SLP2012 July 6, 2012

Phonetic influences in the perception and production of interdental fricatives

Kathleen Brannen McGill / UQAM

brannen.kathleen@uqam.ca

Observation: Learners of L2 English substitute different sounds in place of the interdental fricatives depending on their L1 (= differential substitution (Weinberger 1988)).

Common substitutes = [t,d] or [s,z] or [f,v]

Differential substitution occurs despite the various L1s having these segments in their phonemic inventories.

This Study

- o Languages investigated: Japanese (JA), Russian (RU), European French (EF), Québec French (QF)
- o [s,z] substitute: JA & EF (e.g. Hancin-Bhatt 1994 (JA), Berger 1951 (EF))
- [t,d] substitute: RU & QF (e.g. Weinberger 1988 (RU), Gatbonton 1978 (QF))

Previous Studies

- Weinberger (1988) Radical Underspecification. L2 data informs L1 underlying representations.
- Hancin-Bhatt (1994) Feature Competition Model. Features used to make most contrasts are most heavily weighted.
- Brown (1998) Feature Geometry. Non-contrastive features cannot be acquired.
- LaCharité & Prévost (1999) Feature Geometry. Terminal features easier to acquire than organizational nodes.
- Lombardi (2003) Optimality Theory. L1 affrication causes re-ranking from initial unmarked state so that IDENT CONTINUANT is highly ranked.

Hypotheses of Present Research

- 1. Differential substitution is due to transfer from the L1.
- 2. Transfer in production is caused by transfer in perception.
- 3. Transfer of non-contrastive, phonetic features is involved in substitution.
 - Choice of substitute depends on a comparison of the phonetic properties of the target segment with phonetic properties of segments in the L1 sound system.
- 4. Features are subject to enhancement (e.g. Stevens, Keyser, Kawasaki 1989).

-2 -1 0 +1 +2	Feature	Inherent Weight	Enhanced Weight
	Labial, Coronal, Dorsal	2	n/a
Mismatch region Target region	Stop, Continuant	1	Mellow enhances stop \rightarrow 2
	Strident, Mellow 1 Strident enhances		Strident enhances Continuant \rightarrow 2
	Lip, Dental, Alveolar, Post-Alv	1	Alv, Post-Alv enhance Strident $\rightarrow 2$
Intake	Laminal, Apical	1	n/a
$\{\theta,\delta\}$ salient COR $+2$	Round, Unround	1	n/a
CONT +1			
MELL +1			
DENT +1			
LAM +1			

Phonetic detail: EF [s] "weak" (muted) STRIDENT VS. QF [s] "strong" (enhanced) STRIDENT **EF Predictions OF Predictions**

Potential Substitute	Mismatches	Distance	Total Distance	Potential Substitute	Mismatches	Distance	Total Distance
۶ [s,z]	enhanced CONT +2 STRID -1	1 2	3	☞ [ṭ,ḍ]	enhanced STOP -2	3	3
Γ£ τ.1	salient LAB -2	4	4	[f,v]	salient LAB -2	4	4
[f,v]				[s,z]	enhanced CONT +2	1	
[t̞,d̞]	enhanced STOP -2	3	.	[3,2]	ALV -1	2	6
	AP -1	2	5		enhanced STRID - 2	3	

Phonetic detail: RU EF [s] "weak" STRIDENT VS. JA [s] no STRIDENT

RU Predictions

JA Predictions

Potential Substitute	Mismato	ches	Distance	Total Distance
☞ [s,z]	enhanced Co	ONT +2 FRID -1	1 2	3
☞ [t,d]	enhanced \$7	гор -2	3	3
[f,v]	salient L	AB -2	4	4

Potential Substitute	Mismatches	Distance	Total Distance
☞ [<u>s,z]</u>		0	0
☞ [ø]	salient LAB -2	4	4
[t,d]	salient LAB -2	4	4

Methodology

- Perception:

- AXB Discrimination. Participants: 2 proficiencies: Low vs. High. Low N = EF 8, QF 10, JA 10, RU 10; High N = EF 12, QF 13, JA 7; English controls N = 9. Other Factors. Vowel: High Front (HF), High Back (HB), Non-High (NH). Wordhood: ± Word. Task: Two Interstimulus intervals (ISI) – phonetic (250ms) vs. phonological (1500ms). Different carrier phrases, different talkers. 1:1 Test:Filler ratio. Participant indicates whether AX or XB are the same.

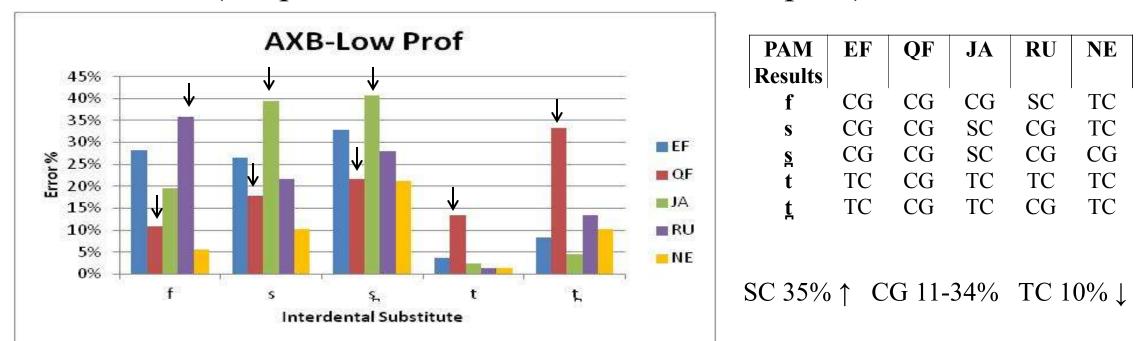
You hear thought...I learn taught...You hear taught.

-Picture Identification (PicID). Participants: 2 proficiencies: Low vs. High. Low N = EF 11, QF 9, JA 8, RU 8; High N = EF 9, QF 11, JA 8; English controls N = 9. *Other Factors: Vowel:* HF, HB, NH. Position: Onset vs. Coda. Voicing: ± voice. Task: Three pictures (minimal pair, 1 foil). Participant selects the one s/he hears.

- Statistical analysis: Mixed ANOVA and Non-Parametrics.
- Production:
 - Word Production: Participants: Low proficiency only. N = EF 5, QF 7, JA 5, RU 8. 3:1 Test:Filler ratio. Test word pairs – "th" target in same position. Participant pronounces the word in the largest font.

thing think

Predictions for AXB


Phonetic Distance & Perceptual Assimilation Model (Best 1995)

Two-Category Assimilation (TC)		Category- Goodness Assimilation (CG)			Single-Category Assimilation (SC)			
Intake	{x}	{y }	Intake	{x}	$\{z\}$	Intake	{x}	$\{\mathbf{w}\}$
	\downarrow	\downarrow		\downarrow	\downarrow		\downarrow	\downarrow
Distance	2	3	Distance	2	0	Distance	2	2
	\downarrow	\downarrow		7	L		7	L
L1 categories	[a]	[b]	L1 category	[a	.]	L1 categor	y [a]
Good		Moderate		Poor				
Discrimination		Discrimination		Discrimination				

Contrast	ISI	EF	QF	JA	RU	NE
f-θ	Short (Phonetic)	TC	TC	TC	TC	TC
	Long (Phonological)	TC	TC	CG	CG	TC
s-θ	Short (Phonetic)	CG	TC	CG	CG	TC
	Long (Phonological)	SC	SC	SC	CG	TC
t-θ	Short (Phonetic)	TC	CG	TC	CG	TC
	Long (Phonological)	TC	TC	TC	CG	TC

(Red = Confirmed by Results where Short ≠ Long predictions)

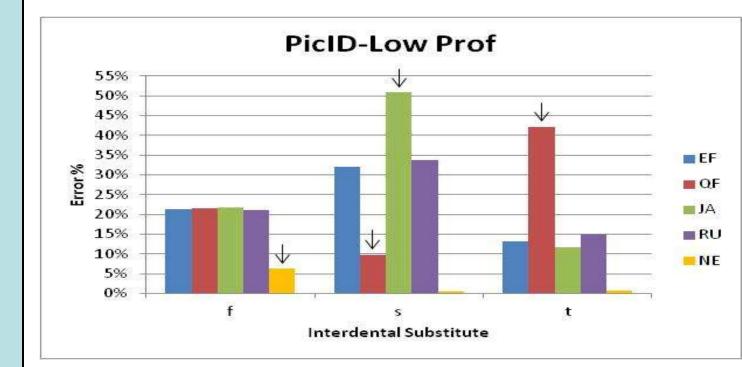
Results AXB (Graph: Real Words; ISI, Vowels collapsed)

- ISI: Main effect, no interactions; therefore, phonetic level only.

Words easier (10% error) than Non-Words (25%) (p < .001).

- Contrast [s/s] vs. [θ]: JA (no strident) > EF,RU (muted strident) > QF,NE (enhanced strident). RU: low error rate on [t/t] vs. $[\theta]$.

- Vowel x Language: [s/s] vs. $[\theta]$: JA most errors before HF (45% error) vs. other vowels (35%); **QF** least errors before HF (10%) vs. other vowels (25%) (p = .001). - Wordhood: [f- θ]: Words (5% error) easier than Non-Words (45%) (p < .001); [t- θ] for **QF** –

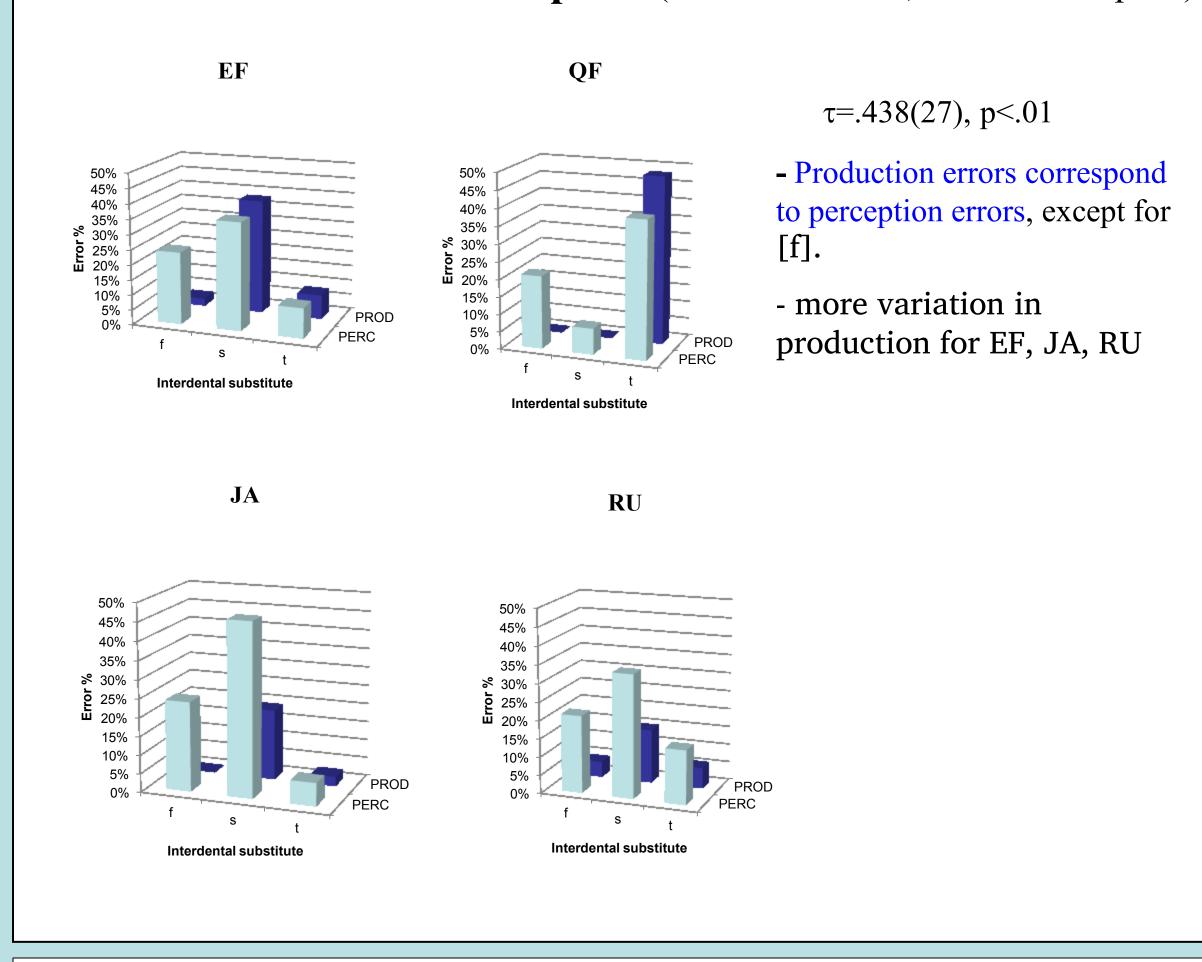

Predictions for PicID if only contrastive features available

EF, QF, JA:

Intake {θ}	CONTINUANT CORONAL	
Potential Substitute	Mismatches	Featural Conflicts
~ /s/		0
/t/	STOP	1
/f/	LABIAL	1

RU:		
Intake {θ}	CONTINUANT	
	CORONAL	
	MELLOW	
Potential Substitute	Mismatches	Featural Conflicts
~ /f/	LABIAL	1
~ /t/	STOP	1
~ /s/	STRIDENT	1

Results PicID (Graph: Voiceless Onset; Vowels collapsed)


EF, JA, RU /S/ QF F/t/

- Contrast $/s-\theta/$: JA > EF,RU > QF,NE same as AXB; suggests non-contrastive features playing a role at phonological level.

-Vowel x Position: /f-θ/ easier before NH (5% error) vs. HF (35%) in Onset; opposite in Coda: NH (45%), HF (25%) (p<.001).

- Voicing x Language (Coda only): For QF /d-ð/ easier (25% error) than /t-θ/ (35%); for $JA/z-\delta/(35\%)$ easier than /s- $\theta/(45\%)$ (p<.001).

Results Production vs. Perception (Voiceless Onset; Vowels collapsed)

Differential substitution is shown to have a perceptual basis.

The non-contrastive feature STRIDENT plays an important role in the perception of the English interdental fricatives.

Results indicate cross-linguistic differences in the representation of STRIDENT (Brannen 2011).

REFERENCES: **Berger (1951)** The American English Pronunciation of Russian Immigrants. PhD Dissertation, Columbia University. **Best (1995)** A direct realist view of cross-language speech perception. In W. Strange, *Speech Perception and* Linguistic Experience: Issues in Cross-Language Research. (pp. 171-204). Timonium, MD: York Press. Brannen (2011) The Perception and Production of Interdental Fricatives in Second Language Acquisition. PhD Dissertation, McGill University. **Brown (1998)** The role of the L1 grammar in the L2 acquisition of segmental structure. *Second Language* Research, 14, 136-193. Gatbonton (1978) Patterned phonetic variability in second language speech: A gradual diffusion model. Canadian Modern Language Review, 34, 335-347. Hancin-Bhatt (1994) Segment transfer: A consequence of a dynamic system. Second Language Research, 10 (3), 241-269. LaCharité & Prévost (1999) Le rôle de la langue maternelle et de l'enseignement dans l'acquisition des segments de l'anglais langue seconde par des apprenants francophones. Langues et linguistique, 25, 81-109. Lombardi (2003) Second language data and constraints on Manner: Explaining substitutions for the English interdentals. Second Language Research, 19 (3), 225-250. Stevens, Keyser & Kawasaki (1989) Toward a Phonetic and Phonological Theory of Redundant Features. In J. S. Perkell, & D. H. Klatt (Eds.), *Invariance and Variability in Speech Processes* (pp. 426-463). Hillsdale, NJ: Lawrence Erlbaum. Weinberger (1988) Theoretical Foundations of Second Language Phonology. PhD Dissertation. University of Washington.