L344 Computational Syntax and Semantics
Coursework requirements

March 1, 2006

. Begin with the following grammar:

:— op(1200, xfx, ——>).
:— op(1200, xfx, ===>).
B Op(307 fY7 ~)'

:— op (500, xfy, &).

:— op (500, xfy, #).

:— op (510, xfy, =>).

:— op(510, xfy, <=>).

s (Smx, Store0—Store) —>
[np(NPmx, Store0—Storel), vp(VPmx, Storel—Store)],
{beta_reduce (NPmx*VPmx, Smx) }.

vp(Vimx, Store) ——> [vi(Vimx, Store)].

vp (VPmx, Store0—Store) —>
[vt(Vtmx, Store0—Storel), np(NPmx, Storel—Store)],
{beta_reduce (Vtmx*NPmx, VPmx) }.

np(P"(PxZ), [stored (NPmx, Z) | Store0]—Store) —>
[det (Detmx, Store0—Storel), nbar(Nbarmx, Storel—Store)],
{beta_reduce (Detmx*Nbarmx, NPmx) }.

np (PNamemx, Store) ——> [pname(PNamemx, Store)].
nbar (Nmx, Store) —> [n(Nmx, Store)].
det (Q"P" for_all (X, Q«X => PxX), S—S) ==> [every].

det (Q"P exists (X, QX & PxX), S—S) =—=> [some].

n(X"soldierl (X), S-S) —=> [soldier].
n (X" witchl (X), S-S) =—=> [witch].
pname (P~ (Pxd) , S-S) =—=> [duncan].
pname (P~ (Pxm) , S—S) =—=> [macbeth].
vi (X diedl(X), S-S) —— [died].

vt (PTY" (P+X" killed1 (Y, X)), S-S) —— [killed].

. Add to it (including both syntax and semantics):

e A lexical entry for the word Glamis
e A lexical entry for the word gave
e A lexical entry for the word given

e A lexical entry for the word who

A lexical entry for the word castle

VP rules to allow you to parse the following sentences

. Duncan gave Glamis to Macbeth?

a

b. Duncan gave Macbeth Glamis.

c. Macbeth was given Glamis by Duncan
d

. Glamis was given to Macbeth by Duncan

3. Add the fact gavel(d, g, m). (representing the translation of ‘Duncan gave Glamis to Macbeth’)
to the database and demonstrate that the program provides correct responses to all the sentences
in 2.2a-2d above.

4. Add the fact castlel(g) (representing that Glamis is a castle) to the database and confirm that
the sentences ‘Duncan gave every castle to Macbeth’ and ‘Duncan gave some castle to Macbeth’
have the same truth conditions.

5. Modify the answer/1 predicate so that it will give sensible answers to questions such as ‘Who gave
Glamis to Macbeth’.

Assume the following constituent structure analysis for passives:

S
NP VP
|
Macbeth /\
A% VP
|
was

given Glamis by Duncan

Try to ensure that your grammar does not overgenerate by allowing parses of ungrammatical sentences.
(Such as ‘Duncan gave Glamis by Macbeth’, or ‘Macbeth was gave Glamis by Duncan’; use the techniques
for handling number agreement as a basis for ensuring this.)

Your coursework submission should consist of

1. A program listing of all your additions and modifications, with comments explaining what the code
is for.

2. Evidence that the program will do what it is supposed to do by way of successfully parsing and
answering correctly a range of input sentences.

3. A discussion (of not more than 1000 words) clearly explaining why your program takes the form that
it does, identifying any failings in the program (e.g. under- or over-generation) and commenting
on any difficulties you have encountered.

The complete project report should be placed in my box opposite the photocopier by 12 noon on Friday,
28 April 2006.

1For those unfamiliar with the plot *Glamis’ is a castle.

