
L333 Introduction to Prolog –answers to
exercises and discussion

Solution 1 Database problems
brother/2

First attempt:

brother(X, Y):-

male(X),

male(Y),

parent(P, X),

parent(P, Y).

|?- brother(X,Y).

X = harry

Y = harry ;

X = harry

Y = harry ;

X = harry

Y = wills ;

X = harry

Y = wills ;

X = wills

Y = harry ;

X = wills

Y = harry ;

X = wills

Y = wills ;

X = wills

Y = wills ;

1

no

One problem here is that among the results returned are:

X = harry

Y = harry ;

X = wills

Y = wills ;

The first definition of brother/2 is incorrect. It requires an additional con-
dition to the effect that the two individuals must be different:

brother(X, Y):-

male(X),

male(Y),

parent(P, X),

parent(P, Y),

different(X, Y).

You are not in a position to implement different/2 as yet, because it ex-
ceeds the scope of database Prolog. We will return to this at a later date.
However, even if this additional condition is included, the results may not be
what you expect:

|?-brother(X,Y).

X = harry

Y = wills ;

X = harry

Y = wills ;

X = wills

Y = harry ;

X = wills

Y = harry ;

no

2

The goal returns two sets of identical responses. Why?

son/2

son(X, Y):-

male(X),

parent(Y, X).

daughter/2

daughter(X, Y):-

female(X),

parent(Y, X).

married/2

This needs to be entered as a set of facts. It is not possible to deduce a
marriage relationship from any of the other facts in the database.

married(liz, phil).

married(di, chas).

These facts will provide correct answers to goals matching the facts, but will
not produce positive answers to goals such as:

married(phil, liz).

One solution to this would be to add this as a new fact. The disadvantage of
this strategy is that, for every marriage relationship, we would have to enter
two new facts into the database, when there is a generalisation available:
∀x.∀ymarried(x, y)⊃ married(y, x)
’married’ is a symmetrical predicate.
In theory, this translates straightforwardly into Prolog:

married(X, Y):-

married(Y, X).

Here is the response, given the following facts and rule

3

married(X, Y):-

married(Y, X).

married(liz, phil).

married(di, chas).

to the goal

|?-married(X, Y).

{ERROR: Out of address space}

{Execution aborted}

The problem is that the rule calls itself repeatedly, without ever coming
up with a solution. Even if the order of facts and goals in the program is
reversed, ensuring that at least two solutions are found,

married(liz, phil).

married(di, chas).

married(X, Y):-

married(Y, X).

the program will still produced an infinite set of solutions, of which the
following are a small subset:

X = liz

Y = phil ;

X = di

Y = chas ;

X = phil

Y = liz ;

X = chas

Y = di ;

X = liz

Y = phil ;

4

X = di

Y = chas ;

X = phil

Y = liz ;

X = chas

Y = di ;

X = liz

Y = phil

[terminated by user]

The moral is that, with respect to symmetrical predicates, logic and Prolog
are not equivalent. Prolog is not complete (i.e. it won’t necessarily find all
solutions). There is, however, a trick for avoiding this behaviour: to ensure
that the rule and the facts do not use the same predicate name:

married_to(liz, phil).

married_to(liz, phil).

married(X, Y):-

married_to(X,Y).

married(X, Y):-

married_to(Y,X).

ancestor/2

For this we need some parent/2 facts:

parent(george_v, george_v1).

parent(george_v1, liz).

parent(phil, chas).

parent(liz, chas).

parent(chas,harry).

5

parent(chas,wills).

parent(di,harry).

parent(di,wills).

The starting point is to observe that all parents are ancestors of their
children:

ancestor(P, C) :-

parent(P, C).

We could use this as a model for including the ancestor relationship which
exists between grandparents and grandchildren, by including a double call
to parent in the body of a second clause for ancestor/2, but this would not
be a good move, because there is no limit on the number of generations that
can be involved in the ancestor relationship. Instead, the second clause in
the definition of the rule should be like this:

ancestor(A, D):-

parent(A, C),

ancestor(C, D).

So, A is D’s ancestor A has a child who is D’s ancestor.
This definition brings up a very important point: the definition of ancestor

refers to itself. It is a recursive definition.

6

Solution 2 second/2

second([_, Second|_], Result):-

Result = Second.

Solution 3 fifth/2

fifth([_, _, _, _, Five|_], Five).

The subtle part is to make provision for the list to be of any arbitrary length
greater than 5, by using the Head|Tail notation.

Solution 4 is list/1

Two clauses, one for the empty list and one for non-empty lists:

is_list([]).

is_list([_|_]).

Solution 5 cons/3

A version with explicit unification:

cons(First, List, Result):-

is_list(List),

Result = [First|List].

A slightly shorter, but equivalent, version is to ’unfold’ the goal Result
= [First|List] and put the relevant unification into the head of the rule,
as follows:

cons(First, List, [First|List]):-

is_list(List).

Solution 6 delete /3

This, like member/2, can be reduced to the case where the item to be
deleted is the head of the list, in which case the third argument simply
becomes whatever is left on the list (i.e. its tail):

delete(Item, [Item|Rest], Rest).

7

The recursion deals with those cases where the head of the list is not the
item sought. In that case, we disregard it and continue searching the tail of
the list. We also need to ensure that the disregarded item is returned as part
of the result:

delete(Item, [Head|Tail], Result):-

delete(Item, Tail, InterimResult),

Result = [Head|InterimResult].

(Again, this can be shortened by unfolding the explicit call to =/2, as follows:

delete(Item, [Head|Tail], [Head|InterimResult]):-

delete(Item, Tail, InterimResult).

Finally, we need a clause to cover cases where the item sought is not on the
list. In that case, the problem reduces to the case where we have reached the
end of the list:

delete(Item, [], []).

The complete definition is the following three clauses:

delete(Item, [Item|Rest], Rest).

delete(Item, [], []).

delete(Item, [Head|Tail], [Head|InterimResult]):-

delete(Item, Tail, InterimResult).

Solution 7 delete all/3

This is, in fact, just like delete/3, except that the procedure should not
halt when the item sought has been found, but should continue to search
the remainder of the list. The first clause in delete/3 should therefore be
replaced with the following:

delete_all(Item, [Item|Rest], Result):-

delete_all(Item, Tail, Result).

Note that, on this occasion, the head of the list being searched is ’thrown
away’, i.e. not preserved in the third argument (because that is what the
goal of delete all/3 is).

The complete definition is:

8

delete_all(Item, [], []).

delete_all(Item, [Item|Tail], Result):-

delete_all(Item, Tail, Result).

delete_all(Item, [Head|Tail], [Head|InterimResult]):-

delete_all(Item, Tail, InterimResult).

Solution 8 reverse/2

The base case of this definition is that where the list to be reversed has
been exhausted:

reverse([], []).

The recursion involves removing the head of the list (i.e. [Head|Tail]), and
then continuing to remove the initial item until the list is empty. When that
situation is reached, the reduced list is appended (using append/3) to a list
consisting only of the removed head. The resulting list (Result) is returned
as the value of the top-level call:

reverse([Head|Tail], Result):-

reverse(Tail, Reduced),

append(Reduced, [Head], Result).

Here is a sample trace:

| ?- reverse([a,b,c], X).

1 1 Call: reverse([a,b,c],_87) ?

2 2 Call: reverse([b,c],_371) ?

3 3 Call: reverse([c],_594) ?

4 4 Call: reverse([],_816) ?

4 4 Exit: reverse([],[]) ?

5 4 Call: append([],[c],_594) ?

5 4 Exit: append([],[c],[c]) ?

3 3 Exit: reverse([c],[c]) ?

6 3 Call: append([c],[b],_371) ? s

6 3 Exit: append([c],[b],[c,b]) ?

2 2 Exit: reverse([b,c],[c,b]) ?

8 2 Call: append([c,b],[a],_87) ? s

8 2 Exit: append([c,b],[a],[c,b,a]) ?

9

1 1 Exit: reverse([a,b,c],[c,b,a]) ?

X = [c,b,a] ?

yes

Solution 9 translate/2

We need a set of translations, coded here as facts with the predicate
translate word/2. You could have called your version anything you like,
and the order of arguments is immaterial.

translate_word(’John’, ’Jean’).

translate_word(is, est).

translate_word(an, un).

translate_word(idiot, imbecile).

The actual translation involves the usual recursive predicate, which works its
way down the list until it is empty. This gives the base clause:

translate([], []).

The recursion involves identifying the head of the input list (EH), looking up
its translation by a call to translate word/2. This translation (FH) becomes
the head of the output list, while the procedure continues the routine on the
remainder of the list (ET).

translate([EH|ET], [FH|FT]):-

translate_word(EH, FH),

translate(ET, FT).

10

