

Cuckoo's Nest: An Ultra-Lightweight
DoS-Resilient Bitcoin Mempool
Hina Binte Haq, Syed Taha Ali, Siamak F. Shahandashti

 2 / 19

Paper ePrint

The Context

 4 / 19

Overview of Bitcoin

- Transactions (Tx’s): identified by TxHash
- Spendable inputs: identified by inputTxHash & index
- Unspent Tx Outputs (UTXO): computed from Blockchain

- P2P network gossips Tx’s to achieve consensus
- Clients inc. miners & other lightweight clients, e.g. SPV
- 2 functions: inventory (miners), forwarding (all)

 5 / 19

Bitcoin Client Memory Pool (Mempool)

● Receive TxHash, Lookup, Request Tx
– Store TxHashes: mempool’s mapTx in Bitcoin Core

● Verify Tx, Check for double spend against UTXO & circulating Tx’s
– Store Tx inputs: mempool’s mapNextTx in Bitcoin Core

● Remove Tx if included in a block, Tx expiry, reaching capacity
– Default mempool capacity: 300 MB

 6 / 19

Mempool Size

● Bitcoin nodes regularly
work at near capacity

● Vulnerable to “dust”
attacks: flood of small-
value transactions

● e.g. in 2015, Bitcoin
mempool 1 GB, 10%
nodes crashed

 7 / 19

Problem

● Client memory consumption needs to be reduced
– Pruned, NIPoPoW, FlyClient, TxChain reduce bootstrapping
– Dietcoin, Utreexo compress the UTXO
– Contra, Anti-Dust aim to identify, remove dust transactions
– Not much work on mempool

● Probabilistic data structure for membership testing
● Our previous work: Neonpool, Carbyne using Bloom filters
● This work: Cuckoo’s Nest using Cuckoo filters

The Design

 9 / 19

Cuckoo Filter

● Probabilistic data structure for membership
testing

● Similar underlying idea to Bloom filters
– Allows deletion

● m buckets × b slots of f bits
● Uses less space than Bloom filters, supports

deletion, when FPR < 3%

 10 / 19

Bitcoin Mempool with Cuckoo’s Nest

● Store TxHashes: mapTx in Bitcoin Core
– Cuckoo’s Nest: CuckooTxFilter

● Store Tx inputs: mapNextTx in Bitcoin Core
– Cuckoo’s Nest: CuckooTxInputsFilter

● Remove Tx if
– included in a block: remove from CuckooTxFilter
– Tx expiry: ?
– reaching capacity: ?

 11 / 19

Empirical Testing Conditions

● Instrumented client implemented in C++
● Dataset: 30 million unique Tx’s from 90 million Tx

announcements over 30 days
● Replay dataset to Bitcoin Core and Cuckoo’s Nest

 12 / 19

Empirical Testing Metrics

● Three events: inventory (in), entry (en), exit (ex)
● False positives are generally undesirable

– Overall FPR = (FPin+FPen+FPex) / (Qin+Qen+Qex)
● False positives at in or en result in discarded transactions

– Discard Rate = (FPin+FPen) / (Qin+Qen)
● Inventory false negatives result in reprocessed transactions

– Reprocessing Rate = FNin / Qin

The Results

 14 / 19

Using A Single Cuckoo Filter

● False negatives mean Tx’s erroneously added to or not removed
from mempool, leading to false positives

● We call this debris

 15 / 19

Using 2 Cascade Filters

● Let’s use 2 filters, periodically clearing one and then the other
– Using Bitcoin’s default 14-day expiry period

● Debris, hence false positives kept down

 16 / 19

Memory Footprint

● Goal: discarding only 0.001% of
Tx’s, i.e. achieving 99.999%
accuracy

● Requires 3×4 MB filters
(2×Tx+1×TxInputs filters), i.e.
12 MB memory

 18 / 19

Resilience against Dust Attacks

● Hash functions use a long (e.g. 128-bit) salt
● Injecting or censuring transactions at individual nodes is

improbable
● Network-wide injection or censuring is even harder as salts are

independent
● False negatives only cause reprocessing, not double-spends

 19 / 19

Conclusions

● Cuckoo’s Nest reduces node memory consumption at the
expense of little loss in accuracy of forwarding

● Straightforward to adapt to Bitcoin derivatives like Bitcoin Cash,
Bitcoin Gold, Litecoin, Dogecoin

● Future challenges
– Adapting for account-based systems like Ethereum
– Bootstrapping new nodes

Thank you.

Siamak F. Shahandashti
cs.york.ac.uk/~siamak

@siasha.bsky.social

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20

