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Abstract—The memory pool (mempool) plays a key role in
processing and disseminating live transactions over the Bitcoin
network. However, rising transaction loads and spam attacks
significantly increase the mempool memory consumption which
leads to dropped transactions, processing delays, and spikes in
transaction fees, and exposes the network to sophisticated attacks.
We present Cuckoo’s Nest, a novel lightweight mempool design
which provides resilience against spam attacks and contributes to
the overall health of the network. Cuckoo’s Nest reimagines the
transaction pool using probabilistic data structures to fingerprint
and forward live transactions. We implement Cuckoo’s Nest in
C++ and benchmark it using a unique 90-day Bitcoin transaction
dataset. Our solution processes 300 MB worth of transaction load
with only 12MB RAM consumption with 99.999% fidelity and
at three times the computational efficiency of the Bitcoin Core
client. Cuckoo’s Nest is an effective and efficient solution for
lightweight and IoT-based Bitcoin clients; it does not require a
hard fork; and its key design features can be adapted to other
cryptocurrencies.

Index Terms—cryptocurrency, Bitcoin, mempool, optimization,
spam, denial-of-service

I. INTRODUCTION

Bitcoin reigns the cryptocurrency landscape with over 56%
market dominance and a compound annual growth rate of
63% [1]. Approximately 52% of institutional investors have
reported holdings involving Bitcoin [2].

Bitcoin, however, continues to face various scalability and
security challenges. One such concern is increasing transaction
loads and spam attacks. These factors cause congestion in
the Bitcoin transaction pool, referred to as the mempool. The
mempool indexes unconfirmed or pending transactions in local
memory (RAM) instead of disk for inventory and network-
wide propagation. The mempool uses map data structures to
organize transactions, resulting in memory usage of several
hundred megabytes, typically three times the raw transaction
size [3].

Mempool congestion correlates with network-wide spikes in
transaction fees, delayed or dropped transactions, and also ren-
ders the Bitcoin network vulnerable to more complex attacks.
Moreover, the growing transaction loads add considerably to
the resource costs of operating Bitcoin nodes. Unlike Bitcoin
miners, node operators are not financially incentivized to
contribute resources to the Bitcoin network, and increasing
costs can have a discouraging effect on their participation, and
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thereby the overall footprint size and decentralization level of
the Bitcoin network.

Spam and dust attacks targeting the mempool pose a more
dire threat [4]. Numerous spam and congestion incidents
have occurred over the years. In October 2015, a Bitcoin
spam campaign expanded the mempool to 1 GB (88,000
transactions), causing an estimated 10% of Bitcoin nodes to
crash [4]. Dust attacks involve sending minute amounts of
cryptocurrency, known as dust, to numerous wallet addresses,
and are the most common type of spam. Dust attacks have var-
ious purposes including network disruption, advertisements,
criminal activity, and deanonymization attempts [5] [6] [7].
Ethereum [8], Litecoin [9], Solana [10] and BinanceChain [11]
have also experienced severe disruptions due to dust attacks.

To address this issue, researchers have proposed strategies
to identify and evict spam transactions from the mempool.
These metrics are primarily based on transaction age and fee
thresholds that are characteristic of dust transactions [12] [13].
However, these approaches suffer from high false positive
rates, act as inadvertent blacklists, and can lead to denial of
service. Moreover, these solutions do not address the broader
issue of mempool congestion and growing local memory
consumption.

In this paper, we propose Cuckoo’s Nest, a novel solution
to rearchitect the Bitcoin mempool to increase its resilience
to high traffic loads and network spam. Cuckoo’s Nest uses
probabalistic data structures to record live transactions. Our
key insight is that the two key functions of the mempool,
inventory and forwarding may be dissociated. The transaction
inventory function is necessary for mining blocks and is
of interest primarily to miners. Our solution enables other
nodes to prioritize transaction verification and the forwarding
functionality instead. Cuckoo’s Nest is particularly suited to
lightweight clients and IoT devices.

Our solution relies on a construction of sequential cuckoo
filters to fingerprint live transactions instead of storing them
in their entirety. The challenge here was to design our
construction in a way to cater to Bitcoin’s complex rules
for live transactions: namely, devising mechanisms to expire
transactions based on age, for expiry of transaction inputs, for
tracking and limiting double-spends without a deterministic
record, and ensuring resilience to DoS attacks.

Specifically, we make the following contributions:

1) We describe Cuckoo’s Nest, a reimagined mempool con-

struction leveraging time-shifting cascading cuckoo filters
to replicate the Bitcoin mempool’s core functions. With



an overall memory footprint of 12 MB, Cuckoo’s Nest ac-
curately processes 99.999% of transactions over periods
in which the default Bitcoin mempool was observed to
routinely reach 300 MB, even going as high as 1 GB.

2) Cuckoo’s Nest is implemented in C++ and evaluated
using a custom dataset collected over 90 days from an
instrumented Bitcoin node. The dataset was specifically
gathered to assess our scheme. Both the code [14] and
our dataset [15] are publicly available.

3) We evaluate our solution and provide extensive empirical
results in multiple dimensions including security, error
rates, memory usage, and compute time.

Cuckoo’s Nest has some limitations: it does not explicitly
remove spam and thereby does not resolve congestion in
blocks. However, it can easily be integrated with spam filtering
schemes. Our solution also results in false positives, but they
are several orders of magnitude less than those reported for
spam filtering solutions. Moreover, nodes running Cuckoo’s
Nest cannot participate in mining.

On the positive side, Cuckoo’s Nest does not require a hard
fork and being orthogonal to other light clients, can be aggre-
gated with them to maximize benefits. Moreover, the cuckoo
filter approach adopted by Cuckoo’s Nest can be adapted to
other cryptocurrencies. To the best of our knowledge, our work
is the first to fundamentally redesign the mempool itself to
prioritize security, efficiency, and operational costs.

We examine the requisite background in §II, followed by
the proposed scheme in §III. We analyze and discuss empirical
results in §IV. Conluding remarks are given in §VIL.

II. BACKGROUND

In this section we discuss the internals of the Bitcoin Core
mempool, prior work and the mechanism of cuckoo filters.

A. Internals of the Bitcoin Core Mempool

The memory pool (mempool) is an in-memory staging
area where transactions pending confirmation are temporarily
stored. All incoming transactions for a node are verified for
adherence to Bitcoin rules by the mempool and only admitted
if they are valid transactions. The transactions are stored
until they are included in a block (few transactions may
be evicted before inclusion in a block for various reasons
discussed ahead). Valid transactions are advertised to all nodes
but are only broadcast upon request. This allows nodes to
independently verify them and propagate them further within
the Bitcoin network. A transaction is added to the mempool
and advertised only when it is first received.

The mempool may also index transactions, prioritizing
them by fee, size, input age, etc., to aid block proposals.
Transactions in the mempool may also be shared on request
to populate a new node’s mempool.

We briefly describe the Bitcoin mempool and its structure.
Bitcoin mempool utilizes the class CTxMemPoolEntry to
store the raw transaction data such as hash, size, fee, entry
height, coinbase status, scripts, inputs, ancestor and descen-
dant transactions [17]. Transaction metadata (time received,
priority) and indexing data (data structure overhead allowing
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Fig. 2: Bitcoin Core Memory Schematic

efficient lookup and fetch transactions) are stored in the
second class CTxMemPool. CTxMemPool has three com-
ponents: 1) mapTx (boost:: multi index) [18] sorts the
mempool on five criteria: transaction hash, witness-transaction
hash, descendant and ancestor fee rates, and time; 2) map-
NextTx (std::map) [17] tracks the transaction inputs; and
3) mapLinks (std::map) [17] indexes in-mempool ancestor
and descendant transactions data.

The size of the mempool depends on the number of trans-
actions it contains and their individual size, as determined
by the transaction content. CTxMemPool and CTxMem-
poolEntry introduce up to 3 times memory overhead over
the raw data [3]. This overhead in terms of pointers, indexes,
and metadata is necessary for efficient transaction lookup and
retrieval. Fig. 1 shows raw transaction data size, and the
number of transactions in the Bitcoin mempool since August
2023. The mempool, typically 3 times the size of the raw
data, commonly occupies several hundred megabytes in RAM.
The mempool is allocated 300 MB by default [19], but can be
reduced (-maxmempool) or disabled entirely (-blocksonly).

The minimum recommended storage for setting up a Bitcoin
full-node is 2GB RAM and 350GB disk space [20]. As
shown in Fig. 2, key memory components of a Bitcoin Core
node besides the mempool include: partial UTXO set for
transaction validation, memory pool cache for new transactions
awaiting validation, block validation cache to store signature
verification results, block index map for efficient block retrieval
from disk, and network connections data.

B. Prior Work

The concept of light clients was introduced by Satoshi
Nakamoto himself through Simplified Payment Verification
(SPV) clients, which only download block headers and se-
lective transactions to verify payments [21]. Since then, re-
searchers have numerous optimizations that reduce the storage,
memory, computation and communication demands on nodes
while maintaining robust security.



We highlight key proposals for reducing resource con-
sumption in Bitcoin: Efforts to reduce bootstrapping costs
include pruned nodes [22], Non-interactive Proofs of Proof-
of-Work (NIPoPoW) [23], FlyClient [24] and TXCHAIN [25].
Dietcoin [26] and Utreexo [27] aim to compress the UTXO
set. Graphene [28], Erlay [29] and Compact Blocks [30] aim
to reduce data exchanged in the Bitcoin network, while Seg-
regated Witness (SegWit) [31] helped reduce computational
overhead by optimizing transaction signature verification.

The mempool is an area of Bitcoin research that remains
relatively underexplored. Default configurations allocate about
300MB for the Bitcoin mempool [19], however custom
configurations are permitted. Mempool schemes, particularly
concerning spam attacks have been highlighted in various
studies. Bager et al. [4] analyzed a major spam attack on Bit-
coin, identifying mempool vulnerabilities and recommending
transaction evictions or the implementation of a dynamic fee
model similar to Litecoin’s to combat spam.

Boskov et al. [32] introduced the Set Reconciliation-
Enhanced Propagation (SREP) algorithm to reduce bandwidth
usage and speed up transaction pool synchronization using set
reconciliation techniques, operating distributedly outside the
network’s block propagation channels.

Further studies, such as Contra by Saad et al. [12], in-
troduced eviction strategies based on transaction age and
fee thresholds, identifying and removing dust transactions.
Wang et al. [13] developed Anti-dust, a model using Gaussian
distributions to filter out low-value transactions, redirecting
them to a separate dust pool. However, these approaches strug-
gle to balance eviction thresholds; overly strict criteria can
misclassify legitimate transactions as spam, leading to false
positive rates much higher than the 1-2% threshold discussed
by Bager et al [4]. If multiple nodes were to deploy these
filters, they may function as inadvertent blacklists. Attackers
can modify spam transactions to evade filters, while filters lack
dynamic and real-time adaptation to filter spam. Implementing
real-time filters and separate pools for spam transactions,
also incurs computation costs and increased local memory
consumption which remain to be evaluated.

Moreover, solutions such as adopting a fee-per-output pol-
icy, which charges transaction fees based on the number of
outputs rather than just size, require a hard fork to implement.
Similarly, dynamic block sizes, which allow blocks to scale
based on network demand, also necessitate a hard fork, which
can be a contentious process.

Existing approaches focus primarily on identifying and
evicting spam, rather than addressing the broader issue of
mempool congestion and memory consumption. Our approach,
emphasizing mempool resilience to high transaction volumes
without spam filtering, is orthogonal to these strategies. This
enables integration with existing solutions, enhancing Bit-
coin’s scalability and resource efficiency.

Building on Neonpool [33] and Carbyne [34], which used
Bloom filter variants for a memory-efficient transaction pool in
Bitcoin, we extend this work with a detailed study of cuckoo
filter-based mempool construction. Our approach reduces false
positives and negatives with minimal computational expense
while enhancing resilience to DDoS attacks.

C. Cuckoo Filter

A cuckoo filter [35] is a 2D bit matrix. It has a fixed number
of buckets m, where each bucket is further divided into b slots,
and each slot may hold a fixed number of bits f. Such a filter
may hold a maximum of b - m elements, and the number of
elements currently inserted is denoted by n. Hence the load
factor at any time may be calculated by a = n/(b-m).

Cuckoo filters use two independent hash functions: the
fingerprint hash f, and the bucket hash H. These functions
are part of partial-key cuckoo hashing, which identifies the two
buckets where a fingerprint ¢(x) of an item 2 may be stored.
The fingerprint hash determines the item’s fingerprint, while
the bucket hash selects the two candidate buckets 71 and 75 for
storage. If neither has space, one bucket (i1 or is) is chosen
randomly, triggering the recursive cuckoo eviction process.

For the fingerprint function ¢(x) = f.(z), the partial-key
cuckoo hashing is calculated as follows:

i1 XOR ¢(x)

mod m (D
mod m 2)

ia
11 and i denote the indices of the buckets and are limited
to the range of valid buckets from [0, m — 1]. When m is a
power of two, the modulo operation simplifies to a bit-wise
AND, thus leading to greater efficiency on modern hardware.
The partial-key alternative bucket calculation given in Eq. 2
is free of false negatives only when m is a power of two.
Cuckoo filters use f bits to fingerprint each item, and the
minimal fingerprint size for a given false positive rate ¢ and
bucket size b is

f>1+1logyb—log,e 3)

III. PROPOSED SCHEME

In this section, we provide a detailed explanation of our
proposed scheme, Cuckoo’s Nest, which does not necessitate
the storage of complete transactions. Instead, it only stores
transaction fingerprints, effectively disassociating the pro-
cesses of transaction forwarding and inventory management.
Cuckoo’s Nest comprises two primary components. The first,
CuckooTxFilter, utilizes the transaction hash txHash to map
valid entry transactions. The second component, CuckooTx-
InputsFilter, ensures that duplicate or potential double-spend
transactions are identified and discarded.

Here, we describe the transaction entry and exit process for
the Bitcoin Core mempool and Cuckoo’s Nest.

A. Entry

In both Bitcoin Core and Cuckoo’s Nest, a sending node
(Node A) makes a transaction announcement through an inv
message. At the receiving node (Node B), txHash is used to
query the mempool to determine if the transaction already
exists in the mempool. In Cuckoo’s Nest, the txHash is
used to query the CuckooTxFilter. Nodes may receive a
transaction announcement multiple times, but only accept it
the first time they receive it. In both Bitcoin and Cuckoo’s
Nest, if a transaction with the same txHash has already been
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received, it is discarded. If the transaction is determined to be
new, the complete transaction is requested from the sending
node via a transaction message, ensuring that both nodes
eventually converge on a consistent view of the mempool.
Cuckoo’s Nest does not alter the number of round trips
required for mempool synchronization compared to Bitcoin
core. The synchronization protocol is summarized in Fig. 3a.

The transaction is checked for potential double-spends. In
both Bitcoin and Cuckoo’s Nest, each input, comprising the
inputtxHash and index, is scanned for double-spends. Inputs
are validated using the UTXO set, and transactions with invalid
or spent inputs are discarded. It is also checked that none of the
inputs exist in the mempool in Bitcoin. For Cuckoo’s Nest, the
CuckooTxFilter is queried with the tuple <inputtxHash,
index> to ensure the input is not already in the filter. If
any input is found in the mempool or CuckooTxFilter, the
transaction is dropped. If two transactions with the same inputs
are circulating, the first seen by a node is regarded as safe,
while the second is dropped. If any input (parent or ancestor)
is missing, the transaction is added to the orphan pool and will
be re-processed once the ancestor is received. If the transaction
passes verification, it is added to the mempool in Bitcoin
and the CuckooTxFilter and CuckooTxInputsFilter in
Cuckoo’s Nest. Finally, the txHash is relayed to connected
peers. This process is summarized in Fig. 3b.

B. Exit

In Bitcoin Core, transactions are removed from the mem-
pool for various reasons, such as inclusion in a block, limited
pool capacity, transaction expiry, fee priority, replacement
by a newer version with a higher fee, invalid or conflicting
transaction, or chain reorganization at the node.

Similarly, in Cuckoo’s Nest, transactions are removed when
a block arrives, as it contains confirmed transactions that
should be cleared from the mempool. In Bitcoin Core, the
mempool is updated by removing transactions from mapTx,
mapNextTx, and mapLinks, while Cuckoo’s Nest removes
them only from the Cuckoo TxFilter. Transactions needing
removal for reasons other than block inclusion accumulate and
are removed by clearing the filter at periodic intervals. For this
purpose, we cascade an additional filter to CuckooTxFilter
to work in rotation. This configuration enables us to separate
mempool transactions based on age.

We employ two identical cuckoo filters, a primary and a
secondary, working together in rotation, which switch status
after a predefined interval. All queries are directed to the

primary filter first. If a transaction is not present there, then the
secondary filter is queried. Transactions are removed from the
filter that first reports them to be present. However, insertions
only occur into the primary filter. After every predefined
interval, the secondary filter is reset, and status of the two
filters is switched again, effectively simulating transaction
expiry. We implement this mechanism using Bitcoin’s default
14-day expiry, as discussed in detail in § IV-D.

CuckooTxInputsFilter is periodically cleared to avoid
overflow. Batch deletion removes the need to store individual
transaction-input mappings and avoids indivdual deletions.
This process is detailed in §IV-E.

IV. EMPIRICAL RESULTS AND DISCUSSION
A. Methodology, Dataset and Implementation

We record entry and exit transactions in the transaction
pool in JSON format (for the raw transaction structure in
Bitcoin see [36]) to allow us to reconstruct the transaction pool
state at the client. Our data set also includes all transactions
received over the network (for the Bitcoin inventory message
structure see [37]), in CSV format, to help us replay network
activity for simulation purposes. For Bitcoin, we run an instru-
mented version of Bitcoin Core modifying txmempool.cpp,
to capture 30 million unique transactions (around 90 million
transaction announcements over 90 days).

We develop a simulation of the Bitcoin mempool using map
data structures, and of Cuckoo’s Nest using cuckoo filters. We
replay transactions in the data set to reconstruct the Bitcoin
mempool over the 90 days. The simulated Bitcoin mempool
acts as the ground truth, and running it in parallel with
Cuckoo’s Nest helps evaluate how our scheme performs.

We use C++ to implement Cuckoo’s Nest and simulate the
Bitcoin Core mempool. We use the cuckoo filter library by
Efficient Computing at Carnegie Mellon [38] to implement
cuckoo filters. The Cuckoo’s Nest implementation consists
of probabilistic data structures CuckooTxFilter and Cuck-
ooTxInputsFilter. We simulate Bitcoin Core mempool’s
key structures, mapTx, mapNextTx and mapLinks. The
CuckooTxFilter in Cuckoo’s Nest and the mapTx structure
in Bitcoin Core are independently queried at every entry,
inv and exit event in our dataset to check if the relevant
transaction exists in the mempool or not. Due to its probabilis-
tic nature, Cuckoo’s Nest’s CuckooTxFilter will sometimes
deviate from the ground truth and yield false positives and
negatives. Our code [14] and dataset [15] are both publicly
available.



Cuckoo Buckets Slots Hash Finger- False Positive Rate Discarded Transactions Reprocessed Transactions
TxFilter print Theor No Exp With Exp No Expiry = With Expiry No Expiry  With Expiry
m b k f bits Num/(%) Num/(%) Num/(%) Num/(%)
1 MB 262,144 4 2 8 3.13x1072 5.57x1072 4.28x1072 914,608(0.815) 233,879(0.208) 8,070,080(9.11) 959(1.1x10~3)
2 MB 262,144 4 2 16 1.22x10~% 2.80x1072 2.27x102 441,161(0.393)  27.417(0.024) 7,360,622(8.32)  26(2.9x10~5)
4 MB 262,144 4 2 32 1.86x1079 1.94x1073 1.10x107° 206,384(0.184) 1,234(0.001) 5,054,885(5.74) 0(0)

TABLE I: Performance metrics for CuckooTxFilter of various sizes dimensioned for n = 262, 144 transactions

B. Performance Metrics

The responses to mempool queries can be categorized into
a confusion matrix. The outcomes as per event are as follows:
For an entry event the mempool is queried to add a received
transaction: TPy, : the transaction already exists in the pool
and will be discarded; TNep,y: the transaction is new and
will be added to the pool; FP¢uyry: the transaction is new and
should be added to the pool but will erroneously be discarded;
FNentry: the transaction already exists in the pool, but will
erroneously be added again.

For an inv event, the mempool is queried to check if a
transaction is available in the mempool: TP;,: the transaction
already exists in the pool and the full transaction will not
be requested; TNj,,: the transaction is new and the full
transaction will be requested, to add to the pool; FPj,,: the
transaction is new but the full transaction will not be requested,
to be added to the pool; FNj,,: the transaction already exists in
the pool but the full transaction will erroneously be requested,
to add to the pool.

At exit, the mempool is queried to remove a transaction:
TPeyit: the transaction exists and will be removed; TNeyit:
the transaction does not exist and cannot be removed; FPqyit:
the transaction does not exist, and another transaction is
erroneously ‘removed’; FNgy: the transaction exists in the
pool but is erroneously not removed.

Each filter-level outcome has different consequences for
Cuckoo’s Nest performance. False positives at all three events
lead to transactions not being processed, reducing the overall
accuracy of the system. Therefore, the overall false positive
rate (FPR) is a vital metric. Specifically, any false positives at
inventory and entry result in transactions being discarded, and
the rate of discarding needs to be kept low. Regarding false
negatives, any such outcome at inventory (or entry) will cause
unnecessary reprocessing of transactions. False negatives at
exit won’t inflict immediate cost but will eventually increase
the load factor, which may cause more false positives. Based
on these insights, we define performance metrics:

o False Positive Rate (FPR) is a measure of accuracy,

defined as the ratio of the false positives to the total
number of queries (entry, inv and exit).

FPentry + FPinv + FPexit

FPR = - - - .
Queriesentry + Queriesin, + Querieseyit

o Discarded Transactions is a measure of the proportion
of new transactions at entry and inventory that were
erroneously discarded due to false positives.

FPinV + FPentry

Queriesiny + Queriesentry

DiscardedTxs =

e Reprocessed Transactions is a measure of transactions
processed twice due to false negatives at inventory.

FNinv

ReprocessedTxs = ———.
Queries;y,

Note that circulating reprocessed transactions does not
equate to actual double-spends, since nodes in the network,
including Cuckoo’s Nest nodes, will screen incoming blocks
to prevent double-spend.

C. Dimensioning Cuckoo TzFilter

The highest transaction volumes observed to date are around
250,000, as shown in Fig. 1. We choose a maximum trans-
action load of 250,000 as a starting point to dimension
CuckooTxFilter. Using Eq. 3, we derive a starting filter
size of 1MB with 262,144 rows (m, the number of rows,
should be a power of 2 to avoid false negatives [39]), 4
buckets, an 8-bit fingerprint per item, and 2 hash functions.
For comparison, we consider two other filter candidates, sized
at 2MB (medium) and 4 MB (large), with 262,144 rows, 4
buckets, 2 hash functions, and 16 and 32 bits per fingerprint,
respectively. This is summarized in Table 1.

D. Errors and expiry

We replay transactions in our dataset for the three month
period through all filters. Table I shows the average FPR is
highest for the 1 MB filter at 5.57x10~2, reducing marginally
to 2.80x10~2 for a 2MB filter, and further to 1.94x10~3 for
the 4 MB filter. For the 1 MB, 2MB, and 4 MB filters. This
translates to 0.815%, 0.393%, and 0.184% of transactions
being erroneously discarded and 9.1%, 8.3%, and 5.7% of
transactions being reprocessed, respectively. As expected, false
positives and negatives decrease with larger filter sizes.

Figs. 4a—4f depict the number of transactions stored in these
three filters in over time along with the FPR for the entire
three-month period, plus the number of transactions in the
Bitcoin Core mempool, the ground truth in our evaluation. In
all three cases, the number of transactions closely tracks the
pattern in the Bitcoin Core mempool, with an increasing offset.

This offset is due to extra load in the filter from two
main sources: 1) transactions that should have been removed
from the mempool because of age, limited transaction pool
capacity, fee priority, replacement by a newer version that
offers a higher fee, invalid or conflicting transaction or chain
reorganization event at the node, but Cuckoo filters have no
inherent mechanism to track these; 2) false negatives result in
some transactions being erroneously added to the mempool
at entry and some, due to be removed, to persist at exit.
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Fig. 4: Number of transactions in Bitcoin vs Cuckoo’s Nest, Debris transactions and False positive rate

We term these erroneous artifacts debris, which accumulates
over time and corresponds to growing FPR, specially after the
transaction count exceed 262,144, as depicted in Figs. 4a—4c.

Empirical false positive rates are significantly higher than
theoretical, e.g., 2.80x1072 vs. 1.220x10~2 for the 2 MB filter.
First, real deployments often report higher false positives due
to non-ideal hash functions and “clumped” data distribution,
unlike theoretical models that assume perfect hashing and
uniform data spread [35]. Fan et al. confirm that Eq. 3 provides
a lower bound on the FPR [35].

Second, debris rapidly causes transactions in CuckooTx-
Filter to exceed the 262,144 mark it was provisioned for.
With increased load factor, both false positives and negatives
rise. While decent false positive rates or lookup performance
are maintained up to 95% filter occupancy, beyond this,
performance rapidly deteriorates. Boskov et al. [39] show that
at load factors below 80%, the false negatives rate remains near
1%. However, cuckoo filters 95% full lead to up to 10% false
negatives. These false negatives result from cuckoo evictions
to incorrect buckets during inserts. We confirm this effect in
our experiments.

As there is no inherent mechanism to remove debris, we
propose periodically ‘clean up’ the filters: We employ two
identical cuckoo filters, a primary and a secondary, working
together in rotation, which switch status after a predefined
interval, enabling us to separate transactions on the basis of
age. All queries are directed to the primary filter first. If a
transaction is not present there, the secondary filter is queried.
Transactions are removed from the filter that first reports them
to be present. However, insertions only occur into the primary
filter. After every predefined interval, the secondary filter is
reset, and status of the two filters is switched.

We implement this mechanism using Bitcoin’s default 14-
day expiry, as shown in Figs. 4d—4f. The filters first switch
roles on 15 January, followed by expiry events every 14
days starting 29 January, corresponding to sharp drops in
filter transaction numbers. Cuckoo’s Nest now closely follows

CuckooTxInFilter 1 hour 3 hours
Num FPR Num FPR

1 MB 166,338 1.88x1072 41,585 4.7x10~%

2 MB 72,956  8.23x10~% 1,824  2.1x107°

4 MB 72,537  8.18x10~% 1,813 2.0x10=°

TABLE II: CuckooTxInputsFilter, n = 262, 144

Bitcoin Core transaction patterns. Average false positive rates,
discarded, and reprocessed transactions for our three filters
are significantly reduced. The expiry period here ranges from
14-28 days, as a filter is cleared every 28 days.

Table II shows the average FPR is highest for the 1 MB
filter at 4.28x10~2, reducing to 2.270x10~3 for a 2MB filter,
and further to 1.10x10™° for the 4 MB filter. For the 1 MB,
2MB, and 4MB filters this translates to 0.208%, 0.024%,
and 0.001% of transactions being erroneously discarded and
1.1x1073%, 2.9x107°%, and 0% of transactions being repro-
cessed. As expected, false positives and negatives decrease
with larger filter sizes.

E. Cuckoo TzInputsFilter Dynamics

CuckooTxInputsFilter scans inputs of incoming trans-
actions to prevent double-spends as described in §III. The
implications are TPj, 50 a transaction bearing that input was
added to CuckooTx InputsFilter and the new transaction
should be discarded; TNjypy¢s: a transaction bearing that input
does not exist in CuckooTxInputsFilter and the new trans-
action should be added; FPj,pus: @ transaction bearing that
input does not exist in CuckooTxInputsFilter but the new
transaction was erroneously discarded; FINj,,,¢s: @ transaction
bearing that input already exists in CuckooTxInputsFilter,
but the new transaction was erroneously added.

In our dataset, incoming transactions average 40,000 inputs
per hour, peaking at 191,947. We dimension the CuckooTx
InputsFilter for 262,144 transactions, similar to CuckooTx-
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Fig. 5: Memory footprint for Bitcoin Core vs Cuckoo’s Nest

Filter, and reset CuckooTxInputsFilter every hour and
every three hours.

This removes the need to track individual transaction inputs.
With a three-hour reset and CuckooTxInputsFilter sizes
of 1MB, 2MB, and 4 MB, the FPR is 4.7x107%, 2.1x107°,
and 2.0x1076, respectively, as shown in Table II. Thus, an
attacker can resend a transaction with the same input after the
expiry interval. However, since Cuckoo’s Nest maintains com-
plete UTXO information, nodes will reject blocks containing
double-spend transactions.

FE. Memory Footprint

We compare the memory footprint of Cuckoo’s Nest and
Bitcoin Core. Fig. 5 shows the raw transaction size versus the
mempool size over the 3-month experimental period.

Cuckoo’s Nest results are immensely promising: to process
an equivalent transaction volume with 99.999% accuracy,
Cuckoo’s Nest requires only 12MB of memory. The Cuck-
ooTxFilter (4 MBx2) and CuckooTxInputsFilter (4 MB)
discard only 0.001% of transactions, achieving 99.999% ac-
curacy. Users can adjust parameters to balance accuracy and
memory usage.

As baseline, we consider a straightforward mempool op-
timization schemes which uses standard deterministic data
structures such as maps), storing minimum transaction data.
Rudimentary calculations indicate that for transaction valida-
tion, we would need to store the transaction ID (32 bytes),
input hash (32 bytes) and index (4 bytes), amounting to
32 + 36n bytes for each raw transaction where n is the
number of transaction inputs. Memory overhead will be 3
times this value. This approach reduces memory consumption,
but the disadvantages are still significant. It is less resilient to
congestion events and spam attacks, and scales linearly. It is
as limited as Cuckoo’s Nest from an inventory perspective,
i.e., it cannot bootstrap mempools of other nodes.

G. Computation footprint

We next calculate computational overheads. Bitcoin Core
components mapTx, mapNextTx, and mapLinks perform
query, insertion, and deletion in O(logn) time, where n is the
number of stored transactions, corresponding to the internal
nodes of the red—black binary search tree used in the reference
implementation. Counting cuckoo filters in Cuckoo’s Nest

5,000

4,735

£.000 7 HQuery

’ mInsert
3,000 Remove
2,000 1173

97 ¥ 1,158 s
1,000 358 272 489
24 412 -
e §° mapNextTx/ mapTx cuckooTxFilter/
9 maplLinks cuckooTxInputsFilter

Fig. 6: Computation time: Bitcoin Core vs Cuckoo’s Nest

operate in constant time using 2 hashes for query, insertion,
and deletion, regardless of filter cardinality.

As depicted in Fig. 6, we perform benchmarks using an
Intel Core i7 8700 CPU @3.2GHZ x12 and 32GB RAM,
running Ubuntu 18.04 with GCC 5.4.0. We replicate Bitcoin
Core structures mapTx (Boost multi-index), mapNextTx
and mapLinks (C++ STL maps). We use the cuckoo filter
library by Efficient Computing at Carnegie Mellon [38] to
instantiate counting cuckoo filters and perform query, insert
and delete operations, averaging over 1 million iterations.

a) CuckooTzFilter vs. map Tz: Query, insert and
delete operations in mapTx take 358 ns, 4,735 ns, and 272 ns,
respectively, whereas CuckooTxFilter (for £k = 2) re-
quires 412 ns, 644 ns, and 489 ns, respectively. For a complete
transaction life-cycle, mapTx requires 5,365 ns compared to
1,545 ns for CuckooTxFilter.

b) CuckooTzInputFilter vs. mapNextTz: The
query, insert and delete operations for mapLinks and
mapNextTx require 997 ns, 1,173 ns, 1,158 ns, respectively.
CuckooTxInputsFilter takes 412ns and 544 ns, for query
and insert operations, while deletion is replaced by batch
reset. Over the transaction life-cycle, mapTx requires 3,328 ns
compared to 956 ns for CuckooTxInputsFilter.

c¢) mapLinks: Maintaining unconfirmed transaction
chains in mapLinks helps prioritize transactions but is
computation- and memory-intensive, and a potential DDoS
vector. To cap these costs, Bitcoin Core 0.12 introduced a
default policy limiting unconfirmed chains to 25 transactions
and 101kB total size. Cuckoo’s Nest avoids storing these
mappings as explained in §III, eliminating these costs.

Thus, Cuckoo filter-based Cuckoo’s Nest is at least three
times faster than Bitcoin Core mempool.

V. SECURITY ANALYSIS

We assess an adversary’s potential to exploit Cuckoo’s Nest
for DoS attacks via spam, censorship, or other methods:

A. DDoS resilience

We next discuss how Cuckoo’s Nest copes with surge in
transaction loads such as those in spam based DDoS attack.
Our approach, emphasizes the resilience of the mempool to
high transaction volumes without spam filtering, which acts as
an inadvertent blacklist. Cuckoo’s Nest can easily withstand
such an attack by preventively dimensioning a bigger filter
or recursively generating additional cuckoo filters recursively



Transaction count  Bitcoin Core mempool Cuckoo’s Nest

262,144 300 MB 12 MB
524,288 600 MB 24 MB
1,048,576 1200 MB 48 MB

TABLE III: Cuckoo’s Nest amidst DDoS attack

to take the load. Since our approach does not differentiate
between benign/spam transactions, our data set does no in-
clude spam transactions. However, incorporating spam into the
dataset should yield similar results.

a) Preventive Dimensioning: The filters in Cuckoo’s
Nest are proactively dimensioned to handle an abnormal
amount of transactions such as 524,288, over double the
amount of transactions ever witnessed on the Bitcoin network.
Such a filter would be 8 MB in size. The primary filter
holds the first wave, but when overloaded, a secondary filter
activates. The system remains stable, handling the load without
disruption and with minimal errors.

b) Remedial Response: We initialize a counter to track
the total number of transactions. As the transaction count ex-
ceeds the filter capacity of 262,144, recursive filter-generation
kicks in and creates additional filters of the same capacity
and size. These filters expire after a set period, freeing up
space. This method dynamically scales based on load, keeping
memory usage low while maintaining accuracy. As congestion
subsides, additional filters are no longer needed.

The highest mempool volumes have bloated it to around
1 GB, while the highest transaction load is around 250,000.
Table III illustrates the transaction counts, corresponding
memory usage in Bitcoin Core’s mempool, and mem-
ory consumption of Cuckoo’s Nest (2xCuckooTxFilter +
1 x CuckooTxInputsFilter) to withstand these attacks. We
defer empirical evaluation as future work.

B. Adversarial Resilience

Can an adversary craft transaction to inject or censor trans-
actions at individual nodes? Literature shows cuckoo filters
can be efficiently transformed to be adversarially resilient by
applying a pseudo-random permutation of the input [40] [41],
i.e. applying a sufficiently large (128 bit) random salt before
forwarding it to the cuckoo filter. Thus, for an adversary to
trigger a false positive at a specific node, they would need both
the filter’s initialization seed and its current state. Obtaining
the seed is difficult as adversary only has oracle access to
nodes. Nodes can regularly update their seeds (e.g., biweekly).
Thus, adversaries can only broadcast random transactions,
unable to craft transactions that cause false positives.

Can an adversary achieve network-wide injection or cen-
sorship of specific transactions? Each Cuckoo’s Nest node
initializes its filters independently using secret, randomly
generated 128-bit seeds [40]. Given a FPR of 0.0001 per node,
even if an adversary manages to trigger a false positive at one
node, the probability of the same transaction being censored
by two nodes is negligible (0.0001)2. Therefore, adversarial
attempts to target individual nodes do not scale across the
Bitcoin network, and there is no feasible low-cost method for
network-wide transaction censorship.

Thus, the adversary only has oracle access to the cuckoo
filter i.e. does not know its contents or seed. We situate this
assumption within established practices in the cryptocurrency
ecosystem and light client security models as identified by
Chatzigiannis et al. [42]. Further common assumptions that
underpin light client designs like ours, including trusted gene-
sis block, reliable consensus, secure underlying cryptographic
primitives, weak synchrony (i.e. no long network partitions),
trusted setup, peer-to-peer communication for relaying infor-
mation, and rational behaviour of participants.

Can an adversary be successful in a double-spend attack?
Cuckoo’s Nest preserves Bitcoin’s transaction verification and
validation mechanisms. While nodes may forward transactions
with conflicting inputs, they screen blocks to reject double-
spends. Since Cuckoo’s Nest retains full UTXO data, it
rejects blocks with double-spend transactions. Hence, false
negatives in the CuckooTxFilter only cause reprocessing,
not double-spends. Replay transactions are dropped as already
seen transactions will trigger a positive, indicating that the
transaction is already present.

VI. FUTURE WORK AND CONCLUSION

We propose Cuckoo’s Nest, a novel cuckoo filter based de-
sign for the Bitcoin Core mempool that drastically reduces the
mempool memory consumption, reducing the cost of running
a full node, and increasing its reliability and survivability in
the wake of network spam.

Our results thus far are immensely promising: with an
overall memory footprint of 12 MB, Cuckoo’s Nest accurately
processes 99.999% of transactions while Bitcoin Core mem-
pool routinely hits 300-500 MB, and requires at least three
times less computational effort than Bitcoin Core mempool.
We are working on developing a functional prototype for live
deployment and launch a Bitcoin Improvement Proposal.

We foresee some challenges in deployment: a key challenge
is bootstrapping new nodes storing random subsets of trans-
actions in RAM. Our extra analysis shows that if a new node
connects to 4, 8, or 12 Cuckoo’s Nest nodes, each storing
10% of transactions, it can recover 30%, 55%, or 70% of
the mempool, respectively. Other challenges include: mempool
changes affecting layer-2 protocols e.g. Lightning network,
securing consensus among the Bitcoin community, etc.

Cuckoo’s Nest can be adapted for other cryptocurrencies,
but implementation requires significant modifications tailored
to each protocol. For example, adapting it for Bitcoin deriva-
tives like Bitcoin Cash, Bitcoin Gold, Litecoin, and Dogecoin
is relatively straightforward since they follow the UTXO
model. In these cases, only specific parameters—such as
transaction expiration times and cuckoo filter sizes—need
adjustment based on network traffic and block intervals.

In contrast, adapting Cuckoo’s Nest for Ethereum requires
addressing key differences from Bitcoin. Ethereum’s account-
based system relies on state tracking for double-spend preven-
tion, its transaction and transaction pool structure and transac-
tion broadcast protocol differ. This warrants a dedicated study
using Ethereum-specific data. To that end, we are currently
adapting Cuckoo’s Nest for Ethereum.



[6]

[7]

[8

=

[9]
[10]

[11]

[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

REFERENCES

“Cryptocurrency Prices, Charts And Market Capitalizations | CoinMar-
ketCap,” 2024. https://coinmarketcap.com.

Coinweb, “How Many People Hold Bitcoin in 2024? - Coinweb.” https:
/[coinweb.com/trends/how-many-people-hold-bitcoin, 2024.

“The 300 MB default maxmempool Problem.” https://b10c.me/blog/001
-the-300mb-default-maxmempool-problem, Dec. 2017.

K. Bager, D. Y. Huang, D. McCoy, and N. Weaver, “Stressing out:
Bitcoin “‘stress testing”,” in International Conference on Financial
Cryptography and Data Security, pp. 3—18, Springer, 2016.

F. Memoria, “$700 million stuck in 115,000 unconfirmed bitcoin trans-
actions, CCN.” https://www.ccn.com/700-million-stuck-115000-uncon
firmed-bitcoin-transactions/, 2017.

K. Sedgwick, “200,000 Unconfirmed Transactions Pile Up in Another
Crazy Day for Bitcoin.” https://news.bitcoin.com/200000-unconfirme
d-transactions-pile-another-crazy-day-bitcoin/, Dec 2019.

A. Zmudzinski, “Bitcoin’s Mempool Saw an Anomalous Number of Big
Transactions on Friday- Coin Telegraph.” https://cointelegraph.com/ne
ws/bitcoins-mempool-saw-an-anomalous-number-of-big-transactions,
Nov 2019.

B. Dale, “Mempool Manipulation Enabled Theft of 8M in MakerDAO
Collateral on Black Thursday: Report - CoinDesk,” CoinDesk, Jul 2020.
“Litecoin - Open source P2P digital currency.” https:/litecoin.org, 2024.
B. Quarmby, “Solana reportedly hit by DDoS attack, but network
remains online,” Cointelegraph, 12 2021.

“Binance Is Facing Issues with Solana Withdrawals - Financial and
Business News | Finance Magnates,” Dec 2024.

M. Saad, J. Kim, D. Nyang, and D. Mohaisen, “Contra-*: Mechanisms
for countering spam attacks on blockchain memory pools,” arXiv
preprint arXiv:2005.04842, 2020.

Y. Wang, J. Yang, T. Li, F. Zhu, and X. Zhou, “Anti-Dust: A Method
for Identifying and Preventing Blockchain’s Dust Attacks,” in ICISCAE
2018, pp. 274-280, IEEE, 2018.

H. Bhaq, “Cuckoo’s Nest - BTC.” Available on GitHub: https://github
.com/hbhag/CuckoosNestBTC, Mar. 2025.

“Mempool state Bitcoin.” Available on Kaggle: https://www.kaggle.c
om/datasets/mempoolstate/mempool-state-bitcoin, Mar. 2025.
Blockchain.com, “Blockchain charts, Bitcoin mempool.” https://www.bl
ockchain.com/explorer/charts, 2024.

“Txmempool.h, Bitcoin source code, Github.” https://github.com/bitco
in/bitcoin/blob/master/src/txmempool.h, 2024.

“Boost.Multilndex Documentation - Performance.” https://cs.brown.edu
/~jwicks/boost/libs/multi_index/doc/performance.html, 2024.

“P2P Network Guide - memory pool limit - Bitcoin.” https://bitcoin.or
g/en/p2p-network-guide#memory-pool, Oct 2024.

“Running a full-node - Bitcoin.” https://bitcoin.org/en/full-node, 2024.
S. Nakamoto, “Bitcoin p2p e-cash paper,” The Cryptography Mailing
List, 2008.

“Full node - Bitcoin Wiki.” https://en.bitcoin.it/wiki/Full\ _node, 2024.
A. Kiayias, A. Miller, and D. Zindros, “Non-interactive proofs of proof-
of-Work,” in International Conference on Financial Cryptography and
Data Security, pp. 505-522, Springer, 2020.

B. Biinz, L. Kiffer, L. Luu, and M. Zamani, “Flyclient: Super-light
clients for cryptocurrencies,” in 2020 IEEE Symposium on Security and
Privacy (SP), pp. 928-946, 1EEE, 2020.

A. Zamyatin, Z. Avarikioti, D. Perez, and W. J. Knottenbelt, “TxChain:
Efficient Cryptocurrency Light Clients via Contingent Transaction Ag-
gregation,” JACR Cryptol. ePrint Arch., vol. 2020, p. 580, 2020.

D. Frey, M. X. Makkes, P-L. Roman, F. Taiani, and S. Voulgaris,
“Dietcoin: hardening bitcoin transaction verification process for mobile
devices,” Proceedings of the VLDB Endowment (PVLDB), vol. 12,
no. 12, pp. 1946-1949, 2019.

T. Dryja, “Utreexo: A Dynamic Hash-Based Accumulator Optimized for
the Bitcoin UTXO Set.,” JACR Cryptol. ePrint Arch. 2019/611, 2019.
A. P. Ozisik, G. Andresen, B. N. Levine, D. Tapp, G. Bissias, and
S. Katkuri, “Graphene: efficient interactive set reconciliation applied to
blockchain propagation,” in Proceedings of the ACM Special Interest
Group on Data Communication, pp. 303-317, Springer, 2019.

G. Naumenko, G. Maxwell, P. Wuille, A. Fedorova, and I. Beschastnikh,
“Erlay: Efficient transaction relay for bitcoin,” in Proceedings of the
2019 ACM CCS, pp. 817-831, 2019.

M. Corallo, “Compact block relay.”
https://github.com/bitcoin/bips/blob/master/bip-0152.mediawiki, 2016.
E. Lombrozo, J. Lau, and P. Wuille, “Segregated witness (consensus
layer).” BIP 141: https://github.com/bitcoin/bips/blob/master/bip-0141.
mediawiki, 2015.

(32]

[33]

[36]

[37]
[38]

(391

[40]

[41]

[42]

N. Boskov, S. Simsek, A. Trachtenberg, and D. Starobinski, “Srep:
Out-of-band sync of transaction pools for large-scale blockchains,” in
2023 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), pp. 1-9, 2023.

H. Binte Haq, S. T. Ali, A. Salman, P. McCorry, and S. F. Shahan-
dashti, “Neonpool: Reimagining cryptocurrency transaction pools for
lightweight clients and IoT devices.” arXiv preprint arXiv:2412.16217,
2025.

H. Binte Haq, S. T. Ali, A. Salman, P. McCorry, and S. F. Shahandashti,
“Carbyne: An ultra-lightweight DoS-resilient mempool for Bitcoin.” ht
tps://eprints.whiterose.ac.uk/id/eprint/225617, 2025.

B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments
and Technologies, 2014.

“Raw  Transactions format - Bitcoin developer
https://developer.bitcoin.org/reference/transactions.html#raw-
transaction-format.

“P2P Network — Bitcoin, Inventory Messages - Bitcoin developer
reference.” https://developer.bitcoin.org/reference/p2p_networking.
Efficient, “cuckoofilter - GitHub.” https://github.com/efficient/cuckoofil
ter, 2024.

N. Boskov, A. Trachtenberg, and D. Starobinski, “Birdwatching: False
negatives in cuckoo filters,” in Proceedings of the Student Workshop,
pp. 13-14, 2020.

D. Clayton, C. Patton, and T. Shrimpton, “Probabilistic data structures
in adversarial environments,” in Proceedings of the 2019 ACM CCS,
pp. 1317-1334, 2019.

M. Naor and Y. Eylon, “Bloom filters in adversarial environments,” ACM
Transactions on Algorithms (TALG), vol. 15, no. 3, pp. 1-30, 2019.

P. Chatzigiannis, F. Baldimtsi, and K. Chalkias, “SoK: Blockchain light
clients,” in International Conference on Financial Cryptography and
Data Security, pp. 615-641, Springer, 2022.

reference.”



