Haskell

» supports data structures, recursive functions, relations etc.
» allows readable proofs in “natural deduction” style

» large online library of formalised mathematics'

» support for verified code generation

» verification tools for Circus in progress

'Archive of Formal Proofs. http:/afp.sf.net

mﬂoﬁmn 2020 14
Programme

http://into-cps.au.dk
http://isabelle.in.tum.de
http://afp.sf.net
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/
=

INTO-CPS

Proof in Isabelle

» an Isabelle proof is a script that acts on a proof state

Conjecture proof proof
(goal) Proof tactic tactic(s)
— P No subgoals!

State

» “divide and conquer” approach to proof
» uses proof tactics to subdivide and eliminate proof goals

“ Horizon 2020 15
Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

INTO-CPS

Proof in Isabelle

» an Isabelle proof is a script that acts on a proof state

Conjecture proof || proof proof

(goal) " | Proof |tactic || proof | tactic |l Proof | factic(s)

—P P No subgoals!
State State State 9

» “divide and conquer” approach to proof

» uses proof tactics to subdivide and eliminate proof goals
» simp — perform equational simplification (1 + 2 ~~ 3)

blast and auto — automated deduction

sledgehammer — call external ATPs to find a proof

nitpick — try to find a counterexample

v vy

mﬂoﬁmn 2020 15
Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

INTO-CPS

Proof in Isabelle

» an Isabelle proof is a script that acts on a proof state

Conjecture proof || proof proof

(goal) " | Proof |tactic || proof | tactic |l Proof | factic(s)

—P P No subgoals!
State State State 9

» “divide and conquer” approach to proof

» uses proof tactics to subdivide and eliminate proof goals
» simp — perform equational simplification (1 + 2 ~~ 3)

blast and auto — automated deduction

sledgehammer — call external ATPs to find a proof

nitpick — try to find a counterexample

» proof as a game where the winning condition is QED

mﬂoﬁmn 2020 15
Programme

v vy

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/
=

INTO-CPS

An aside

2Tobias Nipkow. Teaching Semantics with a Proof Assistant

Hﬂoﬁmn 2020 16
Programme

http://into-cps.au.dk
https://www21.in.tum.de/~nipkow/pubs/vmcai12.pdf
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=

INTO-CPS

Demo 1: Isabelle proof goals

theorem ex1l: "(1::int) + 2 = 3"
by simp

theorem ex2:

assumes "P A R" "P — Q"

shows "Q"

using assms by simp
theorem ex3: "V x::nat. dy. y > x"
oops

theorem ex4: "3 x::nat. ¥y. y > x"
oops

S Horizon 2020 17
Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=

INTO-CPS

Demo 2: Isabelle functions and theorems

datatype 'a seq = Nil | Cons 'a "'a seq"

fun length :: "'a seq = nat" ("# " [999] 999) where
"#(Nil) = o"

"#(Cons x xs) = #xs + 1"

fun append :: "'a seq = ‘'a seq = 'a seq" (infixr "@" 65) where
"Nil @ xs = xs"

"(Cons x xs) @ ys = Cons x (xs @ ys)"

theorem length_append: "#(xs @ ys) = #xs + #ys"
proof (induct xs)
case Nil
then show ?case by simp
next
case (Cons x1 xs)
then show ?case by simp
qed

Horizon 2020 18
Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Outline =t

INTO-CPS

Verification by Unifying Theories of Programming

RSN Horizon 2020 19
|Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=

INTO-CPS

Programs-as-predicates and the UTP

» how do we apply tools like Isabelle to program verification?

20

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

INTO-CPS

Programs-as-predicates and the UTP

» how do we apply tools like Isabelle to program verification?
» UTP: encode programs as logical predicates
» allows to combine specifications and programs (as in Z)

“ Horizon 2020 20
Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

=,

INTO-CPS

Programs-as-predicates and the UTP

» how do we apply tools like Isabelle to program verification?
» UTP: encode programs as logical predicates
» allows to combine specifications and programs (as in Z)

r:=v 2 2'=vAy =y

P;Q = Jap e Pla/a'] A Qlap /]
PIb>Q = (bAP)V(=bAQ)
whilebdoP 2 pX e ((P;X)<bl>II)

Hﬂoﬁmn 2020 20
Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

. = 2
Programs-as-predicates and the UTP C=f
how do we apply tools like Isabelle to program verification?
UTP: encode programs as logical predicates

allows to combine specifications and programs (as in Z)

v

v

v

zi=v £ =vAy =y

P;Q = Jap e Pla/a'] A Qlap /]
PIb>Q = (bAP)V(=bAQ)
whilebdoP 2 X e ((P; X)<1bD> IT)

v

encoding programs in this way allows us to verify them
» program refinement: Spec C Impl < (Vv e Impl= Spec)
» |sabelle/UTP — automated reasoning for UTP

mﬂoﬁmn 2020 20
Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

Physical Systems

Demo 3: Library in UTP

type_synonym book = string

alphabet library =
books :: "book set"
loans :: "book set"
abbreviation "Books = {''War and Peace''
,''Pride and Prejudice''
,''Les Miserables''}"

definition InitLibrary :: "library prog" where
[upred_defs]l: "InitLibrary = true I, books, loans := «Books», {},"

definition InitLibraryAlt :: "library prog" where

http://into-cps.au.dk/
=,

INTO-CPS

[upred_defs]: "InitLibraryAlt = true -, ($books” =, «Books» A $loans” =, {},)"

lemma InitLibrary_alt_same: "InitLibrary = InitLibraryAlt"
by (fast_rel_auto)

definition LibraryInvariant :: "library upred" where
[upred_defs]: "LibraryInvariant = (&loans C, &books)"

definition BorrowBook :: "book = library prog" where
[upred_defs]: "BorrowBook(b) = («b» ¢, &loans A «b» &, &books) . loans

2l Horizon 2020
Programme

1= &loans LU, {«b»}"

21

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain fo r-Physical Systems http://into-cps.au.dk/
: = 2
Demo 4: CSP in Isabelle T ="

lemma ExtChoice_comm:
"PO0Q=0Q0FP"
by (unfold extChoice_def, simp add: insert_commute)

lemma ExtChoice_idem:
"P is CSP — P O P = P"
by (unfold extChoice_def, simp add: ExtChoice_single)

lemma ExtChoice_assoc:
assumes "P is CSP" "Q is CSP" "R is CSP"
shows "P O QO R=PO(QOR)"

proof -
have "P O Q O R = Rs(preg(P) - cmtg(P)) O R-(pregr(Q) - cmtgr(Q)) O R;(preg(R) F cmtg(R))"

by (simp add: SRD_reactive_design_alt assms(1) assms(2) assms(3))
also have "... =

R; (((preg P A pregr Q) A preg R) +

(((cmtg P A cmtg Q) < $tr’ =, $tr A $wait” = (cmtg P v cmtg Q) A cmtg R)
a $tr’ =, $tr A $wait” o
((ecmtg P A cmtg Q) < $tr’ =, $tr A $wait” = (cmtg P Vv cmtp Q) Vv cmtg R)))"

by (simp add: extChoice_rdes unrest)

also have "... =

Horizon 2020 22
Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Formal Semantics §;’%§
» failures-divergences is a particular “semantic model”

» but it is just one of many theories of concurrency

» what about other models of concurrency? (e.g. mobility)

» object-orientation?

» real-time systems?

» hybrid systems and differential equations?

» and all combinations of the above?

» multi-paradigm languages are semantically heterogeneous

ﬂ Horizon 2020 23
Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Unifying Theories of Programming %;f},,f
» treat all the different theories as building blocks

» isolate them and study their fundamental laws

» construct foundations for heterogeneous languages

» CyPhyCircus — Circus + support for differential equations

» will enable formal modelling of examples like Robotti

ﬂ Horizon 2020 24
Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Conclusion &T—:f’:oz
» theorem proving is an essential verification technique

» can be used to verify infinite state systems

» requires more input from the user

» however automation is improving all the time

» goal of the UTP is to formalise core computational theories

» Isabelle/UTP — mechanised programming laws

» we are applying it to verifying Cyber-Physical Systems

mﬂoﬁmn 2020 25
Programme

http://into-cps.au.dk
https://ec.europa.eu/programmes/horizon2020/

INtegrated TOolchain for Cyber-Physical Systems http://into-cps.au.dk/

Interested? %ﬁ%
» |Isabelle/UTP: https://github.com/isabelle-utp/utp-main
» Projects:

» Integrating Theorem Proving and Computer Algebra Systems
(simonf.isabelle-cas)

» Mechanising the refinement calculus in Isabelle/UTP
(simonf.refine-calc)

» Automatic Translation from CSPm into Isabelle/UTP (zeyda.01)

» Compositional analysis of interacting state machines for robotic
applications (ahm504.02)

» Formal refinement for a state-rich process algebra in Isabelle/HOL
(ahm504.03)

» Refinement support for a state-rich process algebra in Eclipse
(ahm504.04)

mﬂoﬁmn 2020 26
Programme

http://into-cps.au.dk
https://github.com/isabelle-utp/utp-main
https://www.cs.york.ac.uk/projects/allocation/project/simonf.isabelle-cas/
https://www.cs.york.ac.uk/projects/allocation/project/simonf.refine-calc/
https://www.cs.york.ac.uk/projects/allocation/project/zeyda.01/
https://www.cs.york.ac.uk/projects/allocation/project/ahm504.02/
https://www.cs.york.ac.uk/projects/allocation/project/ahm504.03/
https://www.cs.york.ac.uk/projects/allocation/project/ahm504.04/
https://ec.europa.eu/programmes/horizon2020/

	Motivation
	Automated Reasoning and Isabelle
	Verification by Unifying Theories of Programming

