
Cam
era

-re
ad

y
Search-Based Synthesis of Probabilistic Models

for Quality-of-Service Software Engineering

Simos Gerasimou
Dept. of Computer Science

University of York, UK
simos@cs.york.ac.uk

Giordano Tamburrelli
Dept. of Computer Sciences

Vrije Universiteit, Netherlands
g.tamburrelli@vu.nl

Radu Calinescu
Dept. of Computer Science

University of York, UK
radu.calinescu@york.ac.uk

Abstract—The formal verification of finite-state probabilistic
models supports the engineering of software with strict quality-
of-service (QoS) requirements. However, its use in software design
is currently a tedious process of manual multiobjective optimi-
sation. Software designers must build and verify probabilistic
models for numerous alternative architectures and instantiations
of the system parameters. When successful, they end up with
feasible but often suboptimal models. The EvoChecker search-
based software engineering approach and tool introduced in our
paper employ multiobjective optimisation genetic algorithms to
automate this process and considerably improve its outcome. We
evaluate EvoChecker for six variants of two software systems
from the domains of dynamic power management and foreign
exchange trading. These systems are characterised by different
types of design parameters and QoS requirements, and their
design spaces comprise between 2E+14 and 7.22E+86 relevant
alternative designs. Our results provide strong evidence that
EvoChecker significantly outperforms the current practice and
yields actionable insights for software designers.

I. INTRODUCTION

The design of modern software systems requires tools
capable of assessing the quality and dependability of the
solution under design as early as possible in the engineering
process. The late discovery of defects leads to suboptimal
operation of the delivered systems, high maintenance costs, and
negative impact on their users [14], [26]. This is particularly
relevant for business-critical and safety-critical applications,
where failures may cause financial loss or loss of human life.

Model Checking (MC) [8], [25] is among the most effective
means for developing software for critical applications [61].
Given a finite-state transition model of a concurrent system,
MC automatically verifies if the model satisfies requirements
formally expressed in propositional temporal logic. MC can be
exploited during system design, to devise models that meet the
requirements of a software system, and are then used as a basis
for its implementation. Alternatively, software engineers can
build models of existing systems, and use MC to check their
compliance with requirements. Also, a variant of MC called
probabilistic model checking can verify if software systems
meet their reliability, performance and other quality-of-service
(QoS) requirements [46]. Probabilistic MC verifies models
with state transitions annotated by probabilities or transition
rates (e.g., discrete and continuous-time Markov chains, and
Markov decision processes), and operates with QoS require-
ments specified in probabilistic variants of temporal logics.

This paper is concerned with the use of probabilistic
MC at design time to identify models that satisfy the QoS

requirements of a software system. Currently, this is a tedious
trial-and-error process in which software designers must build
and verify probabilistic models for numerous alternative ar-
chitectures and instantiations of the system parameters. Even
when this manual attempt at multiobjective optimisation is
successful, the models produced are often suboptimal in terms
of their tradeoffs between reliability, performance, cost and
other QoS requirements. The EvoChecker search-based soft-
ware engineering approach introduced in our paper automates
this process and considerably improves its outcome.

To this end, EvoChecker synthesises (a) a set of
probabilistic models that closely approximates the Pareto-
optimal model set associated with the QoS requirements of a
software system; and (b) the corresponding approximate QoS
Pareto front. This provides insight into the tradeoffs between
multiple QoS requirements, enabling software designers to
make informed decisions about the architecture and parameters
of their systems. To achieve this, EvoChecker employs
established multiobjective optimisation genetic algorithms
(MOGAs) and a fitness function that captures the satisfaction
of the QoS requirements. EvoChecker uses as input:
• a probabilistic model template that encodes alternative

architectures and parameter ranges for the system;
• a set of QoS requirements specifying both constraints (e.g.,

“At least 95% of the requests must be processed within
200ms”) and optimisation objectives (e.g., “The system
should operate with minimal energy consumption”).
EvoChecker uses the probabilistic model checker PRISM

[47] for its verification steps. Accordingly, the probabilistic
model template is expressed in an extension of the PRISM
high-level modelling language, and EvoChecker handles all
types of probabilistic models and probabilistic temporal logics
supported by PRISM and shown in Table I.

The main contributions of our paper include:
1. The EvoChecker extension of the PRISM modelling lan-

guage, and the EvoChecker search-based model synthesis
approach, which we describe in Section III, and we illus-
trate using a running example introduced in Section II.

2. The definition of the probabilistic model synthesis problem
(Section III-C).

3. The open-source EvoChecker tool presented in Section IV,
which we make freely available on our project webpage.

4. An extensive evaluation of the EvoChecker approach and
prototype tool in two case studies drawn from different
application domains, which we summarise in Section V.



Cam
era

-re
ad

y
Our evaluation based on established Pareto-front quality

indicators (i.e., unary epsilon [68], hypervolume [67] and
inverted generational distance [60]) shows that EvoChecker
significantly outperforms the current “trial and error” practice,
makes effective use of state-of-the-art MOGAs such as NSGA-
II [27], SPEA2 [51] and MOCell [66], and provides actionable
insights for software designers.

To the best of our knowledge, EvoChecker is the first
approach that uses search-based software engineering to syn-
thesise approximate Pareto-optimal sets of probabilistic models
for the QoS requirements of software systems. The only related
work we are aware of is discussed in Section VI, and belongs to
the area of model repair [10], [16]. However, model repair for
probabilistic systems focuses on modifying an existing proba-
bilistic model, only at transition probability level, and only to
satisfy a single temporal logic property that is violated by the
original model. In contrast, EvoChecker handles multiple QoS
requirements and uses multiobjective optimisation to derive an
approximate Pareto-optimal set of probabilistic models and its
associated Pareto front given a probabilistic model template.

II. RUNNING EXAMPLE

We will illustrate the EvoChecker components and opera-
tion using a software-controlled dynamic power management
(DPM) system adapted from [55], [58]. As shown in Fig. 1,
the system consists of a service provider that handles requests
generated by a service requester and stored in two request
queues of different priorities. The service provider has four
states associated with different power usage, i.e., busy, idle,
standby and sleep. Fig. 1 depicts the power usage of each
state (in watts), the possible transitions between states, and the
energy consumed by each transition (in joules). These values
are taken from [55], and correspond to a Fujitsu disk drive.

When the service provider is in the busy state, it processes
requests as follows. If the high-priority queue contains qH > 0
requests, then a high-priority request is processed. Otherwise,
if the low-priority queue contains requests (i.e., if qL > 0), a
low-priority request is handled. After handling the last request
(i.e., when both queues become empty), the service provider
automatically transitions to the idle state. The transitions from
idle to busy are also automatic, and occur whenever the empty-
queue DPM system receives a new request. In contrast, all the
other transitions are controlled by a software power manager
that aims to reduce power use while maintaining an acceptable
service level for the system. We use the real values from
[55] for the state transition times (Table II) and the request

TABLE I: Types of models supported by EvoChecker

Type of QoS requirement
probabilistic model specification logic

Discrete-time Markov chains PCTLa, LTLb, PCTL*c

Continuous-time Markov chains CSLd

Markov decision processes PCTLa, LTLb, PCTL*c

Probabilistic automata PCTLa, LTLb, PCTL*c

Probabilistic timed automata PCTLa

aProbabilistic Computation Tree Logic [13], [36]
bLinear Temporal Logic [53]
cPCTL* is a superset of PCTL and LTL
dContinuous Stochastic Logic [7], [9]

Power manager

High-priority
request queue

Low-priority
request queue

busy
2.15W

idle
0.95W

standby
0.35W

sleep
0.13W

Service

5.1J

0.006J

7J 0.067J2J0.001J

0J0J

state
information

state-transition
commands

qL
QmaxL

qH
QmaxH

Dynamic power
management

system

provider

Service
requester

Fig. 1: Dynamic power management system

TABLE II: Average service-provider transition times

State Average State Average
transition time (s) transition time (s)

idle → standby 0.4 standby → idle 1.2
idle → sleep 0.67 sleep → idle 1.6
standby → sleep 0.3 sleep → standby 0.6

service rate (i.e., 125s−1), and we assume average arrival rates
of 0.05s−1 and 0.15s−1 for the high-priority and low-priority
requests, respectively.

Finally, suppose that the DPM system designer must select:
1. the capacity of the request queues, QmaxH and QmaxL;
2. one of two alternative power managers (described later);
3. the parameters of the selected power manager
such that the QoS requirements in Table III are satisfied.

III. EVOCHECKER

A. Modelling Language

EvoChecker probabilistic model templates are specified
in an extended version of the PRISM high-level modelling
language [47]. This language is based on the Reactive
Modules formalism [3], which describes a system as the
parallel composition of a set of modules. The state of a
module is encoded by a set of finite-range local variables,
and its state transitions are defined by probabilistic guarded
commands that alter these variables, and have the general form:

[action] guard −> e1 : update1 + . . .+ en : updaten; (1)

TABLE III: QoS requirements for the DPM system
ID Description Type

R1 The steady-state utilisation of the high-priority
queue should be less than 90%

constraint

R2 The steady-state utilisation of the low-priority
queue should be less than 90%

constraint

R3 The system should operate with minimum steady-
state power utilisation

objective

R4 The number of requests lost at the steady state
should be minimised

objective

R5 The capacity of both queues should be minimised objective



Cam
era

-re
ad

y
In this command, guard is a boolean expression over all

the variables in the model. If guard evaluates to true, the
arithmetic expression ei, 1 ≤ i ≤ n, gives the probability
(for discrete-time models) or rate (for continuous-time models)
with which the updatei change of the module variables occurs.
The action is optional; when present, it forces all modules
comprising commands with this action to perform one of
these commands simultaneously (i.e., to synchronise). For a
detailed description of the PRISM modelling language, we
refer the reader to the PRISM manual, available at http:
//www.prismmodelchecker.org/manual.

Example 1: Fig. 2 shows the continuous-time Markov
chain (CTMC) model of the dynamic power management
system from our running example. The model comprises a
module for each request queue, a ServiceProvider module,
and a module for one of the two power managers considered
during the design of the system. The local variables from
the high-priority and low-priority request queue modules
record the number of requests from the two queues, qH
and qL, and the ServiceProvider local variable sp encodes
the state of the service provider. The queue modules and
ServiceProvider synchronise through the actions requestH,L
and serveH,L, which reflect requests arriving into the queues
and being served, respectively. The service provider switches
between its busy and idle states automatically (lines 20,
22, 24 and 26), and can also perform the state transitions
from Table II, aiming to switch to lower-power states when
both request queues are empty (i.e., qH + qL = 0) and back
towards the busy state otherwise (lines 28–34). However, these
transitions are controlled by the power manager through the
synchronisation of all ServiceProvider and PowerManager
commands with common actions. For example, lines 43–44
have false guards and thus disable the transitions between idle
and sleep, the transition between idle and standby is always
enabled due to the true guard in line 46, and constraints are
placed on all other transitions.

Software designers use probabilistic models to manually
explore an often very large design space comprising alternative
module implementations, parameter values and transition prob-
abilities. EvoChecker extends the PRISM modelling language
with three constructs that support the specification of all these
design alternatives within a probabilistic model template whose
instantiations correspond to possible system designs. The three
constructs are defined below.

1. Evolvable parameters. EvoChecker uses the syntax
evolve int param [min..max ];
evolve double param [min..max ]; (2)

to declare model parameters of type ‘int’ and ‘double’,
respectively, and acceptable ranges for them. These parameters
can be used in any field of command (1) other than action,
just like constant model parameters declared using ‘const int’
and ‘const double’ from the original language.

2. Evolvable probability distributions. The syntax

evolve distribution dist [min1..max1] . . . [minn..maxn]; (3)

where [mini,maxi] ⊆ [0, 1] for all 1 ≤ i ≤ n, is used
to declare an n-element discrete probability distribution, and
ranges for the n probabilities of the distribution. The name of

1

2

evolve module PowerManager

3

1

2

3
4
5
6
7
8

9

10
11
12
13
14
15

16
17

18
19
20
21
22

23
24
25
26
27

28
29
30
31
32
33
34
35

36
37
38
39

40
41

42
43
44

45
46
47

48
49
50
51

52
53
54
55
56
57

evolve int QmaxH [3..15];

evolve int QmaxL [5..30];

evolve distribution x[0.1..0.3][0.7..0.9];
evolve distribution y[0.3..0.6][0.4..0.7];

ctmc

const int QmaxH = 4;

module HighPriorityRequestQueue
qH: [0..QmaxH] init 0;
[requestH] qH<QmaxH −> 0.05:(qH’=qH+1);
[dropH] qH=QmaxH −> 0.05:(qH’=qH);
[serveH] qH>0 −> (qH’=qH-1);

endmodule

const int QmaxL = 12;

module LowPriorityRequestQueue
qL: [0..QmaxL] init 0;
[requestL] qL<QmaxL −> 0.05:(qL’=qL+1);
[dropL] qL=QmaxL −> 0.05:(qL’=qL);
[serveL] qL>0 −> (qL’=qL-1);

endmodule

module ServiceProvider
sp:[0..3] init 0; // 0=busy, 1=idle, 2=standby, 3=sleep

// Process requests with rate 125s−1

[serveH] sp=0 & qH>0 & qH+qL>1 −> 125:(sp’=0);
[serveH] sp=0 & qH=1 & qL=0 −> 125:(sp’=1);
[serveL] sp=0 & qH=0 & qL>1 −> 125:(sp’=0);
[serveL] sp=0 & qH=0 & qL=1 −> 125:(sp’=1);

// Automatic transition from idle to busy
[requestH] sp=1 −> (sp’=0);
[requestH] sp!=1 −> (sp’=sp);
[requestL] sp=1 −> (sp’=0);
[requestL] sp!=1 −> (sp’=sp);

// Transitions controlled by the power manager
[idle2standby] sp=1 & qH+qL=0 −> 1/0.4:(sp’=2);
[idle2sleep] sp=1 & qH+qL=0 −> 1/0.67:(sp’=3);
[standby2idle] sp=2 & qH+qL>0 −> 1/1.2:(sp’=0);
[sleep2idle] sp=3 & qH+qL>0 −> 1/1.6:(sp’=0);
[sleep2standby] sp=3 −> 1/0.6:(sp’=2);
[standby2sleep] sp=2 −> 1/0.3:(sp’=3);

endmodule

const double x1 = 0.2;
const double x2 = 0.8;
const double y1 = 0.35;
const double y2 = 0.65;

module PowerManager
p: [0..1] init 0; // 0=loop, 1=sleep to standby

// Disable idle ↔ sleep transitions
[idle2sleep] false −> (p’=p);
[sleep2idle] false −> (p’=p);

// Deactivate
[idle2standby] true −> (p’=p); // always enabled
[standby2sleep] qH=0 & qL<2 −> (p’=p);

// Activate
[standby2idle] qH>0 | qL>1 −> (p’=p);
[sleep2standby] qH>1 | (qH=1 & qL>0) −> (p’=p);
[sleep2standby] p=1 −> (p’=0);

// Probabilistic control of sleep-to-standby transition
[requestH] qL+qH=0 & sp=3 −> x1 : (p’=1) + x2 : (p’=0);
[requestH] !(qL+qH=0 & sp=3) −> (p’=p);
[requestL] qH=0 & qL=3 & sp=3 −> y1 : (p’=1) + y2 : (p’=0);
[requestL] !(qH=0 & qL=3 & sp=3) −> (p’=p);

endmodule

Fig. 2: CTMC model of the DPM system; ¬–® represent Evo-
Checker extensions of the PRISM modelling language

the distribution can then be used instead of expressions e1, e2,
. . . , en from an n-element command (1).



Cam
era

-re
ad

y
3. Evolvable modules. EvoChecker uses the syntax

evolve module mod implementation1 endmodule
. . .
evolve module mod implementationn endmodule

(4)

to define n ≥ 2 alternative implementations of a module.

The role of the three EvoChecker constructs is described
by the following definitions.

Definition 1: A valid PRISM probabilistic model aug-
mented with a set of EvoChecker constructs (2)–(4) is called
a probabilistic model template.

Definition 2: A probabilistic model is an instance of a
probabilistic model template T if and only if it can obtained
from T using the following transformations:
• Each evolvable parameter (2) is replaced by a ‘const int

param = val;’ or ‘const double param = val;’ declaration
(depending on the type of the parameter), where val ∈
{min, . . . ,max} or val ∈ [min..max], respectively.

• Each evolvable probability distribution (3) is removed, and
the n occurrences of its name instead of expressions e1, . . . ,
en of a command (1) are replaced with values from the
ranges [min1..max1], . . . , [minn..maxn], respectively, such
that the sum of the n values is 1.0.

• Each set of evolvable modules with the same name is
replaced with a single element from the set, from which
the keyword ‘evolve’ was removed.

Definition 3: The set of all probabilistic models that are
instances of a probabilistic model template T is called the
design space of T , and is denoted DST .

Example 2: Fig. 2 illustrates the three EvoChecker con-
structs used to transform the CTMC model from our running
example into a probabilistic model template. The replacement
of the elements from the dashed rectangles with those from the
continuous rectangles shows how: ¬ two evolvable parameters
are used to specify the sizes of the two request queues;
 two evolvable distributions are used to specify the transition
probabilities from lines 53 and 55 of the power manager;
and ® the module PowerManager is declared one of several
possible implementations of the power manager. Note that at
least one additional implementation of this module needs to
be provided in a valid probabilistic model template; due to
space constraints, the second implementation is not included
here, but we make it available at http://www-users.cs.york.ac.
uk/∼simos/EvoChecker.

B. Quality-of-Service Requirements

EvoChecker supports two types of QoS requirements: con-
straints and optimisation objectives. Both types refer to QoS
attributes of the system under design, such as response time,
throughput, reliability or cost. Constraints define bounds for
the acceptable values of these attributes, while optimisation
objectives specify QoS attributes that should be minimised or
maximised (subject to all constraints being satisfied). Without
loss of generality, we will assume that the latter QoS attributes
should be minimised in the remainder of the paper. Formally,
a software system considered by EvoChecker needs to satisfy
n1 ≥ 0 constraints of the form

RCi : attr i ./i bound i, 1≤ i≤n1, (5)

and n2 ≥ 1 optimisation objectives of the form

ROi : minimise attr i, n1 + 1≤ i≤n1 + n2, (6)

where ./i∈{<,≤,=,≥, >} and bound i ∈ R for all 1≤ i≤n1,
and attr1, attr2, . . . , attrn1+n2

∈ R represent n1 + n2 QoS
attributes of the system. These QoS attributes are formally
expressed in the probabilistic temporal logics shown earlier in
Table I. Given a probabilistic model M of a possible system
design, and the probabilistic temporal logic formulae Φ1, Φ2,
. . . , Φn1+n2 of the QoS attributes, the probabilistic model
checker PRISM [47], [48] automatically establishes the value
of the QoS attributes corresponding to this design, i.e.,

attr i(M) = PMC (M,Φi), 1 ≤ i ≤ n1 + n2. (7)

Due to space constraints, we do not present the probabilis-
tic temporal logics supported by EvoChecker ; references to
detailed descriptions of each logic are provided in Table I.

Example 3: The QoS requirements from our running ex-
ample (Table III) comprise two constraints (R1 and R2), and
three optimisation objectives (R3–R5). The QoS attributes
for all requirements are specified using rewards probabilistic
temporal logic formulae [4], [42], [46]. To this end, positive
values are associated with specific states and transitions of the
CTMC in Fig. 2 by using rewards. . . endrewards structures.
For example, the structure below enables the computation of
the total number of lost requests for requirement R4:

rewards “TotalLost”
[dropH] true : 1;
[dropL] true : 1;

endrewards

by associating a value of 1 with each transition that corre-
sponds to a request being dropped because of a full queue. The
corresponding temporal logic formula is Φ4 = RTotalLost=? [S],
and represents the “Steady-state reward” for the above rewards
structure, i.e., the long-run average number of dropped requests.

C. Probabilistic Model Synthesis Problem

Consider a probabilistic model template T with design
space DST , and a set of QoS requirements comprising n1
constraints (5) and n2 optimisation objectives (6). The prob-
abilistic model synthesis problem involves finding the Pareto-
optimal design set PS of models from DST that satisfy the
n1 constraints and are non-dominated with respect to the n2
optimisation objectives:

PS =
{
M∈DST | (∀1≤ i≤n1 • attr i(M) ./i bound i)∧(

@M′ ∈ DST •M′ ≺M
)}
,

(8)
with the dominance relation ≺ : DST ×DST→B defined by

∀M1,M2 ∈ DST •M1 ≺M2 ≡
∀n1 + 1 ≤ i ≤ n1 + n2 • attr i(M1) ≤ attr i(M2) ∧
∃n1 + 1 ≤ i ≤ n1 + n2 • attr i(M1) < attr i(M2).

Finally, given the Pareto-optimal design set PS , we are also
interested in the Pareto front defined by

PF = {(an1+1, an1+2, . . . , an1+n2
) ∈ Rn2 |

∃M ∈ PS • ∀n1 + 1≤ i≤n1 + n2 • ai = attr i(M)},
(9)

since designers need this information alongside their domain
knowledge when choosing between the models in PS.



Cam
era

-re
ad

y
TABLE IV: EvoChecker gene encoding rules

evolve int param[min..max ];

evolve double param[min..max ];

evolve distribution dist [min1..max1] . . .
. . . [minn..maxn];

evolve module mod implementation1 endmodule
. . .
evolve module mod implementationm endmodule

EvoChecker gene(s)

Type Cardinality Value range, Vi

int

double

double

int

1

1

n

1

Evolvable feature
of the probabilistic model template

{min,...,max}

[min..max ]

[min1..max1]
. . .
[minn..maxn]

{1, 2, ...,m}

D. EvoChecker Model Synthesis

Computing the Pareto-optimal design set (8) is in most
cases unfeasible, as the design space DST is typically ex-
tremely large and may be infinite (i.e., when the prob-
abilistic model template T contains evolvable parameters
of type double and/or evolvable distributions). Therefore,
EvoChecker uses elitist genetic algorithms for multiobjective
optimisation (e.g., [27], [51], [66]) to synthesise a set of
probabilistic models that closely approximates this Pareto-
optimal set.

A genetic algorithm (GA) [45] encodes possible solutions
of a search problem as a sequence of genes (i.e., binary
representations of the problem variables). For EvoChecker,
each instance of an ‘evolvable’ construct from Section III-A
contributes to this sequence with the gene(s) given by the
encoding rules in Table IV. These rules are used by the
Template parser from the high-level EvoChecker architecture
in Fig. 3 to extract the value ranges V1, V2, . . . , Vn for the
n ≥ 1 genes associated with the model template T .

Given the solution encoding described above, GAs start
with a randomly generated set (population) of feasible solu-
tions (individuals). This population is then iteratively evolved
into populations containing “fitter” individuals by means of
GA selection, crossover and mutation. Selection uses a real-
valued fitness function to evaluate each individual created
during the GA execution, in order to select the population for
the next iteration and the mating pool of individuals for the
current iteration. Crossover randomly selects two individuals
from the mating pool, and generates a new individual by
combining their genes. Finally, mutation produces a new
individual by randomly modifying some of the genes of an
individual from the pool. GAs terminate after a fixed number
of (individual) evaluations or when a predetermined number of
successive iterations generate populations with no significantly
fitter individuals.

As shown in Fig. 3, the GA used by EvoChecker is elitist,
i.e., it preserves the best individuals across iterations. This
involves maintaining a finite “archive” of the fittest individuals
(e.g., by elitist GAs like MOCell [51] and SPEA2 [66]) or
by retaining the fittest individuals from one iteration to the
next (e.g., by NSGA-II [27]). The algorithms used by Evo-
Checker are also multiobjective optimisation GAs (MOGAs),
i.e., they generate Pareto-optimal set approximations spread
as uniformly as possible across the search space. Therefore,
they use fitness functions that encode in ways specific to

Template
parser

Gene value
ranges

V1, . . . , Vn

Elitist
multiobjective
optimisation GA

Internal
repres. T ′ Individual QoS

analyser

Probabilistic
model checker

Individual
(g1, . . . , gn)

QoS
attributes
attr1, ...

Model M,
formula Φi

QoS
attribute
attr i

Probabilistic
model

template T

Pareto front
approximation

PF ,
Pareto-optimal

model set
approximation PS

EvoChecker

QoS
constraints (5)
& optimisation
objectives (6)

Fig. 3: High-level EvoChecker architecture

each MOGA both the nondomination level of each evaluated
individual and the population density in its area of the search
space. For example, NSGA-II [27] associates a nondominance
level of 1 to all nondominated individuals of a population, a
level of 2 to the individuals that are not dominated when level-
1 individuals are ignored, etc.1; and SPEA2 [66] evaluates
population density as the inverse of the distance to the k-th
nearest neighbour of the individual. Providing full technical
details about the MOGAs that EvoChecker can use is beyond
the scope of this paper. The reader can find their descriptions
in [27], [51], [66], and a comparison of their merits in [29].

In EvoChecker the MOGA evaluation of the fitness of
individuals is supported by an Individual QoS analyser
(Fig. 3). This component takes as input the gene sequence
(g1, . . . , gn) for an individual, and returns to the MOGA the
QoS attributes attr1, attr2, . . . , attrn1+n2

of the model M
associated with this individual. To this end, the analyser uses
an internal representation T ′ of the model template produced
by the Template parser and the gene sequence (g1, . . . , gn)
to obtain the model M, and then invokes a Probabilistic
model checker to establish the n1+ n2 QoS attributes from
(7) one at a time. This setup enables the MOGA to generate
approximations of the Pareto-optimal model set PS and of the
associated Pareto front PF as illustrated in Fig. 3.

Example 4: Consider again the DPM system from
our running example. Using the rules in Table IV,
EvoChecker encodes each instance M of the probabilistic
model template from Fig. 2 as the sequence of genes

(QmaxH ,QmaxL, x1, x2, y1, y2, pm), (10)

where QmaxH ∈ V1 = {3, 4, . . . , 15} and QmaxL ∈ V2 =
{5, 6, . . . , 30} represent the capacities of the two queues; x1∈
V3 = [0.1, 0.3] and x2∈ V4 = [0.7, 0.9] such that x1 +x2 = 1,
and y1 ∈ V5 = [0.3, 0.6] and y2 ∈ V6 = [0.4, 0.7] such that
y1 + y2 = 1 represent the two probability distributions; and
pm ∈ V7 = {1, 2} is a gene that encodes which of the m = 2
implementations of the PowerManager module in Fig. 2 is
used by M. The gene value ranges V1 to V7 are extracted by
the EvoChecker Template parser and passed to the MOGA,

1Individuals not satisfying problem constraints receive a default level of ∞.



Cam
era

-re
ad

y
1.4 1.6 1.8 2.0Power use [W]

0.06
0.08

0.1
0.12

Lost requests

2

4

6

8

10

Queue length
(qH + qL)

Fig. 4: Pareto front approximation for the DPM system

which uses the Individual QoS analyser to iteratively gen-
erate model populations of increasing fitness and eventually
outputs the Pareto front and Pareto-optimal set approximations
achieved after a pre-established number of evaluations. As
an example, Fig. 4 depicts a Pareto front approximation
obtained using NSGA-II [27] as the EvoChecker MOGA,
with an initial population of 150 individuals and after 5000
evaluations. Remember that the dimensionality of Pareto front
for a probabilistic model synthesis problem is given by the
number of optimisation objectives n2. Our DPM system has
n2 = 3 optimisation objectives, as shown in Table III.

IV. EVOCHECKER TOOL

To automate the EvoChecker synthesis of probabilistic
models, we implemented a tool with the architecture in Fig. 3.
Our EvoChecker tool uses the established MOGA imple-
mentations provided by the Java-based framework for multi-
objective optimization with metaheuristics JMetal [28], and
the probabilistic model checker PRISM [47]. We developed
the other components of the architecture from Fig. 3 in Java,
using the Antlr2 parser generator to build the Template parser,
and implementing an Individual QoS analyser specifically for
the EvoChecker tool. The open-source code of EvoChecker, the
full experimental results summarised in the following section,
additional information about EvoChecker and the case studies
used for its evaluation are available at http://www-users.cs.
york.ac.uk/∼simos/EvoChecker.

V. EVALUATION

A. Research Questions

We evaluated the effectiveness of EvoChecker by per-
forming extensive experiments to answer the next research
questions.

RQ1 (Validation): How does EvoChecker perform com-
pared to random search? We used this research question to
establish if EvoChecker “comfortably outperforms a random
search” [40], as expected of effective search-based software
engineering solutions.

RQ2 (Comparison): How do EvoChecker instances
using different MOGAs perform compared to each other?
Since we devised EvoChecker to work with any MOGA, we

2http://www.antlr.org

Fig. 5: The FX workflow

examined the results produced by EvoChecker instances using
three established such algorithms (i.e., NSGA-II [27], SPEA2
[66] and MOCell [51]).

RQ3 (Insights): Can EvoChecker provide insights into
the trade-offs between the QoS attributes of alternative
software architectures and configurations? To support soft-
ware designers in their decision making, EvoChecker must
provide insights into the trade-offs between multiple QoS
objectives. To address this question, we identified a range of
design decisions suggested by the EvoChecker results for the
software systems considered in our evaluation.

B. Analysed Software Systems

Our experiments used EvoChecker in multiple scenarios
associated with two software systems from different applica-
tion domains—the dynamic power management (DPM) system
from our running example, and a real-world service-based
system from the area of foreign exchange trading. The second
system, which we anonymise as FX for confidentiality reasons,
is used by an European foreign exchange brokerage company,
and implements the workflow in Fig. 5.

An FX customer (called a trader) can use the system in
two operation modes. In the expert mode, FX executes a loop
that analyses market activity, identifies patterns that satisfy the
trader’s objectives, and automatically carries out trades. Thus,
the Market watch service extracts real-time exchange rates
(bid/ask price) of selected currency pairs. This data is used by
a Technical analysis service that evaluates the current trading
conditions, predicts future price movement, and decides if the
trader’s objectives are: (i) “satisfied” (causing the invocation
of an Order service to carry out a trade); (ii) “unsatisfied” (re-
sulting in a new Market watch invocation); or (iii) “unsatisfied
with high variance” (triggering an Alarm service invocation to
notify the trader about discrepancies/opportunities not covered
by the trading objectives). In the normal mode, FX assesses the
economic outlook of a country using a Fundamental analysis
service that collects, analyses and evaluates information such
as news reports, economic data and political events, and
provides an assessment on the country’s currency. If satisfied
with this assessment, the trader can use the Order service
to sell or buy currency, in which case a Notification service
confirms the completion of the trade.



Cam
era

-re
ad

y
We assume that the FX designer has to select third-party

implementations for each of the n ≥ 1 services from Fig. 5
for which in-house implementations are not available, in order
to meet the QoS requirements from Table V. The designer
can use any subset of the ni ≥ 1 third-party implementations
of the i-th service unavailable in-house, and either a prob-
abilistic or a sequential selection strategy. The probabilistic
strategy involves using a randomly selected third-party service
from the subset for each invocation of service i, where the
random selection is made according to a discrete probability
distribution decided by the designer. The sequential strategy
involves invoking the services from the subset in a designer-
specified order, until one of the invocations is successful or all
the invocations failed. We used an EvoChecker probabilistic
model template to capture these alternative FX designs. This
template uses all EvoChecker “evolvable” constructs, and
is parameterised by the number of services n, the number
of third-party service implementations n1, n2, . . . , and by
the costs, success probabilities and response times of these
implementations.

To evaluate EvoChecker for multiple design space sizes,
we applied it to each of the system variants from Table VI.
The entries in this table list the int-valued probabilistic model
template parameters from (10)—for the DPM system, and
described above—for the FX system. The ‘Size’ column
reports the size of the design space that an exhaustive search
would need to explore, assuming two-decimal precision for the
double-valued parameters of the probabilistic model templates
(cf. Table IV). This is a valid assumption, as the nonlinearity
of most probabilistic models means that a 0.01 change in
a state transition probability often translates into significant
changes in the values of model properties. Finally, note that the
n = 8 services used by FX Large correspond to using two-part
composite services for the Technical analysis and Fundamental
analysis operations from Fig. 5.

C. Evaluation Methodology

In line with the standard practice for evaluating the per-
formance of stochastic optimisation algorithms [6], we per-
formed multiple (i.e., 30) independent runs for each system
variant from Table VI and each multiobjective optimisation
algorithm—NSGA-II, SPEA2, MOCell and random search.
Each run comprised 10,000 evaluations, each using a different
initial population of 100 individuals, single-point crossover
with probability pc = 0.9, and single-point mutation with
probability pm = 1/np, where np is the number of system
variant parameters. All the experiments were run on a CentOS
Linux 6.5 64bit server with two 2.6GHz Intel Xeon E5-2670

TABLE V: QoS requirements for the FX system

ID Description Type

R1 Workflow executions must complete success-
fully with probability at least 0.9

constraint

R2 The total service response time per workflow
execution should be minimised

objective

R3 The probability of a service failure during a
workflow execution should be minimised

objective

R4 The total cost of the third-party services used
by a workflow execution should be minimised

objective

TABLE VI: Analysed system variants; Trun represents the
EvoChecker running time averaged over 30 runs
Variant Int-valued parameters Size Trun

DPM Small QmaxH,L∈{1, ..., 10}, m=2 2E+14 1050s
DPM Medium QmaxH,L∈{1, ..., 15}, m=2 4.5E+14 2118s
DPM Large QmaxH,L∈{1, ..., 20}, m=2 8E+14 3796s
FX Small n = 4, n1 = · · · = n4 = 3 4.98E+31 858s
FX Medium n = 6, n1 = · · · = n6 = 4 1.39E+65 1695s
FX Large n = 8, n1 = · · · = n6 = 4 7.22E+86 4162s

processors and 32GB of memory. The average run times for
the six system variants are shown in Table VI. Note that the
EvoChecker run time depends on the size of modelM and the
time consumed by the probabilistic model checker to establish
the n1 + n2 QoS attributes from (7).

Obtaining the actual Pareto front for our system variants
is unfeasible because of their very large design spaces. There-
fore, we adopted the established practice [65] of comparing
the Pareto front approximations produced by each algorithm
with the reference Pareto front comprising the nondominated
solutions from all the runs carried out for the analysed system
variant. For this comparison, we employed the widely-used
Pareto-front quality indicators below, and we will present their
means and box plots as measures of central tendency and
distribution, respectively:
1. Unary additive epsilon (Iε) [68], i.e., the minimum additive

term by which the elements of the objective vectors from
a Pareto front approximation must be adjusted in order to
dominate the objective vectors from the reference front.
This indicator presents convergence to the reference front
and is Pareto compliant3. Smaller Iε values denote better
Pareto front approximations.

2. Hypervolume (IHV ) [67], which measures the volume in
the objective space covered by a Pareto front approximation
with respect to the reference front (or a reference point).
IHV measures both convergence and diversity, and is
strictly Pareto compliant [64]. Larger IHV values denote
better Pareto front approximations.

3. Inverted Generational Distance (IIGD) [60], which pro-
vides an “error measure” as the Euclidean distance in
the objective space between the reference front and the
Pareto front approximation. IIGD shows both diversity and
convergence to the reference front. Smaller IIGD values
signify better Pareto front approximations.

We used inferential statistical tests to compare these quality
indicators across the four algorithms [6], [40], [65]. As is
typical of multiobjective optimisation [65], the Shapiro-Wilk
test showed that the quality indicators were not normally
distributed, so we used the Kruskal-Wallis non-parametric
test with 95% confidence level (α = 0.05) to analyse the
results without making assumptions about the distribution of
the data or the homogeneity of its variance. We also carried
out a post-hoc analysis with pairwise comparisons between the
four algorithms by means of Dunn’s pairwise test, controlling
the family-wise error rate using the Bonferroni correction
pcrit=α/k, where k is the number of comparisons.

3Pareto compliant indicators do not “contradict” the order introduced by
the Pareto dominance relation on Pareto front approximations [64].



Cam
era

-re
ad

y
TABLE VII: Mean quality indicator values for the system variants from Table VI

Problem NSGA-II SPEA2 MOCell Random

Iε (Epsilon)
DPM Small 0.0209 0.0130 0.0242 0.1403 +
DPM Medium 0.0225 0.0123 0.0489 0.1996 +
DPM Large 0.0229 0.0147 0.0884 0.2497 +

IHV (Hypervolume)
DPM Small 0.4455 0.4458 0.4396 0.4022 +
DPM Medium 0.4487 0.4499 0.4386 0.3946 +
DPM Large 0.4528 0.4549 0.4395 0.3947 +

IIGD (Inverted Generational Distance)
DPM Small 0.00023 0.00018 0.00016 0.00062 +
DPM Medium 0.00024 0.00019 0.00028 0.00091 +
DPM Large 0.00024 0.00020 0.00038 0.00109 +

Problem NSGA-II SPEA2 MOCell Random

Iε (Epsilon)
FX Small 0.6258 0.5083 0.6745 2.2274 +
FX Medium 1.6379 2.0105 2.0486 6.1529 +
FX Large 3.8528 5.2777 4.6366 13.0234 +

IHV (Hypervolume)
FX Small 0.611 0.628 0.608 0.593 +
FX Medium 0.719 0.725 0.702 0.606 +
FX Large 0.657 0.675 0.633 0.555 +

IIGD (Inverted Generational Distance)
FX Small 0.00123 0.00129 0.00125 0.00145 +
FX Medium 0.00192 0.00207 0.00200 0.00316 +
FX Large 0.00244 0.00255 0.00272 0.00395 +

0.00

0.10

0.20

0.30

0.40

0.50

0.40

0.50

NS
GA

-II

SP
EA
2

M
OC

ell

Ra
nd
om

0.000

0.001

0.002

NS
GA

-II

SP
EA
2

M
OC

ell

Ra
nd
om

NS
GA

-II

SP
EA
2

M
OC

ell

Ra
nd
om

DPM_Small DPM_Medium DPM_Large

Iε Iε Iε

IHV IHV IHV

IIGD IIGD IIGD

0.00
3.00
6.00
9.00
12.00
15.00
18.00

0.50

0.60

0.70

0.80

NS
GA

-II

SP
EA
2

M
OC

ell

Ra
nd
om

0.001

0.002

0.003

0.004

NS
GA

-II

SP
EA
2

M
OC

ell

Ra
nd
om

NS
GA

-II

SP
EA
2

M
OC

ell

Ra
nd
om

FX_Small FX_Medium FX_Large

Iε Iε Iε

IHV IHV IHV

IIGD IIGD IIGD

Fig. 6: Boxplots for the six system variants from Table VI, evaluated using the quality indicators Iε, IHV and IIGD

D. Results and Discussion

RQ1(Validation). We carried out the experiments described in
the previous section and we report their results in Table VII
and Fig. 6. The ‘+’ from the last column of the table entries
indicate that the Kruskal-Wallis test showed significant dif-
ference among the four algorithms (p-value<0.05) for all six
system variants and all Pareto-front quality indicators.

For both systems, EvoChecker with any MOGA achieved
considerably better results than random search, for all quality
indicators and system variants. The post hoc analysis of
pairwise comparisons between random search and the MO-
GAs provided statistical evidence about the superiority of the
MOGAs for all system variants and for all quality indicators.
The best and, when obtained, the second best outcomes of
this analysis per system variant and quality indicator are
shaded and lightly shaded in the result tables, respectively.
This superiority of the results obtained using EvoChecker with
any of the MOGAs over those produced by random search can
also be seen from the boxplots in Fig. 6.

We qualitatively support our findings by showing in Fig. 7
the Pareto front approximations achieved by EvoChecker with
each of the MOGAs and by random search, for a typical run

of the experiment for the FX system variants. We observe that
irrespective of the MOGA, EvoChecker achieves Pareto front
approximations with more, better spread and higher quality
nondominated solutions than random search.

As explained in Section II, the parameters we used for
the DPM system variants (power usage, transition rates, etc.)
correspond to the real-world system. In contrast, for the FX
system variants we chose realistic values for the reliability,
performance and cost of the third-party services. To miti-
gate the risk of accidentally choosing values that biased the
EvoChecker evaluation, we performed additional experiments
comprising 300 independent runs per FX system variant (900
runs in total) in which these parameters were randomly in-
stantiated. The results of this further analysis (reported on our
project webpage but not included here due to space constraints)
confirm the findings presented above.

All these results provide strong empirical evidence that
the EvoChecker significantly outperforms random search, for
a range of system variants from two different domains, and
across multiple widely-used MOGAs. This also confirms the
challenging and well-formulated nature of the probabilistic
model synthesis problem we introduced in Section III-C.



Cam
era

-re
ad

y
0.96

0.92

1.00

3045607590

16

18

20

22

Relia
bilit

y

Cost

T
im

e
 [

s]

NSGA-II

SPEA2

MOCell

Random

(a) FX Small
Relia

bilit
y0.96

0.92

1.00

20406080100

16

20

24

28

Cost

T
im

e
 [

s]

NSGA-II

SPEA2

MOCell

Random

(b) FX Medium

0.96
0.92

1.00

6090120150

30

35

40

25

45

Relia
bilit

y

Cost

T
im

e
 [

s]

NSGA-II

SPEA2

MOCell

Random

(c) FX Large

Fig. 7: Typical Pareto front approximations for the FX system variants and optimisation objectives R2-R4 from Table V

RQ2 (Comparison). To compare EvoChecker instances based
on different MOGAs, we first observe in Table VII that
NSGA-II and SPEA2 outperformed MOCell for all system
variant–quality indicator combinations except DPM Small–
IIGD. Between SPEA2 and NSGA-II, the former achieved
slightly better results for the smaller design spaces of the DPM
system variants (across all indicators) and for the IHV indi-
cator (across all system variants), whereas NSGA-II yielded
Pareto-front approximations with better Iε and IIGD indicators
for the larger design spaces of the FX system variants (except
the combination FX small–Iε).

Additionally, we carried out the post-hoc analysis described
in Section V-C, for 9 system variants (counting separately
the FX system variants with chosen parameters and with
randomly instantiated parameters) × 3 quality indicators =
27 tests. Out of these tests, 22 tests (i.e., a percentage of
81.4%) showed high statistical significance in the differences
between the performance achieved by EvoChecker with dif-
ferent MOGAs (Table VIII). The five system variant–quality
indicator combinations for which the tests were unsuccess-
ful are: FX Medium–Iε, FX(random) Small–Iε, FX(random)
Medium–Iε, FX Small–IIGD and FX Medium–IIGD.

These results show that, like for any well-formulated
optimisation problem, different algorithms are more suitable
in dealing with specific problems. They also confirm the
generality of EvoChecker, showing that its functionality can
be realised using multiple established MOGAs.

RQ3 (Insights). We performed qualitative analysis of the
Pareto front approximations produced by EvoChecker, with

TABLE VIII: System variants for which the MOGAs in rows
are significantly better than the MOGAs in columns

NSGA-II SPEA2 MOCell

N
SG

A
-I

I Iε: FX L,RL DPM M,L
IHV : – DPM S,M,L;

FX M,L,RM,RL
IIGD: – FX L,RL

SP
E

A
2

Iε: DPM S,M,L DPM S,M,L; FX S
IHV : FX S,M,L, DPM S,M,L;

RS,RM,RL FX S,M,L,RS,RM,RL
IIGD: DPM S,M,L;

FX RS
DPM L;
FX L,RS,RM,RL

M
O

C
el

l

Iε: – –
IHV : – –
IIGD: DPM S,M DPM S

Key: S=Small, M=Medium, L=Large, R=random parameters

the purpose of identifying actionable insights. We illustrate this
for the FX and DPM Pareto front approximations from Fig. 7
and Fig. 4, respectively. First, the EvoChecker results enable
the identification of the “point of diminishing returns” for
each system variant. The results from Fig. 7 show that design
options with costs above approximately 52 for FX Small, 61
for FX Medium and 94 for FX Large provide only marginal
response time and reliability improvements over the best
designs achievable for these costs. Likewise, the results in
Fig. 4 show that DPM designs with power use above 1.7W
yield insignificant reductions in the number of lost requests,
whereas designs with even slightly lower power use lead to
much higher request loss. This key information helps designers
avoid unnecessarily expensive solutions.

Second, we note the high density of design solutions in the
areas with low reliability (below 0.95) for the FX system in
Fig. 7, and with high request loss (above 0.09) for the DPM
system in Fig. 4. For the FX system, for instance, these corre-
spond to the use of the probabilistic service selection strategy,
for which numerous service combinations can achieve similar
reliability and response time with relatively low, comparable
costs. Opting for a design from this area will make the FX
system susceptible to failures, as when the only service invoked
for an FX operation fails, the entire workflow execution will
also fail. In contrast, reliability values above 0.995 correspond
to high-cost designs that use the sequential service selection
strategy, e.g., FX small must use the sequential strategy for
the Market watch and Fundamental analysis services in order
to achieve 0.996 reliability.

Third, the EvoChecker results reveal design parameters that
QoS properties are particularly sensitive to. For the FX system,
for example, we noticed a strong dependency of the workflow
reliability on the service selection strategy and the number of
services used for each operation. Designs from high-reliability
areas of the Pareto front not only use the sequential selection
strategy, but also require multiple services per FX operation
(e.g., three FX service providers are needed for success rates
above 0.99).

Finally, we note EvoChecker’s ability to produce solutions
that: (a) cover a wide range of values for the QoS attributes
from the optimisation objectives of the FX and DPM systems;
and (b) include alternatives with different trade-offs for fixed
values of one of these attributes. Thus, for 0.99 reliability, the
experiment from Fig. 7 generated four alternative FX Large
designs, each with a different cost and execution time. Similar
observations can be made for a specific value of either of
the other two QoS attributes. These results support the system
designers in their decision making.



Cam
era

-re
ad

y
E. Threats to Validity

Construct validity threats may be due to the simplifica-
tions and assumptions we made when modelling the DPM
and FX systems. To mitigate this threat, the DPM system,
model and requirements are based on a validated real-world
case study taken from the literature [55], [58], which we
were familiar with from our previous work [20]. For the FX
system, the model and requirements were developed in close
collaboration with a foreign exchange domain expert.

Internal validity threats can originate from the stochas-
tic nature of the optimisation algorithms employed in our
study. To mitigate these threats, we adopted the recommended
practice for empirical studies in this research area [6], [40].
In particular, we reported results over 30 repeated runs of
each experiment, and employed statistical tests to check for
significance in the achieved results. Thus, we used the Shapiro-
Wilk test to assess the normality of data, and the Kruskall-
Wallis and Dunn pairwise non-parametric tests to check for
statistical significance between the considered optimisation
algorithms. Finally, we set the chance of committing a Type I
error (α confidence limit) at 0.05, which is the standard value
recommended for these studies.

External validity threats might be due to the difficulty
of representing a software system and its QoS requirements
as a probabilistic model synthesis problem (Section III-C)
using EvoChecker constructs (2)–(4), constraints (5) and op-
timisation objectives (6). We limit this threat by specifying
EvoChecker probabilistic model templates in an extended
version of the high-level modelling language of PRISM [47], a
widely-used probabilistic model checker [52]. Moreover, given
the generality of the EvoChecker constructs (2)–(4), other
probabilistic modelling languages (e.g., those of the model
checkers MRMC [42], [43] and Ymer [62]) can be naturally
supported. Additionally, EvoChecker supports a wide range
of probabilistic models and temporal logics (Table I). Finally,
to further reduce the risk that EvoChecker might be difficult
to use in practice, we validated it through application to
several variants of two realistic software systems with diverse
characteristics in terms of application domain, size, complexity
and requirements. Nevertheless, we are aware that our findings
are by no means conclusive for all types of software systems,
and more experiments are required to confirm the generality
of the EvoChecker approach and tool.

VI. RELATED WORK

Search-based software engineering (SBSE) [40] has been
successfully used in areas ranging from project manage-
ment [30], [56], [59] and testing [5], [33], [38] to effort
estimation [50], software repair and evolution [21], [54] and
software product lines [37], [57]. However, as reported in
Harman et al.’s recent SBSE survey [39], this success does not
yet extend to model checking. The only SBSE applications that
we are aware of in this area are the approaches in [41], [44],
which employ genetic evolution to synthesise model checking
specifications, and the work in [1], [2], which uses ant colony
optimisation to find counterexamples for large models.

To the best of our knowledge, EvoChecker is the first SBSE
approach to synthesising Pareto-optimal sets of probabilistic
models for QoS software engineering. As mentioned in Sec-
tion I, the only related work we are aware of belongs to the area

of model repair [16], [63]. Unlike EvoChecker, most model
repair research so far has focused on non-probabilistic mod-
els [15], [16], [22], [23], [49]. Also different from EvoChecker,
these approaches support a single type of model, and target its
“repair” with respect to a single temporal logic property.

In the probabilistic model checking domain, model repair
involves automatically modifying the transition probabilities of
a model that violates a formally-specified property in order to
obtain a new model that satisfies the property and is “close”
to the original model [10], [11], [24]. As probabilistic model
repair modifies the original model only at transition probability
level, and only to satisfy a single temporal logic property,
its applicability is limited. In contrast, EvoChecker handles
multiple QoS requirements and uses multiobjective optimi-
sation to derive a set of probabilistic models that approxi-
mates the Pareto-optimal model set associated with these QoS
requirements. We confirmed that EvoChecker subsumes the
capabilities of probabilistic model repair by replicating the
results of the IPv4 Zeroconf Protocol [10] and Network Virus
Infection [24] case studies. Due to space constraints, we report
the results of these extra experiments on our project website.

Finally, [32] synthesises Pareto front approximations over
the policies of Markov decision processes (MDPs). However,
its applicability is limited to fully specified MDPs, to a subset
of probabilistic computation tree logic (i.e., reachability and
expected total reward formulae), and to the finite search
spaces that can be encoded as MDP policies. In contrast,
EvoChecker fully supports all types of models and logics
from Table I, and solves a more general problem by starting
from incompletely specified probabilistic model templates with
potentially infinite search spaces (due to evolvable double
parameters and distributions). Moreover, the implementation
in [32] currently supports only up to 3 optimisation objectives,
while EvoChecker does not have this limitation.

VII. CONCLUSION

We defined the probabilistic model synthesis problem,
and introduced EvoChecker, the first tool-supported search-
based approach that tackles this problem with a focus on
QoS software engineering. EvoChecker uses multiobjective
optimisation genetic algorithms to automate the synthesis of
approximate Pareto-optimal probabilistic model sets associated
with the QoS requirements of a software system. We evaluated
the EvoChecker approach and tool within two case studies
from different domains, showing its effectiveness, applicability
and flexibility.

The future research directions for EvoChecker include
extending its applicability to other modelling formalisms and
verification logics by exploiting established quantitative model
checkers such as UPPAAL [12], exploring alternative multi-
objective optimisation [34], and integrating the EvoChecker
approach with our related work on runtime probabilistic model
checking [17], [18], [19], [31], [35]. The further exploration
of the EvoChecker usability and performance, and its applica-
bility to other domains represent areas of future work.

ACKNOWLEDGEMENTS
This paper presents research sponsored by UK MOD.

The information contained in it should not be interpreted as
representing the views of the UK MOD, nor should it be
assumed it reflects any current or future UK MOD policy.



Cam
era

-re
ad

y
REFERENCES

[1] E. Alba and F. Chicano. Finding safety errors with ACO. In 9th Intl.
Conf. on Genetic and Evolutionary Computation (GECCO’07), pages
1066–1073, 2007.

[2] E. Alba and F. Chicano. Searching for liveness property violations
in concurrent systems with ACO. In 10th Intl. Conf. on Genetic and
Evolutionary Computation (GECCO’08), pages 1727–1734, 2008.

[3] R. Alur and T. Henzinger. Reactive modules. Formal Methods in System
Design, 15(1):7–48, 1999.

[4] S. Andova, H. Hermanns, and J.-P. Katoen. Discrete-time rewards
model-checked. In Formal Modeling and Analysis of Timed Systems
(FORMATS’03), volume 2791 of LNCS, pages 88–104. 2004.

[5] J. Andrews, T. Menzies, and F. Li. Genetic algorithms for randomized
unit testing. IEEE Trans. on Software Engineering, 37(1):80–94, 2011.

[6] A. Arcuri and L. Briand. A practical guide for using statistical tests
to assess randomized algorithms in software engineering. In 33rd Intl.
Conf. on Software Engineering (ICSE’11), pages 1–10, 2011.

[7] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous
time Markov chains. In Computer Aided Verification (CAV’96), pages
269–276, 1996.

[8] C. Baier and J. P. Katoen. Principles of Model Checking. MIT Press,
2008.

[9] C. Baier, J. P. Katoen, and H. Hermanns. Approximate symbolic model
checking of continuous-time Markov chains. In 10th Intl. Conf. on
Concurrency Theory (CONCUR’99), volume 1664 of LNCS, pages 146–
161, 1999.

[10] E. Bartocci, R. Grosu, P. Katsaros, C. Ramakrishnan, and S. A. Smolka.
Model repair for probabilistic systems. In 17th Intl. Conf. on Tools and
Algorithms Construction and Analysis of Systems (TACAS’11), pages
326–340. 2011.

[11] M. Benedikt, R. Lenhardt, and J. Worrell. LTL model checking of
interval Markov chains. In 17th Intl. Conf. on Tools and Algorithms
Construction and Analysis of Systems (TACAS’13), pages 32–46. 2013.

[12] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL
- a tool suite for automatic verification of real-time systems. Springer,
1996.

[13] A. Bianco and L. de Alfaro. Model checking of probabilistic and
nondeterministic systems. In 15th Intl. Conf. on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’95), volume
1026 of LNCS, pages 499–513, 1995.

[14] B. Boehm and V. R. Basili. Software Defect Reduction Top 10 List.
Computer, 34(1):135–137, Jan. 2001.

[15] B. Bonakdarpour and S. S. Kulkarni. Automated model repair for
distributed programs. ACM SIGACT News, 43(2):85–107, 2012.

[16] F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone. Enhancing model
checking in verification by AI techniques. Artificial Intelligence,
112:57–104, 1999.

[17] R. Calinescu, S. Gerasimou, and A. Banks. Self-adaptive software
with decentralised control loops. In 18th Intl. Conf. on Fundamental
Approaches to Software Engineering (FASE’15), volume 9033 of LNCS,
pages 235–251. 2015.

[18] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola. Self-
adaptive software needs quantitative verification at runtime. Communi-
cations of the ACM, 55(9):69–77, September 2012.

[19] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli. Dynamic QoS management and optimization in service-based
systems. IEEE Trans. on Software Engineering, 37:387–409, 2011.

[20] R. Calinescu and M. Z. Kwiatkowska. Using quantitative analysis
to implement autonomic IT systems. In 31st Intl. Conf. on Software
Engineering (ICSE’09), pages 100–110, 2009.

[21] G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. An approach
for QoS-aware service composition based on genetic algorithms. In 7th
Intl. Conf. on Genetic and Evolutionary Computation (GECCO’05),
pages 1069–1075, 2005.

[22] M. Carrillo and D. A. Rosenblueth. CTL update of Kripke models
through protections. Artificial Intelligence, 211(0):51 – 74, 2014.

[23] G. Chatzieleftheriou, B. Bonakdarpour, S. A. Smolka, and P. Katsaros.
Abstract model repair. In NASA Formal Methods, pages 341–355. 2012.

[24] T. Chen, E. M. Hahn, T. Han, M. Kwiatkowska, H. Qu, and L. Zhang.
Model repair for Markov decision processes. In 7th Intl. Symp. on
Theoretical Aspects of Software Engineering. (TASE’13), pages 85–92,
2013.

[25] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press,
1999.

[26] L. O. Damm and L. Lundberg. Company-wide implementation of
metrics for early software fault detection. In 29th Intl. Conf. on Software
Engineering (ICSE’07), pages 560–570, 2007.

[27] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on
Evolutionary Computation, 6(2):182–197, 2002.

[28] J. J. Durillo and A. J. Nebro. jMetal: A Java framework for multi-
objective optimization. Advances in Engineering Software, 42:760–771,
2011.

[29] J. J. Durillo, A. J. Nebro, C. A. Coello Coello, J. Garcı́a-Nieto,
F. Luna, and E. Alba. A study of multiobjective metaheuristics when
solving parameter scalable problems. IEEE Trans. on Evolutionary
Computation, 14(4):618–635, 2010.

[30] F. Ferrucci, M. Harman, J. Ren, and F. Sarro. Not going to take this
anymore: Multi-objective overtime planning for software engineering
projects. In 35th Intl. Conf. on Software Engineering (ICSE’13), pages
462–471, 2013.

[31] A. Filieri, C. Ghezzi, and G. Tamburrelli. A formal approach to adaptive
software: continuous assurance of non-functional requirements. Formal
Aspects of Computing, 24(2):163–186, 2012.

[32] V. Forejt, M. Kwiatkowska, and D. Parker. Pareto curves for probabilis-
tic model checking. In 10th Intl. Symp. on Automated Technology for
Verification & Analysis, volume 7561 of LNCS, pages 317–332, 2012.

[33] G. Fraser and A. Arcuri. Whole test suite generation. IEEE Trans. on
Software Engineering, 39(2):276–291, 2013.

[34] X. Gandibleux. Metaheuristics for multiobjective optimisation, volume
535. Springer Science & Business Media, 2004.

[35] S. Gerasimou, R. Calinescu, and A. Banks. Efficient runtime quantita-
tive verification using caching, lookahead, and nearly-optimal reconfig-
uration. In 9th Intl. Symp. on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS’14), pages 115–124, 2014.

[36] H. Hansson and B. Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6(5):512–535, 1994.

[37] M. Harman, Y. Jia, J. Krinke, W. B. Langdon, J. Petke, and Y. Zhang.
Search based software engineering for software product line engineer-
ing: A survey and directions for future work. In 18th Intl. Software
Product Line Conf., pages 5–18, 2014.

[38] M. Harman, Y. Jia, and W. B. Langdon. Strong higher order mutation-
based test data generation. In 19th ACM SIGSOFT Symposium and
the 13th European Conf. on Foundations of Software Engineering
(ESEC/FSE’11), pages 212–222, 2011.

[39] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software
engineering: Trends, techniques and applications. ACM Computing
Surveys, 45(1):11:1–11:61, 2012.

[40] M. Harman, P. McMinn, J. de Souza, and S. Yoo. Search based software
engineering: Techniques, taxonomy, tutorial. In Empirical Software
Engineering and Verification, volume 7007 of LNCS, pages 1–59. 2012.

[41] C. Johnson. Genetic programming with fitness based on model
checking. In Genetic Programming, volume 4445 of LNCS, pages 114–
124. 2007.

[42] J. P. Katoen, M. Khattri, and I. S. Zapreev. A Markov reward model
checker. In 2nd Intl. Conf. on Quantitative Evaluation of Systems
(QEST’05), pages 243–244, 2005.

[43] J. P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N.
Jansen. The ins and outs of the probabilistic model checker MRMC.
Performance Evaluation, 68(2):90–104, 2011.

[44] G. Katz and D. Peled. Synthesis of parametric programs using
genetic programming and model checking. In 15th Intl. Workshop on
Verification of Infinite-State Systems (INFINITY’13), pages 70–84, 2013.

[45] J. R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, Cambridge, MA, USA,
1992.



Cam
era

-re
ad

y
[46] M. Kwiatkowska. Quantitative verification: Models, techniques and

tools. In 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering (ESEC/FSE’07), pages 449–458, 2007.

[47] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In 23rd Intl. Conf. on Computer
Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591,
2011.

[48] M. Z. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic
model checking with PRISM: A hybrid approach. Int. Journal on
Software Tools for Technology Transfer, 6(2):128–142, 2004.

[49] U. Martinez-Araiza and E. Lopez-Mellado. A CTL model repair method
for Petri Nets. In World Automation Congress (WAC’14), pages 654–
659, 2014.

[50] L. L. Minku and X. Yao. Software effort estimation as a multiobjective
learning problem. ACM Trans. on Software Engineering and Method-
ology, 22(4):35:1–35:32, 2013.

[51] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba.
MOCell: A cellular genetic algorithm for multiobjective optimization.
Intl. Journal of Intelligent Systems, 24(7):726–746, 2009.

[52] G. Norman and D. Parker. Quantitative verification: Formal guarantees
for timeliness, reliability and performance. Technical report, The
London Mathematical Society and the Smith Institute, 2014.

[53] A. Pnueli. The temporal logic of programs. In 18th Annual Symp. on
Foundations of Computer Science, pages 46–57, 1977.

[54] K. Praditwong, M. Harman, and X. Yao. Software module clustering as
a multi-objective search problem. IEEE Trans. on Software Engineering,
37(2):264–282, March 2011.

[55] Q. Qiu, Q. Qu, and M. Pedram. Stochastic modeling of a
power-managed system-construction and optimization. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems,
20(10):1200–1217, 2001.

[56] J. Ren, M. Harman, and M. Di Penta. Cooperative co-evolutionary
optimization of software project staff assignments and job scheduling.
In 3rd Intl. Symp. on Search Based Software Engineering (SSBSE’11),
volume 6956 of LNCS, pages 127–141. 2011.

[57] A. Sayyad, J. Ingram, T. Menzies, and H. Ammar. Scalable product line

configuration: A straw to break the camel’s back. In 28th Intl. Conf.
on Automated Software Engineering (ASE’13), pages 465–474, 2013.

[58] A. Sesic, S. Dautovic, and V. Malbasa. Dynamic power management
of a system with a two-priority request queue using probabilistic-
model checking. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 27(2):403–407, 2008.

[59] C. Stylianou, S. Gerasimou, and A. Andreou. A novel prototype
tool for intelligent software project scheduling and staffing enhanced
with personality factors. In 24th Intl. Conf. on Tools with Artificial
Intelligence (ICTAI’12), pages 277–284, 2012.

[60] D. A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Clas-
sifications, Analyses, and New Innovations. PhD thesis, 1999.

[61] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal
methods: Practice and experience. ACM Computing Surveys, 41(4):19,
2009.

[62] H. L. S. Younes. Ymer: A statistical model checker. In 17th Intl. Conf.
on Computer Aided Verification (CAV’05), volume 3576 of LNCS, pages
429–433. 2005.

[63] Y. Zhang and Y. Ding. CTL model update for system modifications.
Journal of Artificial Intelligence Research (JAIR), 31:113–155, 2008.

[64] E. Zitzler, D. Brockhoff, and L. Thiele. The hypervolume indicator
revisited: On the design of pareto-compliant indicators via weighted
integration. In 4th Intl. Conf. on Evolutionary Multi-criterion Opti-
mization (EMO’07), pages 862–876, 2007.

[65] E. Zitzler, J. Knowles, and L. Thiele. Quality assessment of Pareto set
approximations. In Multiobjective Optimization, volume 5252 of LNCS,
pages 373–404. 2008.

[66] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength
Pareto evolutionary algorithm. In Evolutionary Methods for Design
Optimization and Control with Applications to Industrial Problems
(EUROGEN’01), pages 95–100, 2001.

[67] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach. IEEE Trans.
on Evolutionary Computation, 3(4):257–271, 1999.

[68] E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and V. da Fonseca.
Performance assessment of multiobjective optimizers: an analysis and
review. IEEE Trans. on Evolutionary Computation, 7(2):117–132, 2003.


