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Abstract. We present a realization of the transitive signature scheme based on 
the algebraic properties of bilinear group pairs. The scheme is proven secure, 
i.e. transitively unforgeable under adaptive chosen message attack, assuming 
hardness of the computational co-Diffie-Hellman problem in bilinear group 
pairs and the security of the underlying standard signature scheme under known 
message attack. Our scheme mostly conforms to previously designed schemes 
of Micali-Rivest and Bellare-Neven in structure; yet there are two 
contributions: firstly, we take advantage of bilinear group pairs which were 
previously used by Boneh, Lynn, and Shacham to build short signature 
schemes. Secondly, we show that a slight modification in previous definitions 
of the transitive signature relaxes the security requirement for the underlying 
standard signature from being secure under chosen message attack to being 
secure under known message attack; thus shorter and more efficient signatures 
can be chosen for the underlying standard signature. These two facts eventually 
yield to short transitive signatures with respect to both node and edge signature 
size. 

1   Introduction 

The concept of signature schemes with algebraic properties, later called homomorphic 
[12] or algebraic [11] signatures, was first introduced by Rivest in a series of talks 
[18]. These schemes allow an arbitrary entity to forge signatures on certain messages. 
Rivest mentioned that algebraic properties must not always be considered as a 
security threat for cryptosystems. For example, the multiplicative property of RSA 
function can be advantageous in certain applications. He also presented two design 
instances of such signature schemes: the prefix aggregation signature scheme and the 
transitive signature scheme. 

A transitive signature is a scheme for signing vertices and edges of a dynamically 
growing, transitively closed graph. Transitive closure is the property of including any 
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edge if there is a path between two vertices of the two ends of the edge. Depending on 
the graph, the transitive signature can be directed or undirected. The problem of 
finding a directed transitive signature is still a challenging open problem. Therefore, 
the term “transitive signature” is now being used in literature in case of “undirected 
transitive signature”. We will also use this notation through the paper. 

A transitive signature has the property that everyone can forge a valid signature on 
the edge AC of a graph, knowing the signatures of two edges AB and BC. This 
everyone does not need to have knowledge of the secret key at all. He/She just knows 
the public information. Since the graph itself is transitively closed, this property 
cannot be counted as a deficiency in security. Furthermore, Rivest showed that this 
property can “provide efficiency for prover and verifier” in comparison with the use 
of standard signatures [18]. One obvious advantage is that by using a transitive 
signature, one must sign only O(n) edges of a graph with size n in case of O(n2) 
standard signings [15]. 

To achieve another advantage, a transitive signature must have the property that 
the composed signature on the edge AC should be indistinguishable from the signature 
that could have been produced by the original signer on it. This allows the receiver of 
the signatures to reveal no extra information when presenting the composed signature 
on the edge AC to a third person. A distinguishable composed signature at least bears 
the information that some other node B is between nodes A and C. 

Micali and Rivest introduced the first provably secure (undirected) transitive 
signature scheme in [15]. Their scheme’s security is based on the infeasibility of 
solving the discrete logarithm problem. Later, Bellare and Neven introduced new 
schemes whose security proofs were based on the hardness of factoring and on the 
security of RSA under one-more-inversion [2]. More new schemes based on gap 
Diffie-Hellman groups also appear in the recent full version of their paper (See [3]). 

The security of many recently designed cryptosystems is based on hardness of the 
computational Diffie-Hellman and co-Diffie-Hellman problems in the so called Gap-
Diffie-Hellman (GDH) groups. A GDH group is a group in which decision Diffie-
Hellman (DDH) problem is easy, while computational Diffie-Hellman (CDH) 
problem is hard to solve. Signature schemes with provable security, both in random 
oracle and in standard model, are designed by Boneh et al. (See [7] and [8].) using 
bilinear maps in GDH groups. Also many other encryption schemes, signatures (plain, 
blind, proxy, ring, undeniable, group ...), key agreement protocols (plain, 
authenticated, group ...), access control, etc. have been constructed based on bilinear 
maps (See [1] and [14]). 

A bilinear map (See [6] for introduction.), also called pairing, is a mapping 
between groups in a way that is “consistent with the group structure of its arguments” 
[8]. In simple words, it is a mapping that has the linearity property with respect to 
both its arguments, i.e. there exists three operationso , • , and ∗  such that for every g,
h, x, and y we have 

( ) ( ) ( )xhexgexhge ,,, ∗=o  and ( ) ( ) ( )ygexgeyxge ,,, ∗=• .

This property yields to some useful algebraic properties. Joux and Nguyen showed 
that an efficiently-computable bilinear map e provides a polynomial time algorithm 
for solving the decision co-Diffie-Hellman problem [13]. 

In this paper, we construct a transitive signature from bilinear maps and prove it 
secure under conventional security assumptions of such maps. 
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Our Contributions: The main valuable property of our design of the transitive 
signature scheme is that the signature size on a graph is shorter than those of 
previously designed transitive signatures. Short transitive signatures are useful to 
shorten the total graph signature size, and this will be vital especially when the size of 
the graph itself grows too big. It is also apparent that this occurs in many applications 
where it is needed to transmit a big graph, as graphs themselves are used to simplify 
understanding large amounts of information. 

Our transitive signature is shorter than previous ones in two ways. Firstly, since 
we use bilinear group pairs to sign edges of a graph in our design as Boneh et al. did 
to design short signatures, all the discussions on how short the signature could be are 
still applicable here for edge signatures. For the detailed information, refer to the 
original paper [7]. Secondly, we propose a slightly modified new definition for 
transitive signatures, which relaxes the choice of the underlying signature scheme, 
making it more efficient in sense of signing and verification cost as well as signature 
length than many conventional signatures. This fact makes the signature on the nodes 
of the graph shorter and more efficient. We achieve this by showing that the security 
requirement for the underlying standard signature in our design is just being secure 
under known message attack, rather than adaptive ([3], [15]) or non-adaptive [19] 
chosen message attack for other schemes. Since both edge and node signature size are 
made shorter than previous schemes, eventually a very short transitive signature on 
the whole graph is resulted in! 

Organization of the Paper: Section 2 is allotted to notations and definitions: In 2.1 
we fix the notations we will use through the paper; 2.2 fetches the definitions of the 
transitive signature schemes and their security. In 2.3 we define the bilinear maps, 
bilinear group pairs, and their security assumptions. Finally in Section 3 a transitive 
signature is built using bilinear maps and also proven secure. The concluding 
remarks, acknowledgements, and references are followed then as usual. 

2   Notations and Definitions 

A review of notations and definitions used in the paper follows. We will give a 
mixture of the definitions of transitive signatures presented in [15], [2], and [16], 
which are all fundamentally the same. Then we will go through bilinear maps and 
define bilinear group pairs, as in [8]. 

2.1   Notations 

All graphs in this paper are undirected. We will use small letters such as i, j, k for the 
nodes and a concatenation of two small letters (which are the two endpoints of an 
edge) such as ij, jk for the (undirected) edges of the graph. We will use σ for all 
signatures on both nodes and edges. The signature on a node i is shown as σi and a 
signature on an edge ij is shown as σij. The expression  

Ss
R

←  
means that a member s is randomly chosen from set S. The italic letter Z represents 
the set of integer numbers and hence 

pZ  and ∗
pZ
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are used for the additive and multiplicative groups modulo p. We also show the group 
operation with two operands g and h by g · h or simply by gh (as in multiplicative 
groups), and by g / h we mean the group operation done with the first operand and 
inverse of the second one (also, as in multiplicative groups). 

2.2   Transitive Signature Schemes 

Since, as formerly said, transitive signatures are schemes to authenticate transitively 
closed graphs. We first review the definition of transitive closure property in graphs. 

Transitive Closure of a Graph [15]: Transitive closure of a graph G = (V, E) is the 
graph G* = (V, E*), such that (i,j) is an edge of G* if and only if there is a path from i 
to j in G. If G = G*, then we say that the graph G is transitively closed. 

Standard Signature Scheme [10]: As a well-known definition, a standard signature 
scheme is a tuple of three algorithms SS = (SKeyGen, SSig, Sverify) for key 
generation, signing and verifying. A pair of public and secret keys are generated as 
(SPK, SSK) ← SKeyGen(1k) and the signature is generated as σ ← SSign(SSK, m) for 
a message m and verified valid as true ← SVerify(SPK, m, σ). The signature is said 
to be secure against known message attack if no polynomial time adversary can forge 
a valid signature on a new message, knowing a list of message-signature pairs for 
some random messages, except with negligible probability in the security parameter k. 
Here, new message means a message not in the list the adversary is provided with. 
We denote the probability that adversary F' succeeds in forging a new message-
signature pair for the standard signature SS through a known message attack by 

( )kAdv kmauf
FSS

−
′, . 

We also call the maximum advantage among all adversaries, polynomial time in k, 
the insecurity function of the standard signature SS through a known message attack 
and denote it by 

( )kInSec kmauf
SS

− . 

SS is called secure under known message attack if and only if this function decreases 
faster than any polynomial in k. 

Transitive Signature Scheme ([16] and [2]): An (undirected) transitive signature 
scheme, which utilizes a standard signature scheme SS = (SKeyGen, SSign, SVerify), 
is a tuple of six algorithms TS = (KeyGen, NCert, ESign, VCert, EVerify, Comp) such 
that: 

• The algorithm KeyGen is the probabilistic key generation algorithm. It takes as
input 1k, where k is the security parameter, and calculates a pair (PK, SK)
consisting of a master public key and a matching secret key. It also calculates a
matching key pair (SPK, SSK) for the standard signature using SKeyGen algorithm.
At last, it outputs the pair ( (PK, SK) , (SPK, SSK) ).

• The node certification algorithm NCert, can be stateful, randomized, or both. It
takes as input the master secret key SK, the standard signature secret key SSK, and
a node number n, and produces a node name i and a pair (pki, ski) consisting of a
public key (label) and a matching secret key (label) for node i. It then produces a
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signature σi using SSign algorithm with signing key SSK and some message related 
to i and pki. The algorithm finally outputs (i, (pki, ski), σi). 

• The edge signing algorithm ESign, which could be stateful, randomized, or both,
takes as input the master secret key SK, two nodes i and j, and the corresponding 
secret keys of the nodes ski and skj, and either computes a value called an original 
signature on edge ij, namely σij, or fails. 

• The deterministic certificate verification algorithm VCert, takes as input the
standard public key SPK and the node certificate (i, pki, σi), checks the validity of 
the node certificate using algorithm SVerify with verification key SPK and returns 
the validity as a Boolean value. 

• The deterministic edge verification algorithm EVerify, taking the master public key
PK, two node public keys pki and pkj, and a candidate signature σij as input, returns 
a Boolean value representing the validity of σij as a signature of edge ij relative to 
the public keys. 

• The deterministic composition algorithm Comp, given as input the master public
key PK, three node public keys pki, pkj and pkk, and two signatures σij and σjk on 
nodes ij and jk, either returns a value σik as a signature on node ik or fails. 

This definition resembles the definitions of [15] and [2] in structure. We also used 
the ideas of [16]. The paradigm of node certification is used for the public node keys 
to be brought to others authenticated. By verifying the node certificate to be valid, one 
can obtain an authenticated message from the original signer saying: “Public key of 
node i is pki.” To prove that an edge is in the signed graph, one has to present an 
integrated signature of an edge containing the certificates of its endpoints plus the 
edge signature and verification of the integrated signature involves verifying both 
parts. This issue seems to be uncovered in the definition of [16]; therefore we use a 
mixed definition of [2] and [16], which follows. 

It is worth to mention the modification we made in previous definitions. Here, in 
our definition, we omitted the input i to the node certification algorithm and let the 
algorithm to choose the node name itself. We later show that by choosing i randomly, 
the relaxation in the security requirement for SS can be achieved. Besides, we know 
that the algorithm NCert is run when the original signer wants to add a new node to 
the signed graph or wants to recall a certificate. In such a time, there is no difference 
for the signer what the node name will be. Therefore our modification does not 
deprive the signer of an important capability, while providing the advantage of short 
node signatures. 

Correctness of Transitive Signature Schemes [2]: As any signature scheme, an 
original signature is required to be valid with respect to its relative public keys. 
Furthermore the composition algorithm is required to always produce a valid 
signature, given as input two valid signatures, either original or composed ones. 

Privacy of Transitive Signature Schemes: As stated before, to provide privacy, a 
valid composed signature must be indistinguishable from a valid original signature on 
the same edge, which could have been produced by the master signer [15]. This 
allows using composed signatures as the original ones. In transitive signature schemes 
whose ESign algorithm is deterministic, being indistinguishable reduces to being the 
same. This means that the composed signature must be equal to the original signature 
which could have been produced by the master signer. 
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Security of Transitive Signature Schemes ([15], [2], and [16]): A transitive 
signature scheme TS is called transitively unforgeable under adaptive chosen message 
attack if the advantage in attacking the scheme is negligible for any adversary F 
whose running time is polynomial in the security parameter k. The advantage of the 
best adversary is also known as insecurity function and is denoted by 

( )kInSec acmatu
TS

− . 

The advantage of F in its attack on TS is the function defined as 

( ) ( )[ ]1Pr ,, == −− kExpkAdv acmatu
FTS

acmatu
FTS , 

where the probability is taken over all the random choices made in experiment. 
Associated to every transitive signature TS = (KeyGen, NCert, ESign, VCert, 

Verify, Comp), adversary F, and security parameter k is an experiment, denoted 

( )kExp acmatu
FTS

−
, , 

that returns 1 if and only if F is successful in its attack on the scheme and 0 otherwise. 
The experiment begins by running KeyGen on input 1k to get key pair (PK, SK). It 
then runs F, providing this adversary with input PK and oracle access to the function 
ESign(SK, ·, ·, ski, skj), i.e. it can ask to add any new edge ij of its choice to the graph 
and have the signature σij on it. Besides, F has a certain kind of limited oracle access 
to function NCert(SK, SSK, ·) such that it cannot have access to the part of algorithm 
output representing the node secret key, i.e. it can query the oracle on any node 
number n and have only the node name i, the public node key pki and the node 
signature σi. In other words, the adversary can ask to add any new node to the graph 
and have the certificate (i, pki, σi) on it. Eventually, F will output i', pk'i', j', pk'j' and 
values σ'i', σ'j', and σ'i'j'. Let E be the set of all edges such that F made oracle query to 
ESign(SK, ·, ·, ski, skj), and let V be the set of all nodes which are endpoints of edges 
in E. We say that F wins if 

VCert(i', pk'i', σ'i') = true, 
VCert(i', pk'i', σ'i') = true, 

EVerify(PK, pk'i', pk'j', σ'i'j') = true, 

and yet the edge i'j' is not in the transitive closure of the graph G = (V, E). The 
experiment returns 1 if F wins and 0 otherwise. 

2.3   GDH Groups, Bilinear Maps and Bilinear Group Pairs 

Let us first review the formal definitions and notations of the well-known Diffie-
Hellman problems. Resembling [7], we use the following notations: G1 and G2 are 
two (multiplicative) cyclic groups of prime order p, with respective generators of g1 
and g2. By ψ we mean an isomorphism from G2 to G1 with ψ(g2) = g1. The definitions 
are simplified versions of those in [7]. 

Computational co-Diffie-Hellman (co-CDH) on (G1, G2): Given g2, g2
a in G2 and h 

in G1, compute ha in G1. 
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Decision co-Diffie-Hellman (co-DDH) on (G1, G2): Given g2, g2
a in G2 and h, hb in 

G1, decide whether a = b or not. When a = b we call (g2, g2
a, h, hb) a (valid) co-Diffie-

Hellman tuple. 

When G1 = G2 these problems reduce to standard CDH and DDH problems. The 
advantage of an algorithm A in solving the co-CDH problem on (G1, G2) is defined as 
the probability that A solves the problem correctly given a random instance of the 
problem specified by a randomly chosen pair for a and h. The probability is taken 
over the coin tosses of A and the random choices of a and h. We show this probability 
by

CDHco
AAdv − . 

The maximum advantage among all polynomial time algorithms solving co-CDH 
problem is also called insecurity of co-CDH and is denoted by InSecco-CDH. Co-CDH 
is called hard if and only if its insecurity is negligible. 

Co-GDH Group Pair: The group pair (G1, G2) is called a Gap co-Diffie-Hellman 
group pair if it satisfies the following properties: 

1. The group operation on both groups and the map ψ can be computed in one time
unit.

2. The co-DDH problem on (G1, G2) can be solved in one time unit.
3. The co-CDH problem is hard on (G1, G2).

In the above definition, if G1 = G2, then G1 is said to be a GDH group. 

Bilinear Maps: A function e: G1 × G2 → GT, where |G1| = |G2| = |GT|, is bilinear if 
it satisfies the two properties: 

1. For every u in G1 and every v in G2, and all integers a and b, e(ua, vb) = e(u,v)ab.
2. e is non-degenerate, i.e. e(g1,g2) ≠ 1.

Bilinear Group Pair: Two order-p groups (G1, G2) are called a bilinear group pair if 
they satisfy the following properties: 

1. The group operation on both groups and the map ψ can be computed in one time
unit.

2. A group GT of order p and a bilinear map e: G1 × G2 → GT exist and e is
computable in one time unit.

3. The co-CDH is hard on (G1, G2).

Joux and Nguyen [13] showed that an efficiently computable bilinear map e
provides an algorithm for solving the co-DDH problem as follows:  

( ) ( )22 ,,mod gheghepba ba =⇔= .

As a consequence, if two groups are a bilinear group pair, then they are also a co-
GDH group pair. The converse is probably not true [7]. 
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3   A Transitive Signature on Bilinear Group Pairs (BGPTS) 

We present a transitive signature scheme, based on the BLS signature ideas, that 
works in bilinear group pairs. We assume that we have a standard signature scheme 
SS = (SKeyGen, SSign, SVerify), whose message space is the set of all strings made 
by concatenating a member of the definite set of all node names with a member of the 
group G1. We construct the transitive signature scheme, using this standard signature 
and a bilinear group pair (G1, G2). At last, we prove our transitive signature scheme 
transitively secure under chosen message attack. 

Let the bilinear group pair generator GBGP as a randomized polynomial time 
algorithm that on input 1k, where k is the security parameter, generates a bilinear 
group pair (G1, G2), where |G1| = |G2| = p(k) and the insecurity of the co-CDH 
problem on (G1, G2) is the amount InSecco-CDH(k). It is obvious that for the group pair 
to be a bilinear one, this function must decrease faster than any polynomial in k. The 
formal description of the transitive signature BGPTS follows: 

• The key generation algorithm KeyGen, takes an input 1k, runs GBGP on this value,
and obtains the bilinear group pair (G1, G2). It then picks a random member of Zp(k),
namely SK, and computes PK ← g2

SK. The algorithm also runs SKeyGen on input
1k to obtain a key pair (SPK, SSK) for the standard signature. At last, the algorithm
outputs the group pair (G1, G2), the master key pair (PK, SK), and the standard key
pair (SPK, SSK).

• The node certifications algorithm NCert maintains state NodeList, where NodeList
is a list containing the set of all so-far queried nodes, their secret and public node
keys (labels), and their signatures. On input SK, SSK, and node number n, the
algorithm checks if n is on the list. If so, it outputs the corresponding node name,
secret node key, and public node key and the corresponding node signature from
NodeList. Otherwise, it picks a random member of the set of all node names,
namely i, and also picks a random member of G1, namely ski. The algorithm then
computes pki ← ski

SK and runs SSign on inputs SSK and the message i || pki and
obtains σi. The algorithm then outputs the node name i and the pair (pki, ski) as the
matching public and secret node keys followed by the node signature σi.

• The edge signing algorithm Esign takes as input ski and skj and simply outputs

jiij sksk←σ .

• The certificate verification algorithm VCert, on input (i, pki, σi), runs SVerify and
outputs SVerify(SPK, i || pki , σi).

• The verification algorithm EVerify, takes as input PK, pki, pkj, and a candidate
signature σij and verifies that

( )jiij pkpkPKg ,,,2 σ
is a (valid) co-Diffie-Hellman tuple. If so, it returns true; if not, returns false. 

• The composition algorithm Comp, given as input σij and σjk, computes and outputs
the value σik ← σij · σjk. 

Note that, sometimes, it is needed to have σij, and sometimes σji to compose 
signatures correctly. Yet since they are inverses of each other and inversion in the 
multiplicative group G1 can be made in polynomial time, the transformations σij ↔ σji 
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are both feasible. Therefore, these transformations are omitted from the descriptions 
of the algorithms. 

Eliminating State: As proposed in [2], state NodeList can be eliminated through 
using a pseudorandom function. The master secret key could include a key K to 
specify an instance FK from a pseudorandom function family F. Then the signer does 
not need to save anything. He/She just uses FK(i) for all the coins needed for the node 
name and the node keys. 

Correctness: It is easy to see that any original signature σij produced by the master 
signer leads to a true output by the verification algorithm. On the other hand, any 
composed signature of two valid (original or composed) signatures leads to the same 
output in verification. The proof is up to the reader! 

Privacy: The ESign algorithm of BGPTS scheme is deterministic. As the composed 
signature in BGPTS scheme is the same as the signature that could have been 
produced by the master signer, the privacy property requirement for the signature 
scheme is met. 

Security: As an intuition, it is worth to see that a verifier of a signature σij faces a co-
DDH problem instance in a bilinear group pair, which is assumed to be easy. On the 
other side is a forger of the signature. If it wants to forge a signature on an edge, one 
of whose endpoints is not certified so far, it faces the problem of forging a valid 
signature for the standard signature scheme, which is infeasible by the assumption of 
the standard signature’s security. Otherwise, it faces the problem of forging a 
signature on an edge whose endpoints are both certified by the master signer. In this 
case, it knows three arguments out of four of a tuple, namely g2, PK, and pki / pkj, and 
it wants to compute σij so as the tuple be a valid Diffie-Hellman tuple. This is, 
obviously, a co-CDH problem instance in a bilinear group pair, which is assumed to 
be infeasible. The following theorem states that the BGPTS is transitively secure 
assuming that underlying primitives are flawless. Our method for proving the security 
of BGPTS is partly similar to Coron’s method for proving that of FDH scheme in [9]. 

Security Theorem: The BGPTS scheme described above is transitively unforgeable 
under adaptive chosen message attack, assuming that GBGP produces a bilinear group 
pair and standard signature scheme SS is unforgeable under known message attack. 
More precisely, if the most advantageous adversary asks a maximum of q' queries 
from the node certification oracle and a maximum of q queries from the edge signing 
oracle in attacking BGPTS, we have 

( ) ( ) ( ) ( )kInSeckInSeckInSecq acmatu
BGPTS

kmauf
SS

CDHco −−− ≥+⋅⋅1exp , 

where k is the security parameter of the transitive signature input to the key 
generation algorithm. Furthermore, if we denote the running time of SSign and Esign 
algorithms by tSSign and tESign and that of the best adversaries attacking BGPTS, SS, 
and co-CDH by tBGPTS, tSS, and tco-CDH, we have 

( ) ( ) ( ) ( )( ) ( ){
( ) ( )( ) ( )}.

,max
3

3

ktqkpOqkt

ktqkpOqqktkt

ESignSS

SSignCDHcoBGPTS

⋅−⋅′−

⋅′−⋅+′−≥ −

Proof Sketch: We will prove the security by reduction as follows. Given any 
polynomial time forger F for BGPTS asking at most q queries from the edge signing 
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oracle, We will show how to use F to construct two algorithms: An algorithm A to 
solve the co-CDH problem in (G1, G2) and a forger F' breaking the underlying 
standard signature SS through a known message attack, such that 

( ) ( ) ( ) ( )kAdvkAdvkAdvq acmatu
FBGPTS

kmauf
FSS

CDHco
A

−−
′

− =+⋅ ,,α , 

( ) .

1
1

1

1
 where

1
q

q

q
q

⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

= +α

We must show that α(q) is bounded by a polynomial in q, and hence the 
coefficient  α(q) grows polynomially in q, however the advantage of A in solving co-
CDH decreases faster than any polynomial in k. This means that controlling k, we can 
keep the advantage of the adversary attacking BGPTS sufficiently low. 

Note that we have  

,

1
1

1

1
lim

1
e

q

qq
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+∞→

therefore α(q) can be bounded linearly in q, i.e. α(q) = O(q). 
Since there could be more efficient ways to construct algorithms A and F', the 

equation 

( ) ( ) ( ) ( )kInSeckInSeckInSecq acmatu
BGPTS

kmauf
SS

CDHco −−− ≥+⋅⋅1exp

is proven for large q. 
The full description of how the two algorithms A and F' are constructed comes in 

the full proof of the security theorem in the appendix. We just mention that in the 
proof, techniques of proving security in [2], [7], and [9] are mixed together. 

As in [2], we show that signatures for BGPTS can be forged in only two ways: 
either there is the forgery that “recycles node certificates from previously issued 
signatures”, or there is the forgery that “includes at least one new node certificate”. 
We will show that the former type of forgery leads us to solve a certain co-CDH 
problem with a certain probability of success, while a forgery of the latter type can be 
easily transformed to an attack on SS: the new node certificate is a valid forgery for 
SS, as it contains a standard node signature that was not produced by the original 
signer before. 

In simulating NCert algorithm, when algorithm A is answering oracle queries 
made by F, we use the technique of [7]. We simply embed the h argument of our co-
CDH instance in some simulated node public keys, while choosing other simulated 
node public keys randomly. We call the former type of nodes h-node and the latter 
non-h-node. Then, similar to [7] again, A can answer F’s ESign oracle queries only 
when the edge endpoints are nodes of a type, and succeeds in solving the co-CDH 
instance it has only when the edge endpoints of the forgey provided by F are nodes of 
different types. 

To get the best success probability in our attack, we use the technique of [9]. We 
just embed the h argument in simulated node public keys with a certain probability p0, 
and choose other simulated node public keys randomly with probability 1 – p0. This 
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leads us to maximize A’s success probability and hence optimize the security by 
carefully selecting p0 with respect to q. The function α(q) is originally an optimized 
version of a function of two arguments q and p0 minimized with respect to p0. 

As a time domain analysis, since both tSS and tco-CDH grow faster than any 
polynomial in k, assuming the standard signature secure and the co-CDH problem 
hard, the time complexity for the best adversary attacking BGPTS also grows faster 
than any polynomial in k, for the reason that other subtractive terms in the time 
complexity equation above are polynomial in k. 

We refer the reader to the appendix of this paper for the full description of the 
proof. 

Eliminating Node Certification via Hashing: As stated comprehensively in [2], 
node certification brings us the disadvantages of “increasing the signature size as well 
as the computational cost for signing and verifying”. Resembling [2], we can 
eliminate node certificates by specifying the public key of the node i via the output of 
a hash function by 

( )iHpki i ←||
and then setting 

SK
ii pksk 1← . 

This provides an “implicit authentication” [2] of node public keys, i.e. there is no 
need for the original signer to certify nodes anymore. As a consequence, the node 
certification algorithm collapses to node key generation and the certificate verification 
algorithm will no more exist. This means that there will be no further need for the 
standard signature to sign node public keys and verifying them. Fully-described 
changes in BGPTS are routine and similar to [2] and therefore are omitted here. It is 
just worth to state that the security of the new scheme relies on the hardness of the co-
CDH problem in bilinear group pairs, in the so called random oracle model (ROM). 
In this model, hash functions are viewed as random functions (See [4] and [5] for 
further on ROM.). 

4   Conclusions 

We have constructed a short transitive signature scheme from bilinear maps whose 
security is proven under reasonable assumptions, such as hardness of the 
computational Diffie-Hellman problem and existence of secure standard signatures. 
Shortness of an edge signature is due to the fact of using bilinear group pairs with 
small representations and that of a node signature is due to the fact of using signatures 
which are required to be secure only under known message attack. These two, 
eventually, yield to a very short signature on the whole graph, which is very probable 
to have a big size in everyday applications. This fact, finally, results in a lower 
amount of communication traffic load. 
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Appendix: Proof of Security Theorem 

Suppose we are given a feasible forger F for BGPTS. We will show how to use F to 
construct an algorithm A to solve the co-CDH problem in (G1, G2) and a forger F' 
breaking the underlying standard signature SS through a known message attack, such 
that 

( ) ( ) ( ) ( )kAdvkAdvkAdvq acmatu
FBGPTS

kmauf
FSS

CDHco
A

−−
′

− =+⋅ ,,α , 

where q is the number of ESign queries F makes during its attack on BGPTS and 

( ) .

1
1

1

1
1 q

q

q
q

⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−

= +α

Note that for every q we have 
( ) qqq 42 ≤< α .

Hence, the forger’s advantage grows linearly in q, but it descends faster than any 
polynomial in k. Therefore is proven the security of BGPTS. 

Algorithm A performs as follows: given g2, u = g2
a in G2 and h in G1 as input, it 

computes ha in G1. It maintains state State in which it saves the data it will need later 
through the algorithm run, such as queries made by F and A’s corresponding answers. 
Using this state A can simply answer repeated queries by repeated answers and just 
calculate answers to new queries. It first generates a fresh key pair (SPK, SSK) for SS 
using the algorithm SKeyGen. Then It computes v = ψ(u), which will be used later. 
Note that since ψ is assumed to be an isomorphism, we have: 

( ) ( ) ( ) aaa ggguv 122 ==== ψψψ .

Then the algorithm A runs F on input PK = u · g2
r = g2

a+r, where r is chosen 
randomly from Zp by algorithm A. Now F will start its ESign(SK, ·, ·, ski, skj) and 
NCert(SK, SSK, ·) oracle queries. As A does not know SK it cannot answer the queries 
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by simply running the ESign and NCert algorithms. Therefore it will simulate these 
two algorithms as follows. 

On an NCert(SK, SSK, ·) query for adding a new node n and certifying it, 
algorithm A first chooses a random node name i from the set of all node names and a 
random bi from Zp. Then it produces a random coin }1,0{∈ic , where ci = 0 with 

probability p0 and ci = 1 with probability 1 – p0. The value p0 is a fixed probability 
chosen to get a better reduction (idea from [9]) and will be determined later in this 
paper. If ci = 0 it sets ib

i ghpk 1⋅← . Otherwise it sets ib
i gpk 1← . At last it answers to 

the query by outputting three values representing the name i, the public key pki and 
the certification signature σi = SSign(SSK, i || pki) of the corresponding node. It also 
saves the values i, bi, and ci for the node n by updating its state State. Note that since 
bi is random, both ibgh 1⋅  and ibg1

 are randomly distributed over G1 and are 

indistinguishable for the algorithm F from each other and from a real public node key 
which could have been produced by a real signer. Therefore the simulation is flawless 
and also F has no idea what ci could be for a node i. 

Before we describe how to simulate answers to ESign queries, we introduce a 
notation we will use in the description. We simply call a node i an “h-node” if ci = 0 
and call it a “non-h-node” otherwise. We also assume that when the algorithm F 
queries its ESign oracle on the edge ij it has already queried its NCert oracle on nodes 
named i and j for their certificate. This assumption can be justified since any node 
name i and the corresponding node keys are chosen independently. Moreover the edge 
signature is also independent of any single node key. As a result, if at least one of the 
nodes is not queried before for its certificate, the answer to the ESign query will be 
just a random value independent of other things F knows and will be of no use for it. 

On an ESign(SK, ·, ·, ski, skj) query for signing the edge ij of the graph, Algorithm 
A looks in State to recognize one the two possible cases bellow: 

1. If i and j are nodes of a type, i.e. both are non-h-nodes or both are h-nodes, then A

simply answers the query as ( ) ji bbr
ij gv

−
⋅= 1σ .

2. If one of i and j is an h-node and the other one is a non-h-node, then A reports
failure and terminates.

Note that in the first case we have:

( ) ( ) ( ) rabbbbrabbr
ij

jijiji ggggv
+−−−

=⋅=⋅= 1111σ  and ji bb

ji gpkpk
−= 1 . 

Hence the tuple (g2, PK = g2
a+r, pki / pkj, σij) is a valid co-Diffie-Hellman tuple and σij 

is a valid signature for edge ij. Therefore the simulation works properly. 
Finally F will output a forgery including i', pk'i', j', pk'j' and values σ'i', σ'j', and σ'i'j'. 

A will use this output to solve the co-GDH problem, assuming that F manages to win, 
i.e. manages to forge valid signatures. More precisely, let E is the set of all edges such 
that F made an ESign oracle query on, and let V be the set of all nodes which are 
endpoints of edges in E. Winning for F means that: 

Σ1: VCert(i', pk'i', σ'i') = true, 
Σ2: VCert(i', pk'i', σ'i') = true, 

Σ3: EVerify(PK, pk'i', pk'j', σ'i'j') = true, 
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and yet Σ4: the edge i'j' is not in the transitive closure of the graph G = (V, E). 

We call these statements Σ1, Σ2, Σ3, and Σ4, respectively. The statement Σ3 
specifically means that (g2, PK = g2

a+r, pk'i' / pk'j', σ'i'j') is a valid co-Diffie-Hellman 
tuple, i.e. 

( ) ra
jiji kpkp +
′′′′ ′′=′σ . 

Algorithm A now checks that if the node public keys returned by F match those it 
produced itself or not, i.e. it checks the statements Σ5 introduced bellow: 

Σ5: pk'i' = pki' and pk'j' = pkj'. 

If Σ5 is not true Algorithm A reports failure and terminates. Otherwise, it checks 
State to find out if i' and j' are nodes of a type. If so, A reports failure and terminates. 
Otherwise, there are two possibilities: 
1. i' is an h-node and j' is a non-h-node. In this case, as we have:

( ) rabb
ji

ji ggh
+

′′
′′⋅=′ 11σ . 

So A simply computes and outputs ha as: 
( )( )bbbrr

ji
a vghh ji ⋅⋅′= ′′ −

′′ 1σ . 

2. i' is a non-h-node and j' is an h-node. In this case, as we have:

( ) rabb
ji

ji ghg
+

′′
′′ ⋅=′ 11σ . 

So A simply computes and outputs ha as: 
( )( ) ( )ji

rbbbra hvgh ji

′′
− ′⋅⋅= ′′ σ1 . 

For calculating the success probability of the algorithm A, we observe that it 
succeeds whenever it does not report failure. First, if F asks q queries from its oracle 
ESign, algorithm A can answer all the q queries with probability [p0

2 + (1- p0)
2]q. This 

is true for the reason that, in each query, two nodes i and j are both h-nodes with 
probability p0

2 and are both non-h-nodes with probability (1- p0)
2. Secondly, F will 

succeed in case that the nodes i' and j' are of two different types. The probability that 
this occurs is 2 p0 (1- p0). In these calculations we used the fact that simulation is 
correct, i.e. h-nodes and non-h-nodes are indistinguishable. 

Finally, by defining β(q, p0) = 2 p0 (1- p0) [p0
2 + (1- p0)

2]q, we can calculate the 
advantage of algorithm A with respect to the advantage of algorithm F as follows: 

( ) ( )
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Algorithm F' is given SPK as input and a list of random messages and 
corresponding signatures. It will perform a known message attack on SS using F as a 
subroutine. Its goal is to eventually output a message-signature pair, where the 
signature is a valid signature for the message with respect to SPK and yet the message 
was not on the message-signature list provided for the adversary. 

The algorithm F' first runs the algorithm KeyGen of the transitive signature to 
obtain a pair of keys (PK, SK). It then runs F on input PK and answers the queries of 
F to the oracles ESign(SK, ·, ·, ski, skj) and NCert(SK, SSK, ·) as follows: 

On an NCert(SK, SSK, ·) query n, F' first chooses the n-th entry in the message-
signature pair list. It then parses the corresponding message as i || pki. Afterwards, it 
computes ski as 

SK
ii pksk 1← . 

It also sets the corresponding signature as σi. Note that as messages in the message-
signature pair list are randomly chosen, both i and pki are random and hence is ski. 
Therefore, the simulation works correctly. Moreover, the probability that the node 
name is repeated in the list is a small constant value and we do not take it into 
account. The reason is that the size of the set of all node names is constant and 
independent of the security parameter k. 

On an ESign(SK, ·, ·, ski, skj) query on edge ij, assuming that F has previously 
queried the two certificates on both nodes, F' looks i and j up in the message-
signature pair list and finds the corresponding public and secret node keys. Now, 
since F' knows SK, ski, and skj, it simply runs the ESign algorithm of the transitive 
signature scheme and provides the output σij as the answer to the query. 

Eventually, F outputs a forgery including i', pk'i', j', pk'j' and values σ'i', σ'j', and 
σ'i'j'. Assuming that F wins, i.e. the statements Σ1, Σ2, Σ3, and Σ4 are all true, F' checks 
that if the node public keys returned by F match those it produced itself or not, i.e. it 
checks the statements Σ5. If Σ5 is true Algorithm F' reports failure and terminates. 
Otherwise, at least one of pk'i',  pk'j' was not certificated by F' before. In other words, 
at least one of i' || pk'i' and j' || pk'j' is not a message in the message-signature pair list. 
Therefore, at least one of the signatures σ'i' and σ'j' must be a forgery, and is obviously 
a valid one because Σ1 and Σ2 are both true. Hence, all F' has to do is to test whether 
the string i' || pk'i' is not a message in the list and output (i' || pk'i' , σ'i') as a new 
message-signature pair representing forgery if so, or output (j' || pk'j' , σ'j') otherwise. 

Algorithm F' succeeds whenever all the statements Σ1, Σ2, Σ3, and Σ4 are true, but 
Σ5 is not true. This fact yields to the calculation bellow: 
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By eliminating the repeating term in the two calculations we did for the success 
probability of A and F', we will simply reach the equation: 

( ) ( ) ( ) ( )kAdvkAdvkAdv
pq

acmatu
FBGPTS

kmauf
FSS

CDHco
A

−−
′

− =+⋅ ,,
0,

1

β
. 

To optimize the security, we must maximize the function β(q, p0) by properly 
selecting p0 with respect to a given q. Let’s rewrite β(q, p0) as: 

( ) ( ) ( )[ ]
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Defining p1 = 2 p0 (1-p0) we have 

( ) ( )qpppq 111 1, −=β . 

The above function is maximized as below: 
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Now α(q) is defined and computed as 
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which is the result we were seeking. 
The running time of A equals that of F plus one exponentiation and one SSig 

algorithm run for every NCert query plus one exponentiation for every ESign query, 
i.e. 

( ) ( ) ( )( ) ( )( ) ( )( )kpOqktkpOqktkt SSignFA
33 ⋅++⋅′+= , 

for that there are at most q' NCert queries and at most q ESign queries and modular 
exponentiation time complexity is cubic in group size. 

The running time of F' equals that of F plus one exponentiation for every NCert 
query plus one ESign algorithm run for every ESign query, i.e. 

( ) ( ) ( )( ) ( )ktqkpOqktkt ESignFF ⋅+⋅′+=′
3 , 

for that there are at most q' NCert queries and at most q ESign queries. 
Since there could be more efficient ways to construct algorithms A and F', the 

claimed equation for the time complexity is proven. 
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The security theorem on page 9 states that the BGPTS scheme is se-
cure under the co-CDH assumption. The proof of this theorem is
not correct. However, an almost identical scheme, GapTS-1, is shown
to be secure under the one-more CDH assumption by Bellare and
Neven [BN05]. Hence, BGPTS is still secure, albeit under a stronger
assumption. Note that BGPTS and GapTS-1 were proposed indepen-
dently in 2004, respectively in the SCN’04 conference and in [BN04].
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