2 Simple Grammars and Parsers

2.3 Context-free phrase structure grammar

2.3.2 The grammar

G = (T,N,S,P)

where
1. T is a finite set of terminal symbols,
2. N is a finite set of nonterminal symbols,
3. S is a start symbol, and

4. P is a finite set of phrase-structure rules




Terminal symbols:
Nonterminal symbols:
Start symbol:

Phrase-structure rules:

“loby”, “drinks”, “scotch”, “on”, “ice”
S, NP, PName, VP, V, PP
S

S — NP VP
NP — PName

NP — scotch

VP — V NP
VP -V
VP — VP PP
PName — Toby
V — drinks
PP — on NP

NP — ice
NP — drinks
NP — NP PP

Grammar 2.1: Example CF-PSG




The set of nonterminal symbols is disjoint from the set of terminal
symbols; formally, we write that their intersection is empty:

TNN =0

In grammar 2.1, the nonterminal symbols are S, NP, PName, VP, V
and PP.

The start symbol is one of the nonterminal symbols:

SecN

It is a distinguished nonterminal used in defining the language
generated by the grammar. In grammar 2.1 (and in most
grammars), the start symbol is the nonterminal S.




If 3 is a finite set of symbols, then a string is a finite sequence of
those symbols.

For the set { Toby, drinks}, we can form strings such as

Toby

Toby drinks

drinks Toby

drinks drinks drinks drinks




We also allow one string that has no symbols in it at all. This string
Is called the empty string.

It is conventional to use the Greek letter epsilon

to denote the empty string. (e is not a member of the set of
symbols from which strings are being formed, it is just a convention
for denoting the empty string.)




For a set of symbols >, we write X* to denote the set of all strings
that can be formed from symbols in .

>2* includes the empty string, which clearly has length zero, and it
iIncludes all possible strings of length one, length two, length three,
and so on. X* is thus an infinite set.

For the set { Toby, drinks}, { Toby, drinks}* is the set some of
whose members are shown here:

{ '€, Toby, drinks, Toby Toby, Toby drinks, drinks Toby, drinks }
drinks, Toby Toby Toby, Toby Toby drinks, Toby drinks
Toby,. ..




We can now formally define the set P of context-free
phrase-structure rules as

PC N x (NUT)*

e (N UT) is the union of the nonterminal symbols and the
terminal symbols to form a single set of all grammar symbols.

e (N UT)*is the set of all strings of grammar symbols, i.e. all
strings that can be formed from the nonterminals and/or
terminals. These are the possible rule right-hand sides.




Notational conventions:

A, B, C,...as the nonterminal symbols of the language;

a, b, c,...as the terminal symbols of the language;

X,Y, Z, ...as grammar symbols (either terminals or
nonterminals);

w,x,Yy, z,...as possibly empty sequences of terminals; and

a, 3,7, ...as possibly empty sequences of terminals and/or
nonterminals. (These are meta-variables ranging over
non-terminals, terminals, etc.)




Derivations

Given a rule
A—p
If we have a string
a A~y
then we can rewrite this as

afy

using the rule.

We say a A~ directly derives a5~ using A — (.

This is written:

aAy = afy




A concrete example using the rule VP — V NP:

NPVP = NPVNP




We can ‘summarize’ the following sequence of rewrites (which uses
the rules NP — NP PP, PP — on NP and NP — PName in that order):

drinks NP = drinks NP PP
= drinks NP on NP
—  drinks PName on NP

using the symbol =:

*

drinks NP = drinks PName on NP

which says that drinks NP derives (in zero or more steps)

drinks PName on NP. More simply we just say that drinks NP
derives drinks PName on NP. (We also use = to mean ‘derives in
one or more steps’.)




e — is the reflexive, transitive closure of =

e = is just the transitive closure of =-.




Of most interest in defining languages is the case where a string
containing only terminal symbols is derived. Since it contains no
nonterminals it cannot be further ‘expanded’. For example:

VNP =V PName
= V Toby

= drinks Toby




And of more interest still is where such a derivation begins with the
start symbol of the grammar, as this is how we define the language
generated by a grammar.

The language for some grammar G = (T, N, S, P), written £(G), is
the set of all strings of terminal symbols, w, that can be derived
from the grammar’s start symbol, S:

LG)={weT*|S=>w}




For a grammar to generate an infinite language it must contain
some nonterminal, A, such that

e A is a useful nonterminal, where a nonterminal is useful if it
can be deployed in generating strings of terminal symbols from
the start symbol, i.e. if

S = ad8 = w
and

e In one or more steps, A can derive a string that contains A, i.e.

A = aAB




One trivial way in which some nonterminal can derive a string that
contains another instance of that nonterminal (A =Y aAp) is if the
grammar contains one or more recursive rules.

A rule is recursive if the nonterminal which appears on the
left-hand side of the arrow also appears on the right-hand side.

In grammar 2.1 an example is the rule NP — NP PP. With this rule,

grammar 2.1 can generate an infinite set of sentences: any NP in a
derivation can be expanded using NP — NP PP, which introduces
another NP, so this too can be expanded using NP — NP PP, and
SO on.

Thus, we can generate, e.g. “Toby drinks scotch”, “Ioby drinks
scotch on ice”, Toby drinks scotch on ice on ice”, and so on, I.e.
sentences comprising “Toby drinks scotch” followed by zero, one
or more instances of “on ice”.




A grammar that contained rules of the form A — aB and B — Ab,

or more complicated collections of rules along the same lines,

would generate an infinite language (provided again that A is a
useful nonterminal).




= NP VP
PName VP

S — NP VP)
NP — PName)

Toby V NP
Toby drinks NP
Toby drinks scotch

VP — V NP)
V — adrinks)
NP — scoftch)

(
(
Toby VP (PName — Toby)
(
(
(

Figure 6: Leftmost derivation of “Toby drinks scotch”
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Toby drinks scotch

Figure 9: Rightmost derivation of “Joby drinks scotch”




2.3.3 The lexicon

The set of syntactic categories (nonterminals) is split into two
disjoint sets:

e the phrasal categories, PC', and

e the lexical categories (or preterminal symbols), LC:

N =PCULC

PCNLC =10




The phrase-structure rules are similarly split into two.

e those that relate phrasal categories to strings of phrasal or
lexical categories; the grammar rules, GR

e those that relate lexical categories to words (terminal symbols);
the lexical entries, LFE, that form the lexicon.

GR c PC x (PC U LC)*

LECLCXT

This means that rules such as PP — on NP are no longer allowed.
Instead, the word “on” needs a lexical category, e.g. P, so that

rules of GR can mention this category, and its relationship to the
word “on” can be confined to the lexicon, LE.




We often use a different notation for lexical rules, e.g.:

drinks:V




Grammar Lexicon

S — NP VP Toby : PName

NP — PName scotch: N

NP — N ice:N

NP — NP PP drinks : N

VP — V NP drinks: V

VP -V on:P

VP — VP PP

PP — P NP

Grammar 2.2: Grammar 2.1 reformulated to use a lexicon




2.4 Evaluation of Grammars
2.4.1 Observational adequacy

1. At a bare minimum, a grammar must describe the well-formed
expressions of the language. The extent to which the strings
that a grammar generates tally with those that human
iInformants would judge to be grammatical is known as the
observational adequacy of the grammar.

. If there are expressions which humans would judge to be
grammatical but which the grammar cannot generate, then the
grammar is said to undergenerate.

. If there are strings that humans would judge to be
ungrammatical but which the grammar does generate, then the
grammar is said to overgenerate.




Generative capacity

The power of a formalism is referred to as its generative capacity.

There are then other languages (though they may not be natural
languages) that the CF-PSG formalism is not powerful enough to
characterize precisely.

If we attempt to devise a CF-PSG to generate such languages, the
grammars we come up with are doomed to undergenerate and/or
overgenerate.




Type 3: The regular grammars contain rules of the form

A — aB

A—a

A — €

These languages are referred to as regular languages.

Type 2: The context-free grammars, what we have been calling
the ‘context-free phrase-structure grammars’ contain rules of
the form

A — «

These grammars can describe a set of languages that is larger
than but includes the regular languages, the context-free
languages.




Type 1: The context-sensitive grammars contain rules are of the
form

aAy — afy
where 3 Is not empty.

They describe a set of languages that is larger than but

iIncludes the context-free languages, the context-sensitive
languages.

Type 0: The unrestricted grammars place no restrictions on the
format of the rules

a— (3

They describe the recursively enumerable languages, which

IS a set of languages that is larger than but includes the
context-sensitive languages.




Regular grammars cannot generate the set of strings of the form
ab"

l.e. n copies of some terminal symbol « followed by the same
number of copies of some terminal symbol b.

A—e¢ B—c¢
A — aA B — bB
A — aB

Grammar 2.3: A regular grammar for a™b™, n,m > 0




A derivation using grammar 2.3 of a string of the form a™b™, where

n = 3.

A aA

aaA
aaaB
aaabB
aaabbB
aaabbbB

aaabbb

=
=
=
=
=
=

4

(this derivation uses two instances of A — a A, one instance of
A — a B, three instances of B — b B, and then one instance of
B — €).




This seems to contradict the statement that such grammars cannot
generate strings of the form a™b™. However, the grammar can also
generate strings in which the number of as and bs are not equal,

e.g.

aA

The grammar overgenerates.




There is no regular grammar that we could write that would both

generate all strings of the form a™b™ and would exclude all strings
of the form a™b™ where m # n. Regular grammars are doomed to
overgenerate or undergenerate in this instance.




A — aAb
A—ce¢

Grammar 2.4: A CF-PSG for a™b™, n,m > 0




Is English Context-free?
(38) “The terrorist (that the x)" (y)* escaped.”

The terrorist (that the policemen)? (are looking for)' escaped

*The terrorist (that the policemen)’ escaped

The terrorist (that the policemen)? (that the court)? (is
prosecuting)’ (are looking for)? escaped

*The terrorist (that the policemen)’ (are prosecuting)’ (are looking
for)? escaped

*The terrorist (that the policemen)? (that the court)? (are looking
for)! escaped




Is English Context-sensitive?
Cross-serial (or intersecting) dependencies.

Constructions in which a string can be partitioned into two
non-overlapping substrings, and where there is a dependency
between each item in the first substring and its counterpart in the
second.

(39) “Toby, Andrew and Matria like beer, wine and scotch,
respectively.”

The interpretation required is that Toby drinks beer, Andrew drinks
wine and Maria drinks scotch.




Figure 10: Intersecting dependencies

LA 11

where a1, as, and as correspond to “Toby”, “Andrew” and “Maria’,

FE 11

and by, by, and b3 correspond to “beer’, “‘wine” and ‘scotch’.




This argument is empirically false:

It is not necessary for there to be matching elements in the two
halves of the construction.

Suppose Toby is reading a book and he exclaims:

(40) “Here is a coincidence, all the words on this page are five
letters long, except for the last three, which are one, two
and three words long, respectively”.

The phrase ‘the last three” picks out the candidates for the
matching, but without enumerating them; so we have one item in
the first half of the construction and three in the second half.




Dutch

(41) “..dat Jan [Marie Pieter Arabisch laat zien
...that Jan Marie Pieter Arabic let see

schrijven].”
write’
“...that Jan let Marie see Pieter write Arabic.”

From a purely syntactic point of view, the only requirement in this
construction is that the number of noun phrases appearing at the
beginning of the bracketed sequence in (41) should be indentical to
the number of verbs at its end. (l.e. it is an instance of a™b".)

Which verb matches up semantically with which verb phrase is
irrelevant syntactically because there is in Dutch (as in English) no
overt syntactic marker to indicate which NP goes with which verb.




Swiss German

(42) “..mer d’chind em Hans es
‘...we the children-ACC the Hans-DAT the

huus Iond halfe aastriiche.”
house-ACC let help paint’

“...we let the children help Hans paint the house.”

Each verb requires that its NP arguments be morphologically
marked with an appropriate case. The consequence of this is that
Swiss German exhibits a genuine cross-serial dependency (the

dependency is syntactic).




2.4.2 Descriptive adequacy

Observational adequacy: the grammar generates all and only the
expressions (i.e. strings of words) that a native speaker would

judge to be grammatical.

A grammar is descriptively adequate if it is observationally
adequate and assigns to the strings that it defines structural
descriptions which correctly capture the linguistically significant
generalisations about the language specified by the grammar.




Equivalence

A grammar G is weakly equivalent to a grammar G- if and only if
the language generated by (1 is equal to the language generated
by Gs.

A grammar G Is strongly equivalent to a grammar G- if and only if
they are weakly equivalent and the phrase-structures assigned by
(71 to the strings it generates are, in some sense, the ‘same’ as the
phrase-structures assigned by G- to the same strings.




NP — Det Nbar
Nbar — Adj Nbar
Nbar — N

Det — that

Adj — tipsy
N — knight

Grammar a

NP — DetP N
DetP — DetP Adj
DetP — Det

Det — that

Adj — tipsy
N — knight

Grammar b

Grammar 2.5: weakly equivalent grammars




I\

RN

DetP N

/\ |
DetP Adj  knight

Det  tipsy

|
knight that

Figure 11: Competing analyses of ‘“that tipsy knight”




e Applied to two grammars expressed in the same formalism,
e.g. two CF-PSGs, strong equivalence is virtually a vacuous
concept. Applied to two CF-PSGs, G; and G5, for example, it
comes close to requiring that GG; is G5. The extent to which
CF-PSGs G; and GG, can differ and yet remain strongly
equivalent is severely limited: since the names of the syntactic
categories are arbitrary, we can say that G, and G5 are
strongly equivalent if G5 uses a consistent renaming of the
nonterminals of GG;.

Strong equivalence is a more challenging notion if the
grammars being compared are expressed in different
formalisms, as then the question of whether the two grammars
assign the ‘same phrase-structures’ to corresponding strings
will not be simply a question of whether the two grammars
comprise structurally similar phrase-structure rules.




e Miller, Philip (2001) Strong Generative Capacity: The

Semantics of Linguistic Formalism. CSLI Publications,
Stanford CA.




2.4.3 Explanatory adequacy

Explanatory adequacy is something that theories of language,

rather than descriptions of individual languages, should aspire to.
An explanatorily adequate theory should correctly characterise the
notion ‘possible human language'’.




3 An Introduction to Parsing

S — NP VP Toby : PName

NP — PName scotch:N

NP — N ice:N

NP — NP PP arinks : N

VP — V NP arinks : V

\2 Y% on:P

VP — VP PP

PP — P NP

Grammar 3.1: lllustrative context-free phrase-structure grammar




3.1 Top-down and bottom-up parsing

e recognizer: a program which, given an input string,
determines whether or not the string is a well-formed
expression of the language described by the grammar. Such a
program returns simply a “yes” or “no” answer.

e parser: recognizer which additionally, when the string /s
well-formed, it does not simply return a “yes” answer; rather, it
will have computed one or more phrase-structure trees and it
returns these as its answer.




Two parsing strategies:

e In top-down parsing (hypothesis-driven, goal-driven or
expectation-driven parsing), the parser tries to build
phrase-structure trees starting from their root nodes, adding
branches and nodes until it reaches the leaves. Hence, such
parsers try to find a derivation from the grammar’s start symbol

to the given input string.

Bottom-up (or data-driven) parsers build phrase-structure
trees from the leaves, adding branches and nodes until they
reach the root. Hence, such parsers search for derivations in
the opposite direction to that used by top-down parsers,
beginning with the words themselves and trying to find a
sequence of rewrites that lead to a single category that can
form the root of the tree.




3.2 Working from left to right

NP VP
PName VP

Toby VP

Toby V NP

Toby drinks NP

Toby drinks NP PP

Toby drinks N PP

Toby drinks scotch PP
Toby drinks scotch P NP
Toby drinks scotch on NP

S — NP VP)
NP — PName)
Toby : PName)
VP — V NP)
drinks : V)
NP — NP PP)

scotch : N)
PP — P NP)
on: P)

Toby drinks scotch on N NP — N)
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Figure 12: One top-down, left-to-right parse of “Toby drinks scotch
on ice”




Toby drinks < PName drinks scotch on ice  (Toby : PName)

scotch on ice

< NP drinks scotch on ice NP — PName)
< NP V scotch on ice drinks : V)
<= NPV N onice
< NP V NP on ice

<= NPVNPP jce

NP—>N)

on: P)

< NP VNPPNP
< NP V NP PP
< NP VNP

< NP VP

=S

)
PP — P NP)

NP — NP PP)
VP — V NP)
S — NP VP)
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Figure 13: One bottom-up, left-to-right parse of “Toby drinks scotch
on ice”




3.2.1 Working from right to left

NP VP
NP V NP

NP V NP PP

NP V NP P NP

NP VNPPN

NP V NP P ice

NP V NP on ice
NP V N on ice
NP V scotch on ice

S — NP VP)
VP — V NP)
NP — NP PP)
PP — P NP)

ice : N)
on: P)

\ N)
NP drinks scotch on ice arinks : V)
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Figure 14: One top-down, right-to-left parse of “Toby drinks scotch
on ice”




Left-to-right

Right-to-left

Top-down

finds leftmost

derivations

finds rightmost

derivations

Bottom-up

finds rightmost
derivations

(in reverse)

finds leftmost
derivations

(in reverse)

Table 1: Four types of parser




3.3 Search in parsing

3.3.1 The need for search

S = NPVP (S—NPVP) (1)
= PName VP (NP — PName) (2)
=  Joby VP (Toby : PName) (3)

The VP is to be rewritten. But there are in fact three rules in the
grammar that say how to expand a VP:

VP — V NP
VP —-V
VP — VP PP




’
2
3

NP VP S — NP VP) (1)
PName VP NP — PName) (2)
[[e])/AY & Toby : PName) (3)
Toby VP PP VP — VPPP) (4)
Toby V NP PP VP - VNP) (5
Toby drinks NP PP nkKs : (6)
Toby drinks N PP (7)
Toby drinks scotch PP (8)
Toby drinks scotch P NP )]
Toby drinks scotch on NP (10)

(11)

(12)

=
=
=
-
-
=
=
=
=
=
=

Toby drinks scotch on N

4

Toby drinks scotch on ice

Figure 15: Another top-down, left-to-right parse of “Toby drinks
scotch on ice”




S — NP VP)
= PName VP NP — PName)
= Toby VP Toby : PName)
= JobyV
= Toby drinks

Figure 16: Unsuccessful top-down, left-to-right parse of “Toby drinks
scotch on ice”




Toby drinks =  PName drinks scotch onice  (Toby: PName) (1)
scotch on ice

= NP drinks scotch in ice (NP — PName) (2)

Here “drinks” can be rewritten as a V or as an N, (using drinks : V and drinks : N
respectively).

There is also a choice in the left-to-right, bottom-up parser of whether to rewrite the
leftmost terminal or to rewrite a sequence of nonterminals, as at the end of step (3):

Toby drinks =  PName drinks scotch onice  (Toby: PName) (1)
scotch on ice

= NP drinks scotch in ice (NP — PName)
= NPV scotch on ice (drinks : V)

Here “scotch”, as the leftmost terminal, can be rewritten as an N (using scotch : N)

or V can be rewritten as a VP (using VP — V).




2 reasons why natural language parsers must search:

e Some strings will be structurally ambiguous. Assuming that in
these cases we wish to find all parses of the string, then,
having found a parse, the only way of discovering whether
there are other parses is by trying some of the unexplored
rewrites.

Although some choices do not lead to successful derivations, a
parser of a natural language cannot in general know at the
time it is faced with these choices which will be successful and
which will not. The parser must explore all of them, and if one
of them reaches a dead-end, it must have a way of returning to
some of the unexplored options in case these prove fruitful.




Search trees

iVP dVvP
FAIL  FAIL

VP PP

td
SUCCESS

t dPName tdN

tcllS /\

FAIL tds tdi tdd
FAIL FAIL FAIL

Figure 17: A fragment of the search tree for simple left-to-right, top-
down parsing of “Toby drinks”




td
|

PName d

PName N PName V
N | |
NP N NP V PName NP PName VP
| | FAIL FAIL
NP NP NP VP

FAIL |
S

SUCCESS

Figure 18: A fragment of the search tree for shift-reduce (left-to-
right, bottom-up) parsing of “Toby drinks”

Here a path fails if it comprises only nonterminals, they cannot be rewritten further, and yet a

single nonterminal (S) has not been attained.




3.3.2 Search strategies

e Depth first: the tree is explored path by path

e Breadth first; the tree is explored level by level

S

N

NP VP

| /\
Pname \Y NP

| | |
toby  drinks N

scotch




If the search tree of figure 18 is searched breadth-first, then t d
would be rewritten as PName d, and then all this string’s immediate
‘descendants’ would be computed: NP d, PName N and PName V.

Each of these is then taken in turn and all of its immediate
‘descendants’ are computed: NP N, NP V, PName NP, and

PName VP. This would go on, level by level, until the whole tree had
been traversed.




3.3.3 Infinite search

Left recursion

A Ao

A left-recursive grammar gives rise to infinite paths in the search
trees of left-to-right, top-down parsers.

S = NPVP (S—NPVP) (1)
NP PP VP (NP — NP PP) (2)
NP PP PP VP (NP — NP PP) (3)
NPPPPPPPVP (NP — NPPP) (4)

Figure 19: The initial rewrites in an infinite left-to-right, top-down
parse

In this figure, NPs can be indefinitely rewritten as NPs followed by
PPs.




A right-recursive grammar gives rise to infinite paths in the search
trees of right-to-right, top-down parsers.

Solutions:

e use a different grammar that recognizes the same language
but which is not left-recursive.

for CF-PSGs, there are algorithms that can be implemented as

computer programs for automatically converting left-recursive
CF-PSGs into weakly equivalent non-left-recursive CF-PSGs.

changing the parser.

left- (and right-) recursion do not create infinite paths in the
search tree for bottom-up parsers: since the parser makes
immediate use of the input string, the number of rewrites it
carries out with left- (or right-) recursive rules is constrained.
components).




3.3.4 c-productions

NP — ¢

An attempted bottom-up parse of “Toby drinks scotch” for a
grammar that contains this e-production.

_ Toby drinks scotch < _NP Toby drinks scotch (NP — ¢)
< _ NP NP Toby drinks scotch (NP — ¢)
< _NP NP NP Toby drinks scotch (NP — ¢)

Figure 20: The initial rewrites in an infinite left-to-right bottom-up
parse

The naive bottom-up parser can use an infinite number of
applications of the e-production at the front of the string, between
each pair of words in the string, and at the end of the string.




e We can abandon exhaustive search, with the consequential
possibility of missing parses.

We can convert the grammar that contains e-productions into a
weakly equivalent grammar that does not contain
e-productions, or use a grammar formalism (such as
Head-driven Phrase Structure Grammar) that does not utilize
e-productions.

e-productions do not create an infinite search tree for top-down
parsing: the top-down approach will propose only a finite
number of empty constituents. Thus, we could use a top-down
parser (or a parser that mixes bottom-up and top-down
processing) instead.




3.4 Computational Complexity

Resources: the amount of time and/or memory space, needed to
solve certain computational problems.

e Measures of running time are expressed as functions of the
size of the input to the problem, showing how the running time
varies as the size of the input varies.

e Computational complexity focuses on worst-case running
times.




Tractable problems: those whose ‘best’ algorithms have
worst-case running times that are characterized by polynomial
functions.

A polynomial function is one of the form:

k k—1 2
apn” + aQp_1Mn + -+ agn” +ain + ag

where k is a non-negative integer, ag, a4, ..., ax, the so-called
coefficients, are real numbers, and a; # 0, and n is the variable in
terms of which the function is being defined.




Examples of polynomial functions are:

5n3 4+ 2n° + 6n + 4

4n’ + 2

6n>

n2

In some of these, certain coefficients are either one or zero,
allowing some simplification (e.g. the polynomial n? is a
simplification of the polynomial 1 x n?4 0 x n + 0).




Intractable problems: those which we believe admit only
solutions whose worst-case running times are characterized by
exponential functions.

An exponential function is one that contains a term such as a",
where a is a non-zero real number and n is the variable in terms of

which the function is being defined.




A poly-
nomial
function
An ex- 128 256 512 1024

ponential
function

Table 2: Relative growth of polynomial and exponential functions

For low values of n, the value of 2™ is lower than that of n?, also the
crossover point after which the exponential will be bigger than the
polynomial is quite a low value here (n = 4). However, the main
point is that the exponential grows much more quickly than the
polynomial, and this, according to computational complexity theory,
which focuses on worst cases as the input gets ever bigger, is what
makes problems whose solutions take exponential time intractable.




Membership of a list

e If this search is implemented as a serial search, testing each
item of the list in turn from the start to the end, then in the
worst case every item will have to be checked.

For n items in the list, the worst-case execution time is
therefore kn, where k is some constant saying how much time
each operation takes.

the algorithm might also carry out certain other operations
such as steps of initialization or termination. Therefore, the
running time is actually computed by a formula such as kn + c,
where c is a constant characterizing the amount of time these
extra operations take but showing that this extra time is not
dependent on the length of the list.

This function is a polynomial function. (It is of the form

ain -+ ap.)




In complexity theory it is conventional to ignore the terms of the
polynomial other than the one being raised to the highest
power.

Thus we would say that the serial search algorithm’s worst
case time is kn, ignoring the term ¢, because for large values
of n, the contribution to the overall running time made by the
extra term c can be regarded as negligible.

We also suppress the value k, since it is only the highest
power that is of relevance to the growth of the function.

the growth of the function is often shown using what is called
‘big oh notation’, where we would write that our search
algorithm takes time O(n) (of order n).




Linear search is only one algorithm for searching a list.

As it turns out, all other ‘sensible’ algorithms also take
polynomial time.

there is an algorithm called binary search, which takes
klog, n + c time, or O(log, n), which is also a polynomial
function.

Complexity theory therefore designates search of a list to be a
tractable computational problem.




The problem is to determine whether arbitrary formulae of
propositional logic are satisfiable

to determine whether some formula such as

~(P=Q)N(QV(R——P))

has an assignment of truth values to the propositional variables
P, @ and R that makes the whole formula true.

A simple solution would be to try out every possible
assignment of true and false to the propositional variables,
looking for an assignment that makes the whole formula true.

Effectively then, the task is one of constructing rows of the
truth-table for this formula, each one being an assignment. In
the worst case, all rows would need to be constructed.




e For n variables, there are 2™ possible assignments and so 2"
rows would need to be constructed.

e Therefore, this algorithm’s worst case time is proportional to
2", where n is the number of variables, making this an
exponential solution.

e Since no polynomial time solution is known, we hypothesize
that this problem is intractable.




e The time complexity of CF-PSG recognition is polynomial.

e We know this because there exist programs whose worst case

time on a string of n words is proportional to n°;

e one such algorithm is called ‘Earley’s algorithm’ and can be
embodied in a program called a chart parser




e The time complexity of CF-PSG parsing can be exponentially
related to the number of words in the string.

We illustrate this by looking at compound nominals. To allow
nominal compounding, our CF-PSG might include a rule such as

N—-NN




e the compound nominal “tin can” has a single parse (making
use of the rule once);

e the compound nominal “tin can opener” has two parses (both
using the rule twice),

)

I\
RN
I\ I\
| | N
N N

N

N N opener tin
| | | |

ftin  can can opener

Figure 21: Two phrase-structure trees for “tin can opener”




e Compound nominals comprising three nouns have five parses
(one left-branching, one right-branching and three in between);

those with four nouns have six parses;

those with five nouns have fourteen parses;

those with six have forty-two;

and those with seven, have 132. Such as the infamous:

(43) “Long-term car park courtesy vehicle pick-up point.”




The number of parses grows exponentially according to the
Catalan series, the first ten of whose terms are as follows:

1,1,2,5, 14,42, 132, 429, 1430, 4862, . . .

The Catalan series shows how many ways a string of length n can
be ‘parenthesized’, and is defined by

2n
Cat(n) =

n

n .
where is the number of ways to pick r objects out of a set
T

of n objects:

n n!

7 ri(n —r)!

where n!is n factorial,ie. n x (n —1) x (n —2) x --- x 2 x 1.




e Given that an input string might have a number of parses that
Is exponentially related to its length, it follows that the CF-PSG
parsing problem is worst-case exponential.

e Thus the CF-PSG parsing problem is intractable.




Complexity theory, as we have seen, is concerned with worst
cases.

when one focuses on normal or average cases rather than
worst cases, results are less gloomy.

in practice, n, the number of words in the input string, is not
going to get very large: typical lengths will be ten to thirty
words and strings longer than fifty words will be very rare.

In this case, although CF-PSG parsing is exponential in the
length of the input string, this may not be too problematic.

An algorithm taking £2" time only takes longer than one taking
kn? time when n = 10 (although this assumes that k is the
same in both cases).

If the polynomial algorithm actually takes 30> and the
exponential takes 3 x 2™, then the exponential algorithm is
better than the polynomial one up to and including n = 15.




e the factors that complexity theory normally ignores (such as

the lower order terms in the functions and the values of the
constants) come into play when we look at normal or average
case behaviour.




One of the most significant of these will be the time spent
accessing the grammar, and this is likely to be something that
we can express as a function of the number of rules in the
grammar, usually written as |G|.

Suppose, as is the case for some of the n? recognizers
mentioned above that recognition takes time proportional to
|G|?, i.e. the worst case recognition time is k |G|? n° or

O(|G|? n3).
In practical grammars, |G| could be quite large.

if |G| is 750 and we ignore k, then for sentences of fifteen
words, the execution time is 750% (= 562500) grammar access
operations multiplied by 153 (= 3375).

It is conceivable that grammar access operations could
dominate the processing.




4 Parsing in Prolog

4.1 Simple top-down parsing in Prolog

S — NP VP Toby : NP
VP -V scotch: NP
VP — V NP drinks : NP, V

Grammar 4.1: Simple grammar for top-down parsing



s ——> [np, vp].
vp —> [Vv].
vp ——> [v, np].

np [toby].

np [ scotch].
np [drinks ].
v ===> [drinks].

Grammar 4.2: A grammar written in BH-GRN

:— op (1200, =xfx,
:— op (1200, =xfx,




4.1.1 A top-down, depth-first parser in Prolog

% progtddf. pl

— op(1200, xfx, ——>).

— op(1200, xfx, ===>).

td_parse (Cat,[Word | RestofString], RestofString) :—
(Cat===> [Word]) .

td_parse (Mother, S0,S) :—
(Mother —— Daughters) ,
td_parse_dtrs (Daughters, SO0, S).

td_parse_dtrs ([],S, S).

td_parse_dtrs ([ Cat|Cats], SO, S) :—
td_parse(Cat, SO, S1),
td_parse_dtrs (Cats, S1, S).

Program 4.1: A top-down, depth-first Prolog parser




?—td_parse (s, [toby, drinks], []).




4.1.2 Building phrase-structure trees

Representing trees

A\

N

\Y I\

drinks scofch




Trees as lists:
[vp, [v, drinks], [np, scotch]]

[ve [v drinks] [np Scotch]]

Trees as terms, with the function symbol corresponding to the label
of the parent node and the arguments corresponding to the children:

vp (v (drinks), np(scotch))




% progtddfparse. pl

— op(1200, xfx, ——>).

— op(1200, xfx, ===>).

td_parse(Cat,[ Cat, Word], [Word|Rest], Rest) :
(Cat===> [Word]) .

td_parse (Mother, [Mother | Dtrs], S0,S) :—
(Mother —— Daughters) ,
td_parse_dtrs (Daughters, Dtrs, S0,S).

td_parse_dtirs ([], [], S, S).

td_parse_dtrs ([Cat | Cats],[Dtr | Dtrs], S0,S) :—
td_parse (Cat, Dtr, S0,S1),
td_parse_dtrs (Cats, Dtrs, S1,S).

Program 4.2: A top-down, depth-first Prolog parser that builds trees




?— td_parse(s, Tree, [toby, drinks, scotch], []).

Tree = [s,[np,toby],[vp,[V,drinks],[np,scotch]]]
yes




4.1.3 Depth-bounded parsing

% progdbtdparser. pl

— op(1200, xfx, ——>).

— op(1200, xfx, ===>).

td_parse (Cat, Depth, [Word| RestofString], RestofString) :—
(Cat===> [Word]) .

td_parse (Mother, Depth, S0,S) :—
Depth > 0, NewDepth is Depth — 1,
(Mother —— Daughters) ,
td_parse_dtrs (Daughters, NewDepth, SO0,S).

td_parse_dtirs ([], -, S, S).

td_parse_dtrs ([Cat | Cats], Depth, S0,S) :—
td_parse (Cat, Depth, S0,S1),
td_parse_dtirs (Cats, Depth, S1,S).

Program 4.3: Depth-bounded top-down Prolog parser




A suitable maximum depth will be the length of the input string
multiplied by the number of rules in the grammar whose right-hand

sides are of length one or zero: this will never be too small but for
some sentences it may be very generous.




Grammar 4.3: A grammar with left-recursion




4.2 Simple bottom-up parsing in Prolog

S — NP VP NP — Toby
VP — V NP NP — scotch
VP —V NP — drinks

V — drinks

Grammar 4.4: A simple CF-PSG without an explicit lexicon




4.2.1 A shift-reduce parser

A shift-reduce parser employs two data structures (other than the
grammar):

e a buffer that contains the unprocessed part of the input string,
and

e a stack (or last-in-first-out store) on which a parse is gradually
assembled.

The state of these two data structures at any point in the algorithm is
referred to as the parser's configuration.




At any step, the parser can carry out one of two operations. The two
operations are:

Shift: the next word of the input string is moved from the buffer to
the top of the stack: if the next word of the input string is some a

and the stack is presently
... X],

where X is the top of the stack, then the stack becomes
... X al.




Reduce: the parser finds a rule whose right-hand side matches the
constituents on the stack, one by one, starting from the top and
replaces these constituents by the category on the left-hand side
of the rule: if there is a rule

A — «

and the stack contains

... «al,

where « is the sequence of symbols on the top of the stack, the
categories « on the stack are popped (deleted) and the left-hand
side of the rule is pushed (inserted onto the stack at its top), and
so the stack becomes

.. A




Here are some of the steps involved in finding the parse of “Toby
drinks scotch” using grammar 4.4.

The parser’s initial configuration is one in which the stack is empty
and the input buffer contains the whole input string:

[] (Toby drinks scotch)
Stack Input buffer

Shift “Toby”, onto the stack:
[ Toby] (drinks scotch)

Reduce with rule NP — Toby, so the word “Toby” can be replaced by
the left-nand side of the rule, NP:

[NP] (drinks scotch)

Shift the next word in the input buffer follows:

NP drinks] (scotch)




Reduce using V — drinks; the top item on the stack is replaced by V:
[NP V] (scotch)

Carry out another shift:
[NP V scotch] ()

“scotch” can be reduced to NP using NP — scotch:

[NP V NP] ()

The top two items of the stack match the right-hand side of the rule
VP — V NP. Reduce by popping these two items and pushing the
left-hand side of the rule:

[INP VP] ()

The top items of the stack match the right-hand side of the rule
S — NP VP, so reduce again:




Shift-reduce parsing is

e bottom-up, working from the words to the root.

e left-to-right, since the words of the buffer are processed
left-to-right.

At some steps the parser has a choice of operations and thus needs
to search.




These decision points are referred to as conflicts and can be
subcategorized as follows:

Shift-reduce conflicts: both shift and reduce are applicable and at
least one reduce is also applicable. In the configuration

[ Toby] (drinks scotch)

either the word “drinks” could be shifted onto the stack or,

given that the top of the stack matches the right-hand side of the
rule NP — Toby, the “Toby” on the top of the stack can be
reduced to NP.




Reduce-reduce conflicts: More than one reduction is applicable. In
the configuration

[NP drinks] (scotch)
there are two applicable reductions,
one using NP — drinks and
the other using V — drinks.

(A shift of “scotch” is also possible so there is a shift-reduce
conflict in this configuration too.)

Faced with a conflict, a simple shift-reduce parser will have first to try
one of the applicable operations and eventually return and try the
others: some may lead to parses, others may prove fruitless.




4.2.2 A Prolog implementation of shift-reduce parsing

Shift-reduce data structures How to represent the stack, the
input buffer, the grammar and the lexicon.

e The stack will be represented as a list. ltems in the list will be
words and categories.

The first item of the list will be the top of the stack, i.e. the top of
the stack is the head of the list. [scotch, v, np].

e The input buffer will be a list of the words of the input string.

e We will use BH-GRN as our grammar representation.




The shift operation Shift is an operation which has four
arguments: it is given a current stack and a current input buffer and
produces a new stack and a new input buffer.

A shift operation can only be successful if the current input buffer has

at least one word on it ([Word | Words]). All that shift does is to
make the first word of the input the head of the list representing the
stack (this being its top):

shift (Stack, [Word | Stack], [Word | Words], Words).




Reduce is a four-place predicate that relates a current stack and
input buffer to a new stack and input buffer.

Reduce finds a rule either in the grammar (LHS —---> RHS) or in the
lexicon (LHS ===> RHS) whose body (RHS) when reversed (to
RRHS) matches the top items of the stack.

reduce (Stack, [LHS | Rest], Input, Input) :-
((LHS ———> RHS) ;
(LHS ===> RHS)),
reverse (RHS, RRHS),
append (RRHS, Rest, Stack).




reduce (Stack, [LHS | Rest], Input, Input) :-
((LHS ———> RHS) ;
(LHS ===> RHS)),
reverse (RHS, RRHS),
append (RRHS, Rest, Stack).

This match is implemented by calling
append (RRHS, Rest, Stack).

The second argument is the bottom of the stack (Rest), and the first
argument is not only the top of the stack but is also constrained to be
equal to the (reverse of the) body of the rule or lexical entry (RRHS).

If this succeeds, the new stack (the second argument of reduce)
has the left-hand side of the rule or lexical entry (LHS) as its top and
the old stack’s bottom (Rest) as the rest of the stack.

The input buffer is unchanged.




A more efficient version of reduce

reduce (Stack, NewStack, Input, Input)

reduce_aux (Stack, [], NewStack).

reduce_aux (Rest, RHS, [LHS | Rest])
((LHS ———> RHS) ;
(LHS ===> RHS)).

reduce_aux ([Cat | Cats], RevStack, NewStack) :-
reduce_aux (Cats, [Cat | RevStack], NewStack.




The complete program

shift (Stack, [Word | Stack], [Word | Words], Words).

reduce (Stack, NewStack, Input, Input)

reduce_aux (Stack, [], NewStack).

reduce_aux (Rest, RHS, [LHS | Rest])
((LHS ———> RHS) ;
(LHS ===> RHS)).

reduce_aux ([Cat | Cats], RevStack, NewStack) :-
reduce_aux (Cats, [Cat | RevStack], NewStack).




sr_parse([Stack], [Stack], Input, Input).

sr_parse (Stack, ResultStack, Input, ResultInput)
shift (Stack, NewStack, Input, Newlnput),
sr_parse (NewStack, ResultStack, NewlInput, ResultlInput).

sr_parse (Stack, ResultStack, Input, ResultInput)
reduce (Stack, NewStack, Input, NewlInput),
sr_parse (NewStack, ResultStack, NewlInput, ResultlInput).

parse (Input, Start) :-—-
sr_parse([], [Start], Input, []).

Program 4.4: Shift-reduce parser




Typical user goals:

?— sr_parse([], [s], [toby, drinks, scotch], []).

?—parse([toby, drinks, scotch], X).




4.3 Compilers and interpreters

Compilers and interpreters are metaprograms; that is, they are programs
that treat other programs as their data.

e An interpreter is a program that takes another program and executes it.

e A compiler by contrast does not execute programs. It is a program that
takes in other programs and converts them into another form. We say
that compilers take in source programs and translate them into object
programs. Compilers are thus preprocessors for interpreters.




parent (henry_II, john).

parent (john, henry IIT).

(
(

parent (isabella, henry_ TIITI).
(

parent (henry_TIII, edward_TI).

grandparent (A, B) :-—
parent (A, C), parent (C, B).

greatgrandparent (D, E) :-
grandparent (D, F), parent (F, E).

Program 4.5: Family relationships program




parent (henry_II, john).

parent (john, henry IIT).

(
(

parent (isabella, henry_ TIITI).
(

parent (henry_TIII, edward_TI).

grandparent (A, B) :-—
parent (A, C), parent (C, B).

greatgrandparent (D, E) :-
parent (D, C), parent(C, F), parent (F, E).

Program 4.6: Another family relationships program




parent (henry_II, john).

parent (isabella, henry_ TIITI).

(

parent (john, henry III).
(
(

parent (henry IIT, edward_1I).
grandparent (henry_II, henry TITIT).
grandparent (john, edward_TI).
grandparent (1sabella, edward TI).

greatgrandparent (henry_ITI, edward_ T).

Program 4.7: A third family relationships program




In the logic programming literature this form of compilation, in which
predictable steps are executed in a preprocessing step, is referred to as

partial execution or partial evaluation. The computer science literature
also makes reference to unfolding in this context, see e.g. Burstall and
Darlington (1977). We will use the term ‘partial execution’ to subsume this.




We can apply these ideas to natural language parsing.

We can think of a parser as an interpreter for a grammar.

The parser program retrieves rules of the grammar and initiates actions
on the basis of the rules retrieved,

much as an interpreter, such as the Prolog interpreter, retrieves
statements of a program and initiates actions on the basis of the
statements retrieved.

This gives us an example of the use of interpreters in computational
linguistics.




Programs which convert grammars, i.e. convert from some ‘source’ grammar
to some ‘object’ grammar

Converting to a new grammar formalism: The source grammar might be

expressed in an elegant formalism, convenient for linguists but
inconvenient for parsing. If the source grammar is weakly (or, even,
strongly) equivalent to some CF-PSG, say, then we could convert the
source grammar to that equivalent CF-PSG for possibly more efficient
parsing.




Eliminating certain constructions: In the last chapter, we noted that
programs exist for removing left- and right-recursion and e-productions
from some source grammars to give weakly equivalent grammars that

are more amenable to simple parsing (although we also noted that this
is a dispreferred solution as it gives rise to grammars that assign
incorrect phrase-structures to the well-formed expressions). These
programs are therefore also compilers of sorts.




Obtaining control information: In chapter ?? we present a parser in which
grammar rule invocation is constrained during parsing with reference to

an ‘oracle’ that contains control information. The ‘oracle’ is constructed
from the grammar in a preprocessing step.




Producing a directly executable program: In the above examples, the
compiler takes a grammar and produces a new grammar. This new
grammar can still only be used in conjunction with a parser, acting as

interpreter over the new grammar. Another possibility is to convert the
source grammar into a grammar-specific parsing program that can be
executed directly. Examples of this are given later.




Suppose we have
e a parser, written in Prolog, and
e a separate grammar to be used with this parser
e The parser is an interpreter for the grammar, and
e the Prolog interpreter is an interpreter for the parser.

There are therefore two interpretation processes going on:

e the Prolog interpreter is picking up and making use of the clauses in the
Prolog parsing program, and

e these are picking up and making use of the rules of the grammar.




We could have a compiler which

partially executes the parser on the grammar, i.e. it modifies the clauses
of the parser (in much the same way as we showed with the
greatgrandparent example) by making them refer directly to the
rules of the grammar.

There would no longer be a separate parser and grammar, just the

single ‘expanded’ program.
The program would thus be a parser with an in-built grammar.
The disadvantage is that this program would be grammar-specific, but

this may be offset by the efficiency gains of reducing the two
interpretation processes above to a single interpretation, by the Prolog
interpreter, of the ‘expanded’ program.




Disadvantages of compilation

e the compilation process can be very slow. Provided that it is a one-off
process, this is not a problem, but in an environment in which grammars
are regularly being changed it is problematic.

the intention that lies behind compilation sometimes seems to be to

‘absorb’ the computational complexity of the parsing process into the
compilation step, resulting in a tractable parsing step. This may not be
an achievable objective. Grammars needed for computational linguistics
can, in the worst case, assign a number of parses to a string that is
exponentially related to the length of the string. No matter what
compilation has taken place, finding all the parses will still take worst
case exponential time.




e compilation often results in object grammars that are larger than the
source grammars. If grammar size can dominate natural language
parsing time, so increasing the size of the grammar may not be a good
thing.

it is not always the case that compilers exist or can work on all
grammars of the class of source grammars they are supposed to work
on (it is not unusual for some restriction to be placed on source
grammars to guarantee termination of a compilation process, for
example).




4.3.1 Compiling the shift-reduce parser

The explicit calls to shift/4 and reduce/4 can be ‘expanded’ into the
definition of sr_parse/4 itself.

Reduce, using S — NP VP:

sr_parse([vp, np | Cats], RS, I, RI) :-
sr_parse([s | Cats], RS, I, RI).

Shift of t oby and simultaneous reduction of this word using
NP — Toby:

sr_parse (Cats, RS, [toby|X], RI) :-
sr_parse([np | Cats], RS, X, RI).




sr_parse([Stack], [Stack], Input, Input).

sr_parse([vp, np | Cats], RS, I, RI)

sr_parse([s | Cats], RS, I, RI).

sr_parse([np, v | Cats], RS, I, RI)

sr_parse([vp | Cats], RS, I, RI).

sr_parse([v | Cats], RS, I, RI)

sr_parse([vp | Cats], RS, I,




sr_parse (Cats, RS, [toby|X], RI) :-
sr_parse([np | Cats], RS, X, RI).

sr_parse (Cats, RS, [scotch|X], RI)
sr_parse([np | Cats], RS, X, RI).

sr_parse (Cats, RS, [drinks|X], RI)
sr_parse([np | Cats], RS, X, RI).

sr_parse (Cats, RS, [drinks|X], RI)
sr_parse([v | Cats], RS, X, RI).

parse (Input, Start) :-
sr_parse([], [Start], Input, []).

Program 4.8: Compiled version of the shift-reduce parser




e In executing the original program, there would have been two
interpretation processes:

1. Prolog interpreting the parser, and

2. the parser interpreting the grammar.

e With program 4.8, there will be only the one interpretation process:

1. Prolog interpretation of the grammar-specific parser.




4.3.2 Compiling a top-down interpreter

Whenever td_parse/3 succeeds with a call to a rule from the lexicon, the
result is like this:

td_parse(np, [toby drinks, scotch], [drinks,scotch]]).
or like this:

td_parse (v, [drinks, scotch], [scotch]) .

Each of these clauses has the form

td_parse (Category, [Word | Words], Words).

This means that for each lexical entry in the grammar, such as
np ===> [toby], the first clause of td_parse/3 can be replaced by a
clause such as:

td_parse(np, [toby | Words], Words]).

which has the same effect but obviates the separate lexical lookup.




For grammar rules, we have something like the following:

Call: td_parse(s, [toby,drinks, scotch], []) ?

Call: s——> 371 2

Exit: s———>[np,vp] °?

Call: td_parse_dtrs([np,vp], [toby,drinks, scotch],

Eliminating the reference to a specific list of words to be parsed and the
lookup of the grammar rule gives us the partially executed form:

td_parse (s, Input, RemainingInput) :-

td_parse_dtrs ([np,vp]l, Input, RemaininglInput).

This means that for each rule of the grammar of the form
Mother —-—--> Daughters, the second clause of td_parse/3 can be
replaced by a clause of the form:

td_parse (Mother, Input, Remaininglnput) :-—
td_parse_dtrs (Daughters, Input, RemainingInput) .




td_parse (np, toby | Words], Words).

scotch | Words], Words).

(
td_parse (np,

(

(

[

[

td_parse(np, [drinks | Words], Words).

td_parse (v, [drinks | Words], Words).

td_parse (s, Input, RemainingInput) :-
td_parse_dtrs ([np, vp] ,Input, RemainingInput).

td_parse (vp, Input, Remaininglnput) :-
td_parse_dtrs([v], Input, RemaininglInput).

td_parse(vp, Input, Remaininglnput) :-
td_parse_dtrs([v, npl, Input, RemaininglInput).

Program 4.9: Partial execution of program 4.1 over grammar 4.2.




But, even more steps are predictable and can be carried out now rather than
at execution time. For a clause such as:

td_parse (s, Input, RemainingInput) :-

td_parse_dtrs ([np, vp] ,Input, RemainingInput).

we know what td_parse_dtrs/3 will try to do. It will try to parse some
prefix of the input string as an np using td_parse/3, and the rest of the

string as the remaining ‘goal’ [vp] using td_parse_dtrs/3. But this call
of td_parse_dtrs/3 on ‘goals’ [vp] will invoke another call to
td_parse/3onvpand acallto td_parse_dtrs/3on [ ], which does
nothing. So we can replace the above clause by:

td_parse (s, Input, ResultlInput) :-
td_parse (np, Input, Remaininglnput),
td_parse (vp, RemainingInput, ResultInput).




Doing this throughout program 4.9 gives the following program:

td_parse(np, [toby | Words], Words).
td_parse(np, [scotch | Words], Words).

(
(

td_parse(np, [drinks | Words], Words).
(

td_parse(v, [drinks | Words], Words).

td_parse (s, Input, ResultlInput) :-
td_parse(np, Input, Remaininglnput),
td_parse (vp, RemainingInput, ResultInput).
td_parse(vp, Input, ResultlInput) :-
td_parse (v, Input, ResultlInput).
td_parse (s, Input, ResultlInput) :-
td_parse (np, Input, RemaininglInput),
td_parse (vp, RemainingInput, ResultInput).

Program 4.10: Partial execution of program 4.9




Further optimization: We can remove the call to td_parse/3 altogether,
by, for example, changing

td_parse (s, Input, ResultlInput) :-
td_parse (np, Input, RemaininglInput),
td_parse (vp, RemainingInput, ResultInput).

into

s (Input, ResultInput) :-—
np (Input, RemainingInput),
vp (RemainingInput, ResultInput).

Replace calls to td_parse/3 by calls to predicates corresponding directly
to the categories used in the rules of the grammar.




Lexical rules:

replace

td_parse(np, [toby | Words], Words).

by

np([toby | Words], Words).




n

p(
np (
P (
([

[toby | Words], Words).

[scotch | Words], Words).
[drinks | Words], Words).
d

n
v rinks | Words], Words).
s (Input, ResultlInput) :-

np (Input, RemainingInput),

vp (RemainingInput, ResultInput).
vp (Input, ResultInput) :-

v (Input, ResultInput).
vp (Input, ResultInput) :-

v (Input, RemaininglInput),

np (RemainingInput, ResultInput).

Program 4.11: A direct Prolog implementation of the parser in pro-
gram 4.10




5 Definite Clause Grammars

It is possible to characterize the meaning of a (pure) logic program in two
ways: by giving its

1. declarative semantics or by giving its
2. procedural semantics relative to some interpreter.

In describing parsing in the previous chapter, we strongly emphasized the
procedural semantics of the programs relative to the Prolog interpreter, i.e.
we have emphasized how Prolog uses its predicate definitions to parse a

given input string.

We now consider the declarative semantics of programs.




Prolog programs are a notational variant of a restricted version of first-order
logic, known as definite clause logic. Definite clauses are formulae of logic
having the following form:

a1 N\ ... \NO0pn D Ont1

where each «; is a positive literal (i.e. a predicate applied to some
arguments).

Definite clauses comprise a conjunction of n (n > 0) positive literals as the
antecedent of any material implication whose consequent is a single positive
literal.

Any variables in the literals are taken to be universally quantified over, but
limited to, the whole clause.




Prolog facts and rules are obviously just a notational variant of these definite
clauses.

Specifically, the head of a Prolog rule corresponding to the implication above
will be the consequent of the implication («.,+1) and will be written to the left
of the : — symbol;

the body of the rule will be the antecedent of the implication (a1 A ... A ay)
and will be written to the right of the : — symbol, with the conjunction symbols
(A) replaced by commas and with a full stop terminating the rule.




(There are other notational variations: e.g. a common convention when
writing formulae of first order logic is to use uppercase letters to begin

predicate symbols, function symbols and constant symbols, and lowercase
letters to begin variables, while this convention is reversed when writing
Prolog.)




what we did in the preceding chapter was merely to translate a grammar
expressed in one notation, that of CF-PSGs, into one expressed in another
notation, that of definite clause logic. A CF-PSG rule such as

S — NP VP
IS translated into a definite clause

NP(xo,x1)AVP(z1,x) DS(x0, )

or, taking into account Prolog’s syntactic rules, it is translated into the Prolog
rule




Grammars expressed as definite clauses are referred to as Definite Clause

Grammars (DCGs) and are one type of so-called Logic Grammar.




This perspective gives us a declarative semantics for our grammar.

The definite clause NP(xo,z1) A VP(x1,xz) D S(xo, x) has a declarative

semantics which we can paraphrase informally into English as saying

‘list 2o less list z is an S if list g less list ;1 is an NP and list x; less list z is a
VP'.




Lists might feel like a substantial innovation, bringing a new mechanism into

logic. But this is not so. Lists are simply (nested) compound terms. Nothing
need be added to the logical formalism.




For example, using the binary function symbol ‘.’ and the constant [ |, we
can construct list-like objects as follows:

[]

(@[]

(a, .(b, [ 1))

(a, .(b, .(c, [ 1))

(a, x)

empty list

list containing just ‘a’

list containing ‘a’ and ‘b’

list containing ‘a’, ‘b’ and ‘¢’
list which starts with ‘a’ and continues
with other unspecified material




We allow ourselves some ‘syntactic sugar’ to improve the presentation. In
place of these ugly compound terms (formed using .’ and ‘[ ]’), we could
allow ourselves to write the following:

[ ] empty list

[a] list containing just ‘a’

[a, b] list containing ‘a’ and ‘b’
ERLNY list containing ‘a’, ‘b’ and ‘¢’

[a, | x] list which starts with ‘a’ and continues
with other unspecified material

These are merely a neat notation for the corresponding compound terms.




?— display([la,b,c]).

-(a, (b, .(c, [1)))




From this point of view, program 4.11 is not so much a parser as just another
way of presenting grammars: using logic.

It is only when we imbue it with a procedural semantics relative to some
interpreter that it becomes a parsing program

In that case the type of parsing program that it becomes depends upon the
interpreter we use.

If we use Prolog, then, because Prolog works top-down from left-to-right

doing depth-first search, program 4.11 becomes a top-down, left-to-right,
depth-first parser.

If we had substituted some other interpreter for definite clause logic
programs, one that had a different execution strategy, we would get some
other type of parser.

For example, a definite clause logic program interpreter that worked
bottom-up, from facts through antecedents of rules to consequents of rules,
would give a bottom-up parser.




Definite Clause Grammars (DCGs), which are simply logical definitions,
generalise CF-PSGs by allowing the nonterminals of the grammar (which

are simply predicates of the logic) to have arguments (enclosed in
parentheses), as normal in logic.




The grammars that we have used in the preceding chapters have been very

unsophisticated. If we were to try to extend them to correctly handle the
number agreement:

(44)  “This knight”

(45) “These knights”

simply by adding the following grammar rule and lexical entries

NP — Det N this : Det these : Det
knight : N knights : N




the resulting grammar will overgenerate, allowing not only ‘this knight’ and
‘these knights’, but also

(46) “*This knights”
(47) ““These knight”

The problem here is that a particular form of the determiner can only
co-occur with a particular form of the noun: singular with singular (“this
knight”) and plural with plural (“these knights”).




A solution to the problem is to replace the simple CF-PSG by a DCG, in
which the number of a noun or determiner can be stated as an argument of
the category names N and Det, as in the following lexical entries:

this : Det(SING) knight : N(SING)
these : Det(PLU) knights : N(PLU)

showing ‘“this” and “knight” to be singular (SING), and ‘these” and “knights”
to be plural (PLU).




The grammar should be able to handle other agreement phenomena, such
as the following

(48) “Tam”

(49) “We are”
(50) “Sheis”
(51) “They are”

in which we find not only singular/plural agreement again (this time between
a pronoun and a verb), but also another pattern of agreement between
singular “/” and “am” on the one hand and singular “she” and “is” on the
other. The difference between “I” and “she” is traditionally labelled person,
with “I” being classified as first person and “she” as third person.




Since nonterminals in a DCG can have several arguments, as, for example,
we can specify both the person and number of pronouns:

:Pro(1, SING) she:Pro(3, SING)
we : Pro(1, PLU) they : Pro(3, PLU)

showing, e.g., “she” to be a third person singular pronoun (Pro(3, SING)).




In this formalism, therefore, category names are no longer atomic.

They comprise what we will call a backbone category (Det, N, Pro, etc.) and
Zzero, one or more arguments.




One immediate advantage of this change is that it allows us to continue to
represent the fact that “knight” and “knights” are both nouns by virtue of the

fact that they belong to the same backbone category, N, while at the same
time allowing us to distinguish them from one another as N(SING) and

N(PLU),




By allowing argument positions to be occupied by variables we gain
economy in the specification of lexical entries for certain words. (We will use
w,ws, x,xs,y,ys, z and zs, possibly subscripted, as variables.)

The use of variables allows us to leave a category unspecified with respect
to a certain argument, so that, for words such as the determiner “the”, which,
unlike “this” and “these”, can co-occur with either a singular or a plural noun

(“the knight”, “the knights”), or a noun like “sheep”, which, unlike “knight”
and “knights”, can co-occur with either a singular or plural determiner (“this
sheep”, “these sheep”), only one lexical category is needed:

you : Pro(2, x)
the : Det(x)
sheep :N(x)




Nonterminals in rules will also have arguments, and these may be constants
(e.g. 1, 2, 3, SING, PLU) or variables (e.g. x, xo, x1, xs, xso, S1,Y, Yo, Y1), aS
in the following examples:

NP(zx, y) — Pro(z, vy)
NP(3, ) — Det(x) N(x)

Multiple occurrences of a variable within a rule must all match to the same
single expression.

The first of these rules therefore specifies that the person (first argument)
and number (second argument) of a noun phrase whose sole constituent is
a pronoun are the same as the person and number of that pronoun. It is the
multiple occurrences of = and y in the rule that constrain the person and
number of the NP to be the same as the person and number of the Pro.




The second rule specifies the constraint that the number of an NP is the
same as that of the Det which it immediately dominates, and the number of
the NP and the Det must also be the same as the number of the N which the
NP immediately dominates. Intuitively then, this rule ought to license the

string “this knight”, in which the number of the Det and the N are both SING,
but ought to reject the string *this knights” in which the number of the Det
and N differ, which would require the variable x to match with more than one
constant. The second rule also stipulates that an NP that comprises a Det
and an N is always a third person NP.




Using these ideas, we can formulate a simple DCG (grammar 5.1) which
incorporates the ideas we have just been discussing.

S — NP(z, y) VP(z, y) this : Det(SING) [:Pro(1, SING)
NP(x, y) — Pro(z, y) these : Det(PLU) we : Pro(1, PLU)
NP(3, x) — Det(x) Nbar(x) the : Det(x) you :Pro(2, x)
Nbar(x) — N(x) knight: N(SING) it:Pro(3, SING)
Nbar(x) — Adj Nbar(x) knights : N(PLU) they : Pro(3, PLU)
VP(x, y) — Vi(zx, y) sheep :N(x) am:Vbe(1, SING)
VP(z, y) — Vbe(zx, y) Ad] slept: Vi(x, y) are:Vbe(l, PLU),
drink: Vi(1, x), Vbe(2, x),
Vi(2, ), Vbe(3, PLU)
Vi(3, PLU) Is: Vbe(3, SING)

drinks: Vi(3, SING) tipsy: Adj
Grammar 5.1 A simple DCG incorporating number and person agreement




It should be clear that we get a direct Prolog implementation of a top-down
DCG parser, just as we got a direct implementation of a top-down CF-PSG

parser.

We simply take the DCG, adapt it to Prolog syntax, and add list processing

arguments. A DCG grammar rule such as
NP(3, x) — Det(x), N(x)
for, example, becomes

L0, L) :- det (X, LO,




Backbone categories such as NP and VP, function symbols such as PER and
NUM,

and constants such as SING and PLU must now start with lower case letters,
and variables must start with upper case letters.

The arrow — is replaced by Prolog ‘if’, i.e. : -.

Categories on the right-hand sides of Prolog rules are separated by
commas, and the rules are terminated with a full stop.

Two extra arguments (1.0, L1 and L in the above) are added to pass the
input string around.




Difference lists

An alternative to the standard way of representing a list is to regard it as the
difference between a pair of lists. For example, the list

[a, b, c]

can be represented in any of the following ways

la, b, c] = []

[ar b/ Cy d] -

[a, b, ¢, d,

[a, b, c | X]




Such representations are termed difference lists and the intended
interpretation is that the list [a, b, c] is the difference between each of
the pairs of lists above; i.e.

c] with [ ] taken away is
Sl
c, d] with [d] taken away is

cl;

b,
b, c, d, e] with [d, e] taken away is again
b,

c];and so on.

The last version above ([a, b, ¢ | X] - X)is the called most general
difference list encoding of the list [a, b, c].




The empty list is the difference between a list and itself:

[a, b, c] - [a, b, c]

[ar b/ Cy d] - [a/ b/ Cy d]

[ar br Cy dr e] i [al bl Cy d/ e]

]

In its most general difference list form, the empty list is simply two identical
variables — any list subtracted from itself:




We employ difference lists transparently in our encoding of lexical categories,
writing the two parts of the list as the last two arguments to a predicate.

Lexical entries such as
knight: N(SING)
sheep : N(x)
the : Det(x)

become the following:

n(sing, [knight| X], X).
n (X, [sheep | X], X).
det (X, [the | X1, X).

where the pair [knight |X], X is the difference between any list and the
list beginning with the word “knight”.




Not so transparent is the fact that the not only the lexicon but also the

grammar rules in our DCGs employ difference lists.




5.3 Parsing DCGs

s(LO, L) :— np(X, Y, LO, L1), vp(X, , sing, [i]|L], L).
Y, L1, L). , plu, [we|L], L)

np(X, Y, LO, L) pro(X, Y, LO, L). , X, [you|L], L

np(3, X, LO, L) :— det(X, LO, L1), n , sing, [it]|L], L).
(X, L1, L). , plu, [they]|L], L)

vp (X, Y, LO, ) (— vi(X, Y, LO, L).

vp(X, Y, LO, L) vbe (X, Y, LO, L1) adj ([tipsy|L], L

. adj(L1, L).




det(sing, [this|L], L). , sing, [am|L], L).
det(plu, [these|L], L). : , [are]|L], L)
det (X, [the |L], L). , X, [are|L],
[are|L], L
n(sing, [knight|L], L). , sing, [is|L], L).
n(plu, [knights|L], L).
n(X, [sheep|L], L). (X, Y, [slept]|L],
' [sleep|L],
. [sleep]L],
, plu, [sleep]|L],
, sing, [sleeps|L],

Program 5.2 Top-down DCG parser for grammar 5.1 in Prolog




Building trees We showed how to turn a recognizer into a parser by building
a phrase structure tree for the string being parsed. That involved modifying
the program.

DCGs offer an alternative way of building a parse tree.

Let us suppose we represent trees as Prolog terms, with the function symbol
corresponding to the label of the parent node and the arguments
corresponding to the children:

VP (V (drinks), NP (scotch))




If we take grammar 4.1 as our basis, we can start by modifying the lexical
entries so that they carry an argument which represents their tree structure,
as follows:

Toby : NP(NP(Toby))
arinks : V(V(drinks))




The categories in the grammar rules also require an argument to hold the
tree representation. The S expansion rule

S — NP VP

becomes the following DCG rule:

S(S(%, y)) — NP(x) VP(y)




The complete grammar:

S(S(x, y)) — NP(x) VP(y) Toby : NP(NP(Toby))
VP(VP(x)) — V(x) scotch : NP(NP(scotch))
VP(VP(x, y)) — V(x) NP(y) drinks : NP(NP(drinks)), V(V(drinks))

Grammar 5.2: Simple DCG with tree-building arguments




s (s (NP,

vp (vp(V), LO, L):— v(Vv, LO, L).

vp (vp (V, NP), L0, L):- v(Vv, LO, Ll), np(NP, L1, L).

np (np (toby), [toby | X], X).

np (np (scotch), [scotch | X], X).

np (np (drinks), [drinks | X], X).

v (v (drinks), [drinks | X], X).

Program 5.2a: Prolog implementation of Grammar 5.2




Grammar rule notation

All the predicates in program 5.2 contained two arguments for passing
around lists and ‘remainders’ of lists.

Since any Prolog parser of this kind is necessarily going to include these two

arguments, is it not unreasonable to relieve the programmer of the
responsibility for adding them.

We would like a program that takes as its input a file containing something
resembling a DCG, without these two arguments, and produces as its output
a Prolog parser that has these extra two arguments added throughout.




Most Prolog systems come with just such a program in-built. The input to the
program is a grammar typed into a file using a notation called Grammar
Rule Notation (GRN), which is very similar to that used for CF-PSGs.

However, we henceforth refer to this as Prolog-GRN in order to distinguish it
from BH-GRN.

Prolog-GRN uses an infix operator ——> (two minus signs and a greater-than
sign) instead of the right arrow (—) used in CF-PSGs.

It separates items in the right-hand side of a grammar rule by commas, and
terminates the rule with a full stop.

S ——> np(X/ Y)I Vp(X/ Y) .




Lexical items have a slightly different syntax; they comprise the lexical
category, the operator ——>, and the word or words enclosed in square
brackets.

n(sing) --> [knight].

When we type the DCG into a file using Prolog-GRN, and then consult the
file into Prolog, it is automatically converted by the in-built preprocessor
program into a top-down Prolog parser like that in program 5.2, the extra list
processing arguments being automatically added as the final two arguments
of every predicate.




s —> np(Per, Num), vp(Per, Num). sing) —> [1i].
np(Per, Num) —> pro(Per, Num). plu) — [we].
np(3, Num) —> det(Num), nbar(Num). Num) —> [you].

nbar (Num) —> n(Num) . sing) —> [it].
nbar (Num) —> adj, n(Num). ) —> [they].
vp(Per, Num) —> vi(Per, Num). adj —> [tipsy].
vp(Per, Num) —> vbe(Per, Num), adj.




det(sing) —> [this].
det(plu) —> [these].

det (.Num) —> [the].

n(sing) —> [knight].
n(plu) —> [knights].

n(-Num) —> [sheep].

, sing) —> [am].
, plu) —> J[are].
, -Num) —> [are].
, plu) —> J[are].
, sing) —> [is].

, -Num) —> [slept].

, Num) —> [sleep].
, -Num) —> [sleep].
, plu) —> [sleep].

, sing) —> [sleeps].

Grammar 5.6: Prolog-GRN version of program 5.2




If you load Grammar 5.6 and try to find out if the predicate ——>/2 is defined,
this is what happens:

?— listing (——>).
Correct to: *—>7 n

ERROR: No predicates for ‘——>'

No
?— listing(s).




Equally, we can write DCGs in BH-GRN. Such DCGs can be used directly
with both the top-down and bottom-up parsers discussed earlier.

It is also possible to compile a BH-GRN into a Prolog parser in exactly the
same manner that Prolog-GRN is compiled.

In appendix C, there is a Prolog program (program C.1) for translating a
BH-GRN grammar into a Prolog parser like that in program 5.1.

We do not make any effort to explain how this program works, as this need
not be of concern for the purposes of this book. Pointers to the relevant
literature, where some explanation can be found, are given at the end of the
chapter.




If we
1. put the BH-GRN grammar 5.7 into a file,
. invoke Prolog,
. execute the operator definitions,
. consult program C.1 into the Prolog memory,
. and then consult the BH-GRN grammar,

a parser, logically equivalent to program 5.2, will be asserted into the Prolog
memory.

Warning! When using BH-GRN, you should be very careful to avoid making
typing mistakes. In particular, if you mistakenly type only two minus signs
instead of three, then your erroneous rule will be caught by the in-built
Prolog-GRN preprocessor. This will give erroneous results for the uses to
which we put BH-GRN.




s —— [np(Per, Y), vp(Per, Y)].
np(Per, Y) —— [pro(Per, Y)].

np(3, Num) —— [det(Num), nbar(Num) ].

nbar (Num) —— [n(Num) ].
nbar (Num) —— [adj, nbar(Num) ].

vp(Per, Y) —— [vi(Per, Y)].
vp(Per, Y) —— [vbe(Per, Y), adj].

det(sing) ===> [this].
det(plu) ===> [these].
det(-Num) ===> [the].

n(sing) ===> [knight].
n(plu) ===> [knights].
n(-Num) ===> [sheep].

Vi
Vi
Vi
Vi

Grammar 5.7: BH-GRN version of program 5.2

, sing)

, plu)

, Num) ===

, sing)

, plu) ===> [they].

j ===> [tipsy].

, sing) ===> [am].
, plu) ===> [are].
, Num) ===> [are].
, plu) ===> [are].
, sing) ===> [Is].

, -Num) ===> [slept].

, Num) ===> [sleep].
, -Num) ===> [sleep].
, plu) ===> [sleep].

, sing) ===> [sleeps].




5.3.5 Embedding arbitrary Prolog goals into GRN

In program 4.3 for a depth-bounded top-down parser we showed one way of
enabling a left-to-right, top-down parser to handle left-recursive rules.

In that program, it was the parser that kept track of the depth of the trees
being built.

Now that we are translating straight from a grammar to a definite clause logic
program, how do we implement such non-grammatical information?




Firstly, we observe that
NP(CE(), 5171)/\VP(£131, CU) DS(ZIZ(), ZE)

is the general form of a definite clause corresponding to a CF-PSG rule.

Since logical predicates are not in principle restricted to any specific number
of arguments, we can generalize this to allow more than two arguments to a

predicate.




We can exploit this extension to write a DCG version of the depth-bounded
parser.

We start by using an additional argument to carry the depth information,
moving this information from the interpreter (in the original version) into the
grammar itself, and add the clauses from the interpreter which check and
decrement the depth level.

s (Depth, S0, S) :-
Depth > 0,
NewDepth is Depth - 1,
np (NewDepth, S0, S1),
vp (NewDepth, S1, S).

The lexical entries simply require the extra argument:

np (Depth, [toby|L], L).




One problem with this is that it takes a lot of typing! At the very least, we
would like the convenience of not having to type in the two list processing
arguments, as in GRN. But, when a BH-GRN rule (or its Prolog-GRN
equivalent) such as the following

s (Depth) —-—-—> [Depth > 0, NewDepth is Depth-1,
np (NewDepth), vp (NewDepth)].

is consulted into Prolog, program C.1 (or, for Prolog-GRN, the in-built

preprocessor) will convert the rule to:

s (Depth, LO, L) :- >(Depth, 0, LO, L1),
1s (NewDepth, Depth-1, L1, L2),
np (NewDepth, L2, L3), vp (NewDepth, L3, L).

This is not what we want because we now see that what we had intended to
be calls to the evaluable binary predicates > and is have been given extra

arguments too. What is needed is a way of inhibiting the preprocessor from

inserting these extra arguments.




Both program C.1 and the Prolog-GRN preprocessor come with a solution to
this. We can tell either preprocessor not to add these arguments to certain
predicates by enclosing those predicates in curly braces (‘{’ and ‘}’). For
example:

s (Depth) —-——> {Depth > 0, NewDepth is Depth-1},
[np (NewDepth), vp (NewDepth)].

converts to

s (Depth, LO, L) :- Depth > 0, NewDepth 1s Depth-1,
np (NewDepth, LO, L1), vp(NewDepth, L1, L).

which is correct.




{Depth > 0, NewDepth 1s Depth
[np (NewDepth), vp (NewDepth)].
{Depth > 0, NewDepth i1s Depth
[v (NewDepth) ] .

{Depth > 0, NewDepth is Depth
[v (NewDepth), np(NewDepth)].
{Depth > 0, NewDepth is Depth
[vp (NewDepth), pp (NewDepth)].
{Depth > 0, NewDepth is Depth
[p (NewDepth), np(NewDepth)].
{Depth > 0, NewDepth is Depth
[np (NewDepth), pp (NewDepth)].

toby].
scotch].
drinks].

ice].




. Load Grammar 5.7 (the BH-GRN version)

. Type 2-1listing(———>) to confirm that Prolog has loaded the
grammar rules

. Load the top-down recognizer, program4.1

. Confirm that the top-down parser and grammar work together by
parsing ‘These tipsy knights sleep’

?— td_parse (T, [these, knights, sleep], []).

. Load the bottom-up shift-reduce parser, program4.4.

. Type ?-listing(-—->) to confirm that Prolog has loaded the
grammar rules

. Confirm that the bottom-up parser and grammar work together by
parsing ‘These tipsy knights sleep’

?— parse([these, tipsy, knights, sleep], X).




. Load programC.1

. Load Grammar 5.7 again

. Type ?-1listing(——->) to confirm that Prolog no longer knows the

grammar rules

. Check that the grammar has been compiled into a DCG by parsing
‘These tipsy knights sleep’
?— s([these, tipsy, knights, sleep], []).

. Take the depth-bounded DCG, program 5.8 and modify it so that it also
builds parse trees.




:—op (1100, xfx,
:—op (1100, xfx,

s ——> [np(Per, Num, nom), vp(Per, Num)].

np (Per, Num, Case) ———> |[pro(Per, Num, Case)].

np (3, Num, _Case) ———> [det (Num), nbar (Num)].




nbar (Num) ———> [n (Num)].

nbar (Num) ———> [ap, n (Num)].

ap ===> [ad]] -




vp (Per, Num) ——-——-> [vi(Per, Num)].

vp (Per, Num) —-—-—-> [vt (Per, Num) np (_Per, _Num, acc)].

vp (Per, Num) ——-——> [vbe(Per, Num), adj].

det (sing) ===> [this].
det (plu) ===> [these].
det (_Per) ===> [the].

n(sing) ===> [knight].
n(plu) ===> [knights].
n(_Per) ===> [sheep].




sing, nom) ===>

~

sing, acc) ===> [me].

~

plu, nom) ===> [we].

~

plu, acc) ===> [us].

~

_Per, _Case) ===> [you].

~

sing,

~

sing,

sing,

~

sing,

~

sing,

~

plu,

~

1
1
1
1
2
3
3,
3
3
3
3
3

~







_Num) ===> [helped].
_Per) ===> [help].
_Per) ===> [help].
plu) ===> [help].

sing) ===> [helps].







helps, these, tipsy, knights]
helps, these, tipsy, sheep]
helps, the, knight]

helps, the, knights]

helps, the, sheep]

helps, the, tipsy, knight]
helps, the, tipsy, knights]

helps, the, tipsy, sheep]

are, tipsy]

1s, tipsy]




6 Semantics

6.7 From English to Logic

English

Category

FOL Translation

Denotation

“Duncan”

NP

d

Individual

“Macbeth”

NP

m

Individual

“died"

Vi

Ax[died](x)]

characteristic
function (of the set
of individuals that
died)

“Duncan died”

died1(d)

truth value

Table 3: Some correspondences between English and FOL




Logic expression

Example

Prolog representation

Example

Individual constant

d

Prolog constant

d

Predicate constant

dredl

Prolog function symbol

diedl

Formula

died1(d)

Prolog term

diedl (d)

Variable

T

Prolog variable

X

Lambda expression

Ax|died](x)]

Prolog term containing ~

X"diedl (X)

Table 4: Prolog representations of logic expressions




S Az[died1(x)](d)
= died1(d)

N

NP : VP : \z|died1(x)]
| |

Duncan:d  Vi: \x|died1(x)]

|
died : \z|died1(x)]

Figure 22: Annotated tree for “Duncan died”




English syntax FOL translation
S — NP VP; S’ = VP'(NP')

s(S_trans) ——> [np(NP_trans), vp(VP_trans)],

{beta_reduce (VP_trans«NP_trans, S_trans)}.
beta_reduce (Arg Expr*Arg, Expr).
?— beta_reduce (X"diedl (X) xd, NewExpr ).

NewExpr = diedl (d)

yes




bata_reducal X |, ~ :llE:ll{l.'{ } o , NewExpr )

L |

Operation of the Prolog definition of beta-reduction

206



?— s (S_trans, [macbeth, killed, duncan], []).}
S trans = killedl (m, d)

% BH-GRN grammar for semantic translation

s(S_trans) [np (NP_trans), vp(VP_trans)],
{beta_reduce ((VP_trans, NP_trans), S_trans)}.
vp (Vi_trans) —-——> [vi(Vi_trans)].
vp (VP_trans) ———> [vt(Vt_trans), np(NP_trans) ],
{beta_reduce (Vt_trans+«NP_trans, VP_trans)}.

[duncan] .
[macbeth].
[died] .

[killed].

beta_reduce (Arg Expr+Arg, Expr).

Grammar 6.2: BH-GRN grammar for semantic translation




6.7.1 Executing arbitrary Prolog goals with the shift-reduce
parser

:—op (1100, xfx, ———>).
:—op (1100, xfx, ===>).

term_expansion ((X ———> (Y, Code)), ((X ———> Y):— Code)).
term_expansion((X ———> Y), (X ———> Y)).

term_expansion ((X ===> (Y, Code)), ((X ===> Ydl):— Code)):
make_ _dl (Y, Ydl).

term_expansion ((X ===> Y), (X ===> Ydl)) :-
make_ _dl (Y, Ydl).

make_dl (L, OpenL-Var) :-—
append (L, Var, OpenL).




parse (Input, Result) :-—
parse([], [Result], Input, []).

parse ([Stack], [Stack], [], [1]).

parse (Stack0, Stack, Words(O, Words) :-—
shift (Stack0O, Stackl, Words0O, Wordsl),
reduce (Stackl, Stack2, Wordsl, Wordsl),
parse (Stack2, Stack, Wordsl, Words).




shift (Stack, [Cat|Stack], WordsO, Words) :-—
(Cat ===> WordsO-Words) .

reduce ([Top|Stack0], Stack, Words, Words) :-—
reduce_aux (Stack0, [Top], Stackl),
reduce (Stackl, Stack, Words, Words).

reduce (Stack, Stack, Words, Words).

reduce_aux (Stack, Top, [Cat|Stack]) :-
( Cat ———> Top) .

reduce_aux ([Top|Stack0], Store, Stack) :-

reduce_aux (Stack0O, [Top|Store], Stack).

P{} (X)) :—= call (X).

Program 6.1 Shift-reduce parser that can evaluate extra code




?— parse ([macbeth, died], X).
X s (diedl (m)) ;

I\[®)

?— parse ([macbeth, killed, duncan], X).

s(killedl (m, d))




?— parse ([duncan,died], X)
parse ([duncan, died], _G312) 2
parse([], [_G312], [duncan, died], []) *?
shift([], _L364, [duncan, died], _L365) 2
_G388===>[duncan, died]-_G392 2
np(_G396" (_G396%d))===>[duncan, died]-[died] 2
shift ([], [np(_G396~ (_G396xd))], [duncan, died], [died]) 2
reduce ([np (_G396" (_G396xd))], _L366, [died], [died]) 7
reduce_aux ([], [np(_G396~ (_G396xd))], _L427) =2
_G405-——->[np (_G396" (_G39%6xd))] ?
_G405-——->[np (_G396" (_G39%6xd))] ?
reduce_aux([], [np(_G396~ (_G396xd))], _L427) =2
reduce ([np (_G396" (_G396xd))], _L366, [died], [died]) ?
reduce ([np (_G396" (_G396xd)) ] [np (_G396" (_G396xd) )], [died]
[died])

4
4

e




parse ([np(_G396~ (_G396xd))], [_G312], [died], []) <

shift ([np(_G396~ (_G396xd))], _L425, [died], _L426) 2

_G402===>[died]-_G406 2

vi(_G4107°diedl (_G410))===>[died]-[] ?

shift ([np(_G396~ (_G396%d))], [vi(_G410°diedl (_G410)),
np (_G396~ (_G39%96«d))], [died], []) 2

reduce ([vi(_G410°diedl (_G410)), np(_G396~ (_G396%d))1,

_L4z27, [1, [1) 2
reduce_aux ([np (_G396" (_G396%d))], [vi(_G410°diedl (_G410))],
_L488) 2
_G418-—->[vi(_G410°diedl (_G410))]1 =2
vp (_G410"diedl (_G410))——>[vi(_G410"diedl (_G410))] 2
reduce_aux ([np (_G396" (_G396%d))], [vi(_G410°diedl (_G410))],
[vp (_G410°diedl (_G410)), np(_G396~ (_G396%*d))]) 2




reduce ([vp(_G410"diedl (_G410)), np(_G396~ (_G396%d))]1,
_L4z27, [1, [1) 2

reduce_aux ([np(_G396" (_G396xd))], [vp(_G410°diedl (_G410))],
_L547) »

_G426——>[vp(_G410"diedl (_G410))] =2

_G426——>[vp(_G410"diedl (_G410))] =2

reduce_aux ([np(_G396" (_G396xd))], [vp(_G410°diedl (_G410))],
_L547) »

reduce_aux ([], [np(_G396" (_G396xd)), vp(_ G410 °diedl (_G410))]
_L547) ?

_G429-——->[np (_G396" (_G396%*d)), vp(_G410"°diedl (_G410))]1 ~?

{beta_reduce (_G396~ (_G396%d)*_G410°diedl (_G410), _G432)} 7

call (beta_reduce (_G396"° (_G396+*d)*_G410°diedl (_G410),
_G432)) ? s

call (beta_reduce ((d"diedl (d))”~ (d"diedl (d) xd) *d"diedl (d),
diedl (d))) ?

{beta_reduce ((d"diedl (d))”~ (d"diedl (d) *d) *d"diedl (d),
diedl (d))} ?




[
ol

s(diedl (d))-———>[np((d"diedl (d))”~ (d"diedl (d) *d)),
vp(d"diedl (d))] 2

reduce_aux ([], [np((d°diedl(d))”~ (d"diedl (d)*d)),
vp (d"diedl (d))], I[s(diedl(d))]) <

reduce_aux ([np((d"diedl (d))”~ (d"diedl(d)=*d))],
[vp(d"diedl (d))], [s(diedl(d))]) 2

reduce ([s (diedl (d)) ], _L427, [1, []1) 2

reduce_aux([], [s(diedl(d))], _L621) 7

_G481-———>[s(diedl (d))] =2

_G481-—->[s(diedl (d))] =2

(diedl (d)) 1, _Le621) =2

)1, _L4z27, 11, []) 7

)1, [s(diedl(d))], [1, []1) 7

(d)), np((d°diedl(d))” (d"diedl (d)=d))],

1, (1, [1) 7

(d

]

=
D

[
W

reduce_aux ([], [s
[s (diedl (d
reduce ([s (diedl (d

reduce (
(
reduce ([vp (d~died
[s
(
[s

(13)
(14)
(15)
(15)
(14)
(13)
(13)
(12)

(diedl (d)
[vi (d"died
(diedl (d)

'_\
'_\

reduce )), np((d"diedl(d))” (d"diedl (d)xd))]1,

)
)
1
)
1
)1, 1, [1) 7?




(11) parse([s(diedl(d))]1, [_G312]1, [1, []) <
11) parse([s(diedl(d))], I[s(diedl(d))], I[1],
(10) parse([np((d°diedl (d))”~ (d"diedl (d) xd))
died], []) 2
parse([], [s(diedl(d))], [duncan, died],
parse ([duncan, died], s(diedl(d))) =2

d
d



7 Quantified Noun Phrases

Grammar Logic

SNPVP | NP/(VP)
VP — Vi Vi’
VP — Vit NP Vt'(NP')
NP — Det Nbar | Det’(Nbar’)
NP — PName PName'
Nbar — N N’




Lexicon Logic

every : Det AQAPVz(Q(x) D P(x))]]
soldier: N Ax[soldierl(x)]

Duncan : PName AP[P(d)]

died: Vi Ax|died](x)]
Killed : Vt AP Ay[P(Ax[killed1(y, x)])]]

Grammar 7.6: Grammar to be extended by PPs




Higher order expressions

a. AP[P(d)]

b. pname (P"P (d)) ===> [duncan]. % Illegal Prolog

C. pname (P~ (Pxd) ===> [duncan].

Connectives




Quantifiers

for_all (e.g. for_all (X, diedl (X))

exists (e.9. exists (X, diedl (X))

Logic formula Prolog representation

kingl(d) A —=kingl(m) kingl (d) & " (kingl (m))

Vx(soldierl(x) D diedl(x)) for_all (X, soldierl(X) => diedl (X))




Program betareduce.pl: Beta-reduction for higher-order logic

% Beta—reduction for higher order logic

% betaredreduce. pl
% Based on code by Patrick Blackburn & Johan Bos

% Operator for functional application
— op(400, yfx, =x).

beta_reduce (Expression, Result):—
beta_reduce (Expression, Result, []).

beta_reduce (Expr1, Expr2, []):—
var (Expr1),
Expr1=Expr2.




beta_reduce (Expression, Result, Stack):—
nonvar ( Expression) ,
Expression = FunctorxArgument,

beta_reduce (Functor, Result, [Argument|Stack]) ,!.

beta_reduce (Expression, Result, [Var|Stack]):—

nonvar ( Expression) ,
Expression = Var Body,!,
beta_reduce (Body, Result, Stack).




beta_reduce (Expression, Result, []):—
nonvar ( Expression) ,
\+ (Expression = X"_, nonvar (X)) ,!,
compose (Expression, Functor, Expressions),
beta_reduce_all (Expressions, Results),
compose ( Result, Functor, Results).

compose (Term, Symbol, ArgList):—
Term =.. [Symbol|ArgList].

beta_reduce_all ([], []) -

beta_reduce_all ([ First |Rest], [NewFirst|NewRest]):—
beta_reduce (First, NewkFirst),
beta_reduce_all (Rest, NewRest) .




Operators, quantifiers and connectives

, fy,

7).
, xfy, &).
#) .

, xfy,

(3
(50
( ,xfy,
(
(510, xfy,




s(S_trans) ——> [np(NP_trans vp(VP _trans)],

{beta_reduce (NP_transxVP_trans, S_trans) }.
vp(Vi_trans) ——> [vi(Vi_trans)].
vp(VP_trans) —— [vt(Vt_trans), np(NP_trans)],

{beta_reduce (Vt_trans«NP_trans, VP_trans) }.

np(NP_trans) ——> [det(Det_trans), nbar(Nbar_trans)],
{beta_reduce (Det_transxNbar_trans, NP_trans)
}.
np(Pname_trans) ——> [pname(Pname_trans) ].
nbar(N_trans) —— [n(N_trans)].




det(Q°P  for_all (X, Q«xX => PxX)) ===> [every].

n(X"soldier1 (X)) ===> [soldier].

np(P"(Pxd)) ===> [duncan].
P”(Pxm)) ===> [macbeth].

np (
vi (X" died1 (X)) ——=> [died].
vt (NP1°Y*(NP1+X"Kkilled1 (Y, X)))  ===> [killed].

Grammar 7.8: BH-GRN grammar for semantic translation




?— parse([duncan, killed, every, soldier], X).

s(for_all(_ G284, soldierl (_G284)=>killedl (_G284, d)))




. Load program C.1

. Load the higher-order beta-reduction program

. Load Grammar 7.8

. Sample call:

?— s (X, [every, soldier, died], []).
X = for all( G223, soldierl ( _G223)=>diedl (_G223))

Yes




. Quit Prolog

. Load the extended shift-reduce parser

. Load the higher-order beta-reduction program

. Load Grammar 7.8

. Sample call:

?— parse([every, soldier, died], X)).

= s(for_all(_G223, soldierl (_G223)=>diedl (_G223)))




Scope ambiguity and Cooper storage

Grammar Matrix rule Store rule

S— NP VP S’ = NP/(VP') S" =NP” U VP”
VP — Vi VP’ = Vi’ VP =Vi”
VP — Vt NP VP’ = Vt'(NP’) VP =Vt" U NP”
NP — Det Nbar | NP’ =\P[P(z)] NP"” =Det” U Nbar” U
{(Det’(Nbar’), z)}
NP — PName NP’ = PName' NP"' = PName”
Nbar — N Nbar’ =N’ Nbar” =N"




Lexicon Matrix

every : Det AQAPVz(Q(x) D P(x))]]
soldier: N Ax[soldierl(x)]

Duncan:PName | AP[P(d)]
died: Vi Ax|[died]l(x)]

Killed : Vt AP[A\y[P(Ax|killedl(y, x)])]]

Grammar 7.9: Simplified storage grammar




Prolog implementation

A reminder about difference lists

vp (SO0, S):—
vt (S0, S1),
np(St1, S).

vp ([drinks , scotch, on, ice], []):—
vt ([drinks , scotch, on, ice], [scotch, on, ice]),
np ([ scotch, on, ice], []).

vt ([drinks | Words], Words) .

vp (SO0-S):—
vt (S0-S1) ,
np (S1-S) .




Grammar Matrix rule Store rule

VP — VtNP | VP' =Vt (NP’) | VP" =Vt" UNP”

vp (VPmx, Store(O-Store) ———>
[vt (VEtmx, Store(O-Storel), np(NPmx, Storel-Store)],
{beta_reduce (Vtmx+*NPmx, VPmx) }.




Grammar Matrix rule Store rule

NP — Det Nbar | NP’ = AP[P(z)] | NP” =Det"” U Nbar” U

{(Det’(Nbar’), z)}

np(P"(PxZ), [stored(NPmx, Z) | StoreO]-Store) ——>
[det (Detmx, Store0—Store1), nbar(Nbarmx, Storei1-—-Store)],
{beta_reduce (DetmxxNbarmx, NPmx) }.




s(Smx, Store0—Store) ——>
[np (NPmx, Store0—Storel), vp(VPmx, Storei1—-Store)],
{beta_reduce (NPmx«xVPmx, Smx) }.

vp(Vimx, Store) ——>
[vi(Vimx, Store)].

vp (VPmx, Store0—Store) ——>
[vt(Vimx, Store0—Storel), np(NPmx, Storel—-Store)],
{beta_reduce (VimxxNPmx, VPmx) }.

np(P"(PxZ), [stored(NPmx, Z) | StoreO]-Store) ——>
[det (Detmx, Store0—Store1), nbar(Nbarmx, Storei1—-Store)],
{beta_reduce (DetmxxNbarmx, NPmx) }.

np (PNamemx, Store) ——>
[ pname (PNamemx, Store)].

nbar (Nmx, Store) ——>
[n(Nmx, Store)].




det(Q"P"for_all (X, Q+X => PxX), S-S)
det(Q"P"exists (X, Q+X & PxX), S-S)

n(X"soldier1 (X), S-S)
n(X"witch1 (X), S-S)

pname(P" (Pxd), S-S)

vi (X" died1 (X), S-S)

vt (NP*Y*(NP+X"Kkilled1 (Y, X)), S-S)

===> [every].
===> [some].

———> [soldier].
———> [witch].

===> [duncan].

—==> [died].
———> [killed].

Grammar 7.10 A BH-GRN grammar that achieves simplified Cooper storage




. Load the extended shift-reduce parser
. Load the higher-order beta-reduction program

. Load Grammar 7.10

. Sample call (needs additional lexical entries for ‘some’ and ‘witch’):

?— parse ([every, soldier, killed, some, witch], s(Matrix,
Store)).
Matrix = killed1 (_.G361, _G517)
Store = [stored(.G292" for_all (.G295, soldier1 (_.G295)
=>_(G292x_G295), _G361),
stored (G541  exists (G544, witch1 (_.G544)
& G541x_G544), G517)|_G556]— _G556




Quantifier retrieval

Let S’ be the matrix of the S.

An item in the store is of the form (NP’, z), i.e. NP’ is the stored NP

translation and z is the stored variable (which is free in S’).

To use a retrieved item to scope S’, we compute:

NP’ (\z[S'])




?—parse([every, soldier, killed, some, witch],

s (Smx, Sstore-[])),

scope (Smx, Sstore, ScopedStrans).




scope (Mx, [], Mx).

scope (Oldmx, StoredNPs, Scopedmx) :—
remove (stored (NPmx, Var), StoredNPs, NewStore),
apply_np (NPmx, Var, Oldmx, Newmx) ,
scope (Newmx, NewStore, Scopedmx) .

apply_np (NPmx, Var, Oldmx, Newmx) :—
beta_reduce (NPmxx(Var Oldmx) , Newmx) .

% remove (X, Ys, Zs) —— list Zs is the result

% of removing an occurrence of
% item X from list Ys

remove (X, [X|Xs], Xs).

remove (X, [Y|Ys], [Y]|Zs]) :— remove(X, Ys, Zs).

Prolog code for retrieving stored NP translations




?— parse ([every, soldier, killed ,some,witch],
s(Smx, Sstore —[])),
scope (Smx, Sstore, ScopedStrans).

Smx = killed1 (.G310, _G488)

ScopedStrans = exists (.G488, witch1(.G488)
&for_all (G310, soldier1(.-G310)
=>killed1 (_.G310, _G488))) ;

Smx = killed1 (.G310, _G488)

ScopedStrans = for_all (.G310, soldier1(_.G310)
=>exists (.G488, witch1(.G488)
&killed1 (_.G310, _G488))) ;




. Load the extended shift-reduce parser
. Load the higher-order beta-reduction program
. Load the scoping code

. Load Grammar 7.10

. Sample call (needs additional lexical entries for ‘some’ and ‘witch’):

?— parse ([every, soldier, killed ,some,witch],
s(Smx, Sstore —[])),
scope(Smx, Sstore, ScopedStrans).
Smx = killed1 (.G310, _G488)
ScopedStrans = exists (.G488, witch1(.G488)
&for_all (G310, soldier1(_-G310)
=>killed1 (_.G310, _G488))) ;




6. Force Prolog to find alternative solutions:

Smx = killed1 (_.G310, _G488)

ScopedStrans = for_all (.G310, soldier1(_.G310)
=>exists (.G488, witch1 (.G488)
&killed1 (_.G310, _G488))) ;




. Load program C.1
. Load the higher-order beta-reduction program
. Load the scoping code

. Load Grammar 7.10

. Sample call (needs additional lexical entries for ‘some’ and ‘witch’):

s (Smx, Sstore —[], [every,soldier , killed ,some,witch], []),
scope (Smx, Sstore, ScopedStrans).
Smx = Killed1 (G296, _G427)
ScopedStrans = exists (G427, witch1(_G427)
&for_all (.G296, soldier1 (_.G296)
=>killed1 (.G296, _G427))) ;




6. Force Prolog to find alternative solutions:

Smx = killed1 (.G296, _G427)

ScopedStrans = for_all (.G296, soldier1 (_.G296)
=>exists (_.G427, witch1 (_.G427)
&killed1 (G296, _G427))) ;




8 Interfaces to databases

linguistic_analyser (String) :-—
setof (parse (Matrix, Store),
s (Matrix, Store-[], String, I[1]),
Parses), !,
findall (reading (ScopedTrans),
(member (parse (Mx, St), Parses),
scope (Mx, St, ScopedTrans)),
Readings), !,

answer (Readings) .




?— setof (X, member (X, [a,b,c,a]), Set).

= (G159
Set = [a, b, c]

Yes

?— setof(item(X), member (X, [a,b,c,a]), Set).

X _ G147

[item(a), i1tem(b), item(c) ]




?— setof (parse (Matrix, Store),

s (Matrix, Store-[], [every, soldier, died], [1]),

Parses) .

Matrix = _G170
Store = _G171
Parses = [parse(diedl (_G314),
[stored (_ G322 for _all ( G325, soldierl (_G325)
=>_(G322%_G325), _G314)1)]1]




?— Parses = [parse(died1 (_-G291) ,
[ stored ((-G302" _G303) "for_all (.G302, soldiert (
_G302)
=>_G303), _G291)])],
findall (reading (ScopedTrans) ,
(member(parse (Mx, St), Parses),
scope(Mx, St, ScopedTrans)),
Readings) .

Readings = [reading(for_all (.G435, soldier1 (.G435)
=>died1(.G435)))]




9 Database

witchl (wl)

witchl (w2)

witchl (w3) .
(wd)

W
W
witchl

W

diedl (X) :—
killedl (_, X).

soldierl

(
soldierl (
soldierl (

(

soldierl




killedl (m, d).
killedl (m,

killedl (sl
killedl (s2,
killedl (s3
killedl (s4




Interpretation of quantifiers and connectives

Connectives

P :— \+ P.

(P & Q) :—
call (P),
call (Q) .




Quantifiers

for_all (X, P = Q):—
\+ (call(P),
\+ call(Q)).

exists (X, P):—
call (P).

72— exists (X, soldieri(X) & exists(Y, witch1(Y) & killed1 (X, Y))
) .

s
wi




Semantic evaluation

answer (Readings) : -

member (reading (ScopedTrans), Readings),
message (ScopedTrans),
fail.

answer (_) .

message (Formula) : -
write (Formula), nl,
( call (Formula)—>
write (' That’’s right.’”), nl
write (I don’’t think so.’)

)
, nl.




?— linguistic_analyser ([every, soldier,killed, some,witch]).

exists (_ G353, witchl ( G353)&for all( G361, soldierl ( G361)
=>killedl (_ G361, _G353)))

I don’t think so.

for all( G326, soldierl( _G3206)
=>exists (G334, witchl ( G334)&killedl (_G326, _G334)))

That’s right.

Yes




Loading files automatically:

create a file (load_td.pl) which contains a directive like the following

:— [operators, programC-1,betareduce, scoping, frontend].

where this is a list of the Prolog files required.
Compile load.pl:

programC—-1 compiled 0.01 sec, 0 bytes

betareduce compiled 0.00 sec, 0 bytes

scoping compiled 0.00 sec, 0 bytes

frontend compiled 0.00 sec, 128 bytes
/tmp/prolcomp7920fli compiled 0.02 sec, -2,340 bytes

Yes

Then consult a grammar file.




Bottom up parsing

We need to modify the code for the linguistic analyser so that it uses a
bottom up parser for the parsing part of the program:

linguistic_analyser (String) :-—
setof (parse (Matrix, Store),
parse (String, s (Matrix, Store-[])),
$shift reduce parser
Parses), !,
findall (reading (ScopedTrans),
(member (parse (Mx, St), Parses),
scope (Mx, St, ScopedTrans)),
Readings), !,

answer (Readings) .




To automatically load the code required, create a file (1oad_bu.pl) which
contains a directive like the following:

:— [operators, betareduce, scoping, frontend_bu, program6-1]

where this is a list of the Prolog files required (and program6-1.p1l is the

program that contains the version of the shift-reduce parser that can execute
Prolog code contained in curly brackets).




Compile load_bu.pl:

betareduce compiled 0.01 sec, 0 bytes
scoping compiled 0.00 sec, 0 bytes
frontend_bu compiled 0.01 sec, 0 bytes

program6—-1 compiled 0.00 sec, 0 bytes

/tmp/prolcomp931BLe compiled 0.02 sec,

Yes

3,964




Then compile your grammar and run the front end:

?— linguistic_analyser ([every, soldier,killed, some, witch]
exists (G348, witchl ( G348)
&for_all (_ G356, soldierl (_G356)

=>killedl (_G356, _G348)))
I don’t think so.

for all( G321, soldierl( _G321)
=>exists (G329, witchl (_G329)

&killedl (_G321, _G329)))
That’s right.




Making it all neater

nlidb :-
write (' Welcome to BH-NLIDB’), nl,
repeat,
nl,
write(’'> "),
read_string(String), nl,

process_string (String) .

process_string (String) : -
String = [stop], !,
write (' Goodbye’), nl.

process_string (String) : -
linguistic_analyser (String),
fail.




?— nlidb.
Welcome to BH-NLIDR

> macbeth died

diedl (m)
I don’t think so.

> duncan died

diedl (d)
That’s right.




> every soldier killed some witch

exists (_ G416, witchl(_G416)
&for all( G424, soldierl (_G424)
=>killedl (_G424, _G416)))
I don’t think so.
for all( G389, soldierl (_G389)
=>exists (_G397, witchl (_G397)
&killedl (_G389, _G397)))
That’s right.

> stop

Goodbye

Yes



Finally, add an error message for the situation when things go wrong:

linguistic_analyser () :-

write (' Linguilistic analyser: Could not process’), nl.
A second clause for the original linguistic_analyser/1

Welcome to BH-NLIDB

> died duncan

Linguistic analyser: Could not process




