UNIVERSITY OF YORK

BA Degree Examinations 2001-2002

DEPARTMENT OF LANGUAGE AND LINGUISTIC SCIENCE

L433: Introduction to Computational Linguistics

Time allowed: $1\frac{1}{2}$ hours

Answer ALL questions Total marks: 130

(1)	For each of the following	
	(a) explain what the expression means, and	(5 marks)
	(b) state what kind of language it defines	(5 marks)
	(i) $\alpha A \gamma \Rightarrow \alpha \beta \gamma$ where $\beta \neq \epsilon$	
	(ii) $A \Rightarrow \alpha$	
(2)	(a) What kind of language is $a^n b^n$?	(5 marks)
	(b) What kind of language is $a^n b^n c^n$?	(5 marks)
	(c) Write a grammar to define the language $a^n b^n$.	(5 marks)
	(d) Is it possible to define the language $a^n b^n c^n$ using a Definite Clause Grammar?	$(5 \mathrm{ marks})$

(3) Given the following grammar,

Continued Turn over

$\begin{array}{lll} S \rightarrow NP \ VP & Kim: N \\ NP \rightarrow N & a: D \\ NP \rightarrow D \ N & man: N \\ NP \rightarrow NP \ PP & stick: N \\ VP \rightarrow V \ NP & with: P \\ VP \rightarrow VP \ PP & hit: V \\ PP \rightarrow P \ NP \end{array}$				
(a) Provide one top-down left-to-right derivation for the (10 marks) string <i>Kim hit a man with a stick</i> .				
(a) Provide one bottom-up left-to-right derivation for the same string.	$(10 \mathrm{ marks})$			
(c) A top-down, depth-first, left-to-right parser would encounter infinite search while attempting to parse the string Kim hit a man with a stick with respect to the above grammar.				
(i) Would this problem be alleviated by changing the direction of parsing to right-to-left? Explain.	$(10 \mathrm{ marks})$			
(ii) Would this problem be alleviated by changing to a bottom-up parser? Explain.	(10 marks)			
The time complexity of the recognition of Context Free Phrase Structure Languages is $O(kn^3)$.				
(a) Explain what this expression means.				
(a) What is the time complexity of Context Free <i>parsing</i> ?	(10 marks)			
(c) What is the significance of this for the parsing of natural languages?	(10 marks)			

(5) Given the following grammar,

(4)

Continued Turn over

$S \to NP \ VP$	Kim: N
$NP \to N$	a:D
$NP \to D \ N$	man : N
$VP \to V \ NP$	hit: V

Give a parse of the sentence *Kim hit a man* using a (10 marks) shift-reduce parser, showing the state of the stack and buffer at each stage of the parse.

- (6) Rewrite the grammar in question 5 as a Prolog Definite (10 marks) Clause Grammar.
- (7) What are the advantages and disadvantages of compiling a (10 marks) parser over a grammar?