
Introduction to Head-driven Phrase Structure Grammar
∗

Steve Harlow

sjh1@york.ac.uk

May 5, 2009

Contents

Tables 2

Exercises 2

1 Signs 4

2 Valence 5

3 Words and phrases 7

3.1 Complements . 9

Head-Complement Phrase . 9

The Head Feature Principle . 10

3.2 Subjects . 12

Head-Subject Phrase . 13

3.3 Nouns and Noun Phrases . 14

Head-Specifier Phrase . 18

3.4 Prepositions and PPs . 20

3.5 Verbs and auxiliaries . 22

3.6 Clauses . 28

3.7 Subject-auxiliary Inversion (SAI) . 31

4 The Lexicon 32

5 Lexical Relations 42

6 Unbounded dependency constructions 44

6.1 Subject extraction . 53

∗Draft only. Please do not quote or cite

1

sjh1@york.ac.uk

LIST OF TABLES 2

7 Semantics 54

7.1 The semantics of verbs. 56

The Content Principle . 58

7.1.1 Context . 59

7.2 Prepositional Phrases . 61

7.3 Determiners and quantifiers . 62

The Quantifier Amalgamation Principle – First version 64

The Quantifier Inheritance Principle . 64

The Quantifier Amalgamation Principle – Final version 64

8 Adjuncts 68

8.1 Adjectival adjuncts . 69

Head-Adjunct Phrase . 71

8.2 PP adjuncts . 71

8.3 Relative clauses . 74

8.3.1 Wh-words and Pied-piping . 75

The Wh-Amalgamation Principle . 76

The Wh-Inheritance Principle . 76

8.3.2 The Relative Clause . 77

List of Tables

1 Examples of phrases . 8

2 Verbal projections. 14

3 Table of English verb forms . 22

4 Hierarchy of lexical parts of speech . 33

5 Subject valence hierarchy. 35

6 Complement valence hierarchy . 36

7 Lexical hierarch of vform values. 37

8 Auxiliary verb hierarchy . 38

List of Exercises

Exercise 1 . 6

exercise.1

Exercise 2 . 12

exercise.2

Exercise 3 . 12

exercise.3

LIST OF TABLES 3

Exercise 4 . 12

exercise.4

Exercise 5 . 21

exercise.5

Exercise 6 . 27

exercise.6

Exercise 7 . 31

exercise.7

Exercise 8 . 31

exercise.8

Exercise 9 . 40

exercise.9

Exercise 10 . 40

exercise.10

Exercise 11 . 41

exercise.11

Exercise 12 . 41

exercise.12

Exercise 13 . 41

exercise.13

Exercise 14 . 50

exercise.14

Exercise 15 . 54

exercise.15

Exercise 16 . 54

exercise.16

Exercise 17 . 62

exercise.17

Exercise 18 . 73

exercise.18

Exercise 19 . 80

exercise.19

Exercise 20 . 80

exercise.20

1 SIGNS 4

1 Signs1

The basic linguistic unit in HPSG is called a sign. A sign is a collection of information about
a linguistic entity’s pronunciation, its syntax and its semantics. Each sign is defined as a feature
structure of sort sign for which the attributes phonology (phon),2 synsem and some others (that
we will come to later) are defined. This information is shown in the following AVM, in which sorts
are (following standard convention) written in lower case italics and attributes are written in small
capitals.





sign

phon list(phonstring)

synsem synsem





The value of phon is a list of feature structures of sort phonstring. In this book we will have
nothing more to say about this aspect of language and will simply represent phon values as lists
of words in their conventional orthographic form. The attribute synsem takes feature structures of
sort synsem as values and we will look next at what this means.

Syntactic and semantic information is partitioned into two kinds, local and non-local infor-
mation. Non-local information is that which is involved in unbounded dependency constructions in
which a constituent is displaced from its normal position (e.g. “ice cream” in “ice cream, I like”) and
will be discussed later in this chapter; we will take up local information here. This organisation
of synsem is shown in the following AVM.





synsem

loc local

nonloc non-local





local information comprises information about the purely syntactic properties of the sign,
encoded under the attribute cat(egory), and about its semantics, content, as shown in the
following AVM.





local

cat cat

content content





category information comprises information about head properties (head), whether the sign
is a lexical category or not (lex) and what additional syntactic arguments the sign combines with
in order to form larger signs (subject, complements and argument-structure) - what we will
call valence information (also commonly known as subcategorisation).

















cat

head head

lex boolean

subj list(synsem)

comps list(synsem)

arg-str list(synsem)

















1This chapter is part of a larger book. It therefore sometimes contains references to other chapters not included
here. Don’t worry about them.

2We will use abbreviated forms for both attributes and sorts when their interpretation is obvious.

2 VALENCE 5

The value of head consists of part of speech information and ultimately specifies whether the
sign is nominal, verbal, prepositional etc. The sort head is the top of a sortal hierarchy which
is partitioned into two subsorts, substantive and functional . The former has the atomic subsorts
noun, verb, preposition and adjective; the latter has various subsorts, of which determiner is the
only example we will give here. This is shown in the sortal hierarchy in figure 1.3

head

subst

noun verb prep adj

func

det . . .

Figure 1: The head sortal hierarchy.

If we put all of this together, omitting for the moment nonlocal, content and valence infor-
mation, the sign for a verb such as “drinks” will look like figure 2.

























sign

phon 〈likes〉

synsem

















synsem

loc











local

cat





cat

head verb

lex +























































Figure 2: Partial description of the verb “likes”

2 Valence

Now that we have provided a brief outline of how linguistic information is represented in HPSG, we
will proceed to fill in more of the details and in this section we will look in more detail at valence.
“Likes” is not merely a verb, it is a transitive verb – one that, to form a sentence, needs to combine
with two noun phrases, a subject and a direct object. This information, as mentioned above, is
encoded in the values for subject, complements and argument-structure.

Each of these attributes takes a list as its value. list is thus a sort, and has subsorts empty-list
(elist) and non-empty-list (nelist). nelist has the attributes first and rest, which in turn take
values of sorts ⊤ and list respectively.4 This is shown in the following diagram.

list

elist






nelist

first ⊤

rest list







3Each of the maximal subsorts has further attributes defined for it. We will omit these for the moment and return
to them later when they become directly relevant to the presentation.

4⊤ is the (unique) most general sort.

2 VALENCE 6

The subj and comps values consist of lists of linguistic entities with which a sign can combine.
“Likes” combines with a single subject NP and a single complement NP. Using NP to abbreviate
the actual feature structures involved for the moment, this means that the subj and comps values
for “likes” look like this.

























cat

subj





nelist

first NP

rest elist





comps





nelist

first NP

rest elist





























For a verb such as “gives”, which takes two NP complements (in examples like “Kim gives her
friends a lot of attention”), the comps value would look like this.





















cat

comps















nelist

first NP

rest





nelist

first NP

rest elist







































These representations of lists can become difficult to decipher, particularly when embedded in
complex feature structures, so we will follow the common notational convention of using angle
brackets to enclose the elements of a list, thus modifying the above representation of the transitive
verb “likes” to look like this:





cat

subj 〈NP〉

comps 〈NP〉





and the di-transitive verb “gives” to look like this





cat

subj 〈NP〉

comps 〈NP, NP〉





The value of argument-structure (arg-str) is simply the concatenation of the values of
subj and comps. We will represent concatenation with the an infix operator, ⊕, and represent the
complete valence values for transitive verbs as follows (in which the value for arg-str will be 〈NP,
NP〉). The tags 1 and 2 indicate that the co-tagged feature structures are identical.









cat

subj 1 〈NP〉

comps 2 〈NP〉

arg-str 1 ⊕ 2









If we combine this information with that supplied in figure 2, we get the more fully specified
AVM in figure 3.

Exercise 1 Draw AVMs for an intransitive verb such as “smiles” and a ditransitive verb such as
“gives”.

3 WORDS AND PHRASES 7







































sign

phon 〈likes〉

synsem





























synsem

loc























local

cat

















cat

head verb

lex +

subj 1 〈NP〉

comps 2 〈NP〉

arg-str 1 ⊕ 2









































































































Figure 3: Partial description the verb “likes” with valence values added.

3 Words and phrases

In the previous section we outlined the properties of the feature structures associated with lexical
items. Lexical items combine with other categories of specific kinds (noun phrases, adjectival phrases,
sentences etc.) to form more complex phrases. So far we have only been dealing with one kind of
sign. If we are to recognise a distinction between lexical and phrasal signs, we need to partition the
sort sign into two subsorts – word for the lexical signs and phrase for the phrasal signs. Subsorts
inherit feature specifications from their supersorts, so word and phrase will automatically have the
attributes phonology and synsem, with appropriate values. Phrasal signs (of subsort phrase)
have additional attributes containing information about the daughter categories that make up the
phrase. They also take a negative value for the attribute lex. Signs of subsort word , on the other
hand, are positively specified for the lex feature and are not defined for daughter attributes. In
addition, only words are defined for the attribute arg-str introduced above. This information is
summarised in figure 4.

[

sign
phon list(phonstring)
synsem synsem

]





word

synsem | loc | cat

[

cat
lex +
arg-str list(synsem)

]









phrase

synsem | loc | cat

[

cat
lex –

]

daughters daughters





Figure 4: The sortal hierarchy for sign

The sort phrase is partitioned into a number of subsorts as shown in figure 5, and the major
subsorts are exemplified briefly in table 1. We will discuss the properties of these phrases in some
detail in the following pages, introducing further constraints which specify which attributes and
values are appropriate for the various subsorts.

3 WORDS AND PHRASES 8

phrase

headed-ph

hd-nexus-ph

hd-valence-ph

hd-subject-ph hd-specifier-ph hd-complement-ph

hd-filler-ph

hd-adjunct-ph

non-headed-ph

Figure 5: The sortal hierarchy for phrase

SORT EXAMPLE

hd-adjunct-ph

VP

VP
(head-dtr)

drank the soup

AdvP
(non-hd-dtrs)

very noisily

hd-filler-ph

S

NP
(non-hd-dtrs)

Ice cream

S
(head-dtr)

I like

hd-subject-ph

S

NP
(non-hd-dtrs)

Toby

VP
(head-dtr)

drank scotch

hd-complement-ph

VP

V
(head-dtr)

drank

NP
(non-hd-dtrs)

scotch

hd-specifier-ph

NP

Det
(non-hd-dtrs)

the

Nbar
(head-dtr)

book

Table 1: Examples of phrases

3 WORDS AND PHRASES 9

3.1 Complements

We will start by looking at the sort head-complement-phrase. This is a subsort of headed-phrase; a
sort which is appropriate for the features head-daughter and non-head-daughters as shown
in the following AVM.

headed-phrase =⇒







dtrs





dtrs

head-dtr sign

non-hd-dtrs list(sign)











Only subsorts of phrase are defined for the various daughter attributes; words do not have
daughters. The sort head-complement-phrase inherits these constraints and in addition must satisfy
the following constraint:

Head-Complement Phrase5

hd-comp-ph =⇒































synsem | . . .





subj 1

spr 2

comps 〈 〉





dtrs

















hd-dtr











word

synsem | . . .





subj 1

spr 2

comps 〈 3 , . . ., n 〉















non-hd-dtrs 〈[synsem 3], . . ., [synsem n]〉















































This states that a well-formed head-complement-phrase

• must have a lexical head daughter (of sort word),

• must have an empty comps value

• the values of its head daughter’s comps attribute must be token identical to the synsem values
of its non-head daughters, and

• its subj and spr values are identical to those of its head daughter

The combined effect of the second and third of these requirements is that the number and
syntactic category of a lexical head’s sisters must be identical to the items listed on the head’s
comps list and the whole phrase will be ‘complement saturated’, that is, will not combine with any
further complements.

The partial lexical entry for “likes” (which is of sort word) given in figure 3 has the comps value
NP. So, if we unify the head-daughter value of head-complement-phrase with the lexical entry for
“likes”, the resulting value for the attribute non-hd-dtrs is constrained to be a list consisting of a
sign containing [synsem NP]. A phrase headed by “likes” will have the feature structure shown in
figure 6.

Restricting the elements of the comps list to feature structures of sort synsem imposes the
constraint that the information a head selects for is purely local and cannot reach into the category
selected and require, say, that the complement have some particular configuration of daughters of

5synsem| . . . abbreviates the path synsem|local|cat.

3 WORDS AND PHRASES 10





























































hd-comp-ph

synsem | loc |cat

[

subj 1

comps 〈 〉

]

dtrs















































hd-dtr







































word

phon 〈likes〉

synsem





























synsem

loc























local

cat

















cat

head verb

lex +

subj 1 〈NP〉

comps 2 〈 3 NP〉

arg-str 1 ⊕ 2









































































































non-hd-dtrs 〈
[

synsem 3

]

〉











































































































Figure 6: A head complement phrase.

its own or that it have a particular pronunciation. There are good reasons to believe that valence
selections are indeed blind in this way to the internal structure of the categories selected.

The description that we have given of head-complement-phrase says nothing about the part
of speech to which the phrase belongs. It is equally applicable to nouns, verb, prepositions and
adjectives. It is, however, necessary to state that noun phrases have nouns as their head daughters,
verb phrases have verbs, and so on. (Recall the discussion in section?? of chapter??.) This is
achieved by a general constraint on the sort headed-phrase (a super-sort of head-complement-phrase,
which therefore inherits the constraint from it).6

The Head Feature Principle

headed-ph =⇒





head 1

hd-dtr
[

head 1

]





The Head Feature Principle requires that the sign’s head value be token identical to that of its
head daughter. If we add this requirement to the AVM in figure 6, we get figure 7.

6We will often adopt the convention of suppressing path information when this is recoverable from the context,
so that, instead of writing, for example,

[

headed-ph

synsem | loc |cat |head verb

]

we will simply write

[

headed-ph

head verb

]

3 WORDS AND PHRASES 11

































































hd-comp-ph

synsem | loc |cat





head 1

subj 2

comps 〈 〉





dtrs















































hd-dtr







































word

phon 〈likes〉

synsem





























synsem

loc























local

cat

















cat

head 1 verb

lex +

subj 2 〈NP〉

comps 3 〈 4 NP〉

arg-str 2 ⊕ 3









































































































non-hd-dtrs 〈
[

synsem 4

]

〉















































































































Figure 7: A verb phrase.

Although tree structures have no formal status in HPSG, it may help to follow the rather complex
interrelationships in the feature structures we are discussing if we use annotated trees as an informal
notation. The branching of the tree represents information about its daughters, so this allows us to
omit the various daughters attributes. If a daughter is not present in a sub-tree, we simply omit
it. The phonology value is represented by the terminal nodes of the tree, and we will omit path
information. Using these conventions, we can represent the information contained in the AVM in
figure 7 by the tree in figure 8.

[

hd-comp-ph

comps 〈 〉

]

(hd-dtr)
[

word

comps 〈 1 〉

]

likes

(non-hd-dtrs)
[

synsem 1 NP
]

Figure 8: Tree illustrating a head complement phrase.

If we put all this information together and supply a phonology value for the complement NP,
the feature structure corresponding to the verb phrase “drinks scotch” is shown in figure 9.

“Likes” is a mono-transitive verb (i.e. it takes a single NP complement). For ditransitives such
as “gives”, which can take two NP complements, the only modification that we need to make is the
addition of a lexical entry for “gives”. This requires a comps value which is a list of two NPs:

[

comps 〈NP, NP〉
]

Nothing further is required to allow ditransitive verbs to form head complement phrases. The
definition of the sort head-complement-phrase, together with the Head Feature Principle, accounts
for all head-complement constructions, in contrast to the range of rules which would be needed in a
simple Phrase Structure grammar.

3 WORDS AND PHRASES 12











































































hd-comp-ph

phon 1 ⊕ 2

head 3

subj 4

comps 〈 〉

hd-dtr







































word

phon 1 〈likes〉

synsem





























synsem

loc























local

cat

















cat

head 3 verb

lex +

subj 4 〈NP〉

comps 5 〈 6 NP〉

arg-str 4 ⊕ 5









































































































non-hd-dtrs 〈





sign

phon 2 〈scotch〉

synsem 6



〉











































































Figure 9: Partial description of the VP “likes scotch”.

Exercise 2

Expand the abbreviated paths in the AVM in figure 9 .

Exercise 3

Give a lexical entry for di-transitive “gives” and show how the constraints associated with the sort
head-complement-phrase and the Head Feature Principle interact to define a sign for “gives Andrew
scotch”.

Exercise 4

Draw AVMs showing the valence values of the underlined verbs in the following examples (using NP

and PP as aliases for feature structure descriptions).

1. “Toby gave scotch to Andrew”

2. “Andrew talked about Toby to Portia”

Draw partial AVMs for the verb phrases

1. “gave scotch to Andrew”

2. “talked about Toby to Portia”

3.2 Subjects

Now that we have shown how complements are handled, let us turn our attention to subjects. For
these we need to introduce a definition of the sort head-subject-phrase. (Cf. table 1.)

3 WORDS AND PHRASES 13

Head-Subject Phrase

hd-subj-ph =⇒

















































phon 1 ⊕ 2

subj 〈 〉

spr 3

comps 4

head-dtr













phrase

phon 2

subj 〈 5 〉

spr 3 〈 〉

comps 4 〈 〉













non-hd-dtrs 〈





sign

phon 1

synsem 5



〉

















































Note that, in contrast to head-complement phrases, the head daughter in a head-subject phrase
must be a phrase and that the non-head-daughters value is a singleton list.

This definition, in conjunction with the Head Feature Principle licenses feature structures like
that in figure 10 in which the abbreviated AVM for the head daughter subsumes the more detailed
description in figure 9.































































hd-subj-ph

phon 1 ⊕ 2

head 3

subj 〈 〉

comps 〈 〉

lex –

hd-dtr

















phrase

phon 2 〈likes, scotch〉

head 3 verb

subj 〈 4 〉

comps 〈 〉

lex –

















non-hd-dtrs

〈





phrase

phon 1 〈Toby〉

synsem 4 NP





〉































































Figure 10: Partial AVM for the sentence “Toby likes scotch”.

Note that one consequence of this analysis is that sentences are analysed as being projections
of verbs (i.e. they are headed by categories containing the feature structure [head verb]). The
relationships between the different verbal projections that we have encountered are summarised
in table 2. Categories like sentences, which have empty subj and comps lists are referred to as
saturated categories; verb phrases, by contrast, which have a non-empty subj value, are examples
of a partially saturated categories.

3 WORDS AND PHRASES 14

Verb

















word

head verb

subj 1 〈synsem〉

comps 2 list(synsem)

arg-str 1 ⊕ 2

lex +

















Verb Phrase





















hd-comp-ph

head verb

subj 〈synsem〉

comps 〈 〉

lex –

hd-dtr word

non-hd-dtrs list(sign)





















Sentence





















hd-subj-ph

head verb

subj 〈 〉

comps 〈 〉

lex –

hd-dtr phrase

non-hd-dtrs 〈sign〉





















Table 2: Verbal projections.

3.3 Nouns and Noun Phrases

In this section, we will go into the details of the feature structure lying behind the alias NP. One
of the most striking consequences of the kind of HPSG analysis that we have outlined above is that
almost all the apparatus that we need for nouns and noun phrases has already been provided. The
part of the feature structure that identified the examples discussed above as verbs or projections of
verbs is the value of the feature head. To provide a parallel analysis of nominal projections, all we
need to do is to change this value to one appropriate for nouns.

Firstly, recall from page 5 that the sort head has noun as one of its subsorts. The sort noun is
in its turn defined for the feature case, with value case.

[

noun

case case

]

The sort case has the two subsorts nominative and accusative (and possibly more).7

case

nom acc

7Cf. the discussion of English pronouns in chapter ??, section ??. Subject pronouns, such as “I”, will contain the
specification [head [case nom]], while non-subject pronouns, such as “me” will contain [head [case acc]]. Common
nouns, which in English do not exhibit any overt case marking will be specified only for [head [case case]].

3 WORDS AND PHRASES 15

This feature structure forms the value of the head of every nominal category, both lexical and
phrasal. It is the locus of the distinction between nominal categories and categories belonging to
other parts of speech.

A proper noun such as “Toby” will a have feature structure very similar to that for the verb
“likes” in figure 3. The only differences will be

• phonology, which has the value 〈Toby〉, rather than 〈likes〉,

• head, which will have the value
[

noun

case case

]

, rather than verb, and

• the valence values subj and comps, which will both have the empty list as value, since proper
nouns take neither complements nor subjects

The result is shown in the AVM in figure 11.













































word

phon 〈Toby〉

synsem



































synsem

loc





























local

cat























cat

head

[

noun

case case

]

lex +

subj 1 〈 〉

comps 2 〈 〉

arg-str 1 ⊕ 2

































































































































Figure 11: Partial AVM for the proper noun “Toby”.

This lexical entry satisfies the definition of the head daughter in a head-complement phrase,
which, together with the Head Feature, licenses the head-complement phrase shown in figure 12.
This is the nominal counterpart of the verb phrase shown in figure 9.























































hd-comp-ph

phon 1

head 3

subj 5

comps 〈 〉

lex –

hd-dtr























word

phon 1 〈Toby〉

head 3

[

noun

case case

]

subj 5 〈 〉

comps 〈 〉

lex +























non-hd-dtrs 〈 〉























































Figure 12: Partial AVM for the Nbar “Toby”.

3 WORDS AND PHRASES 16

If we turn our attention to common nouns, such as “dagger”, we need to take into account the
presence of determiners in phrases such as “the dagger”, “every dagger”, etc. It is tempting to think
that determiners are the nominal counterpart to subjects – where verbs require subjects, nouns may
require determiners. However, things turn out to be more complex, since common nouns can have
both a subject and a determiner, as does the common noun “clown” in the following examples.

(1) “Toby is a clown.”

(2) “Everybody considered Toby a clown.”

Note that the semantics of both of these sentences require the sub-translation clown1(t) as a
component, exactly parallel to drink1(t) for the semantics of “Toby drinks”, in which the argument
t is indisputably the translation of the subject NP. The HPSG solution to this is to posit an additional
valence feature called specifier (abbreviated to spr) which specifies what determiner if any the head
requires. This requires the following modification of the features appropriate to the sort category.





















cat

head head

lex boolean

subj 6 list(synsem)

spr 7 list(synsem)

comps 8 list(synsem)

arg-str 6 ⊕ 7 ⊕ 8





















“Dagger” will therefore have the following category specification.



























cat

head

[

noun

case case

]

lex +

subj 1 〈 〉

spr 2 〈DetP〉

comps 3 〈 〉

arg-str 1 ⊕ 2 ⊕ 3



























Specifiers comprise a broader class than determiners and include the underlined items in the
following examples.

(3) “Macbeth was very/too/six feet tall.”

(4) “Glamis is just/right/four miles over the border.”

(5) “Toby drank too/very/very much too fast.”

Heads select their specifiers, just as they select their subject and complements, so common nouns
like “dagger” will contain the valence specification [spr 〈DetP〉],8 while proper nouns like “Toby”
will have [spr 〈 〉]. However, in contrast to subjects and complements, specifiers also select the head
with which they co-occur; determiners require a nominal sister, degree specifiers like “very” and
“too” require an adjectival sister and so on.

Restricting attention to determiners, recall that the sort det is a subsort of head (cf. the sortal
hierarchy on page 5). The sort det is appropriate for a new feature specified (abbreviated spec)
which determines the kind of category with which the determiner combines. So the head value for
determiners looks like this

8The fact that determiners can themselves be complex, like “six feet”, “four miles” and “very much too” in (3)-(5)
requires the value for spr here should be a determiner phrase (DetP), rather than just a determiner.

3 WORDS AND PHRASES 17























cat

head

[

det

spec Nbar

]

lex +

subj 〈 〉

spr 〈 〉

comps 〈 〉























in which Nbar abbreviates the following feature description.















synsem

loc | cat









head noun

spr 〈DetP〉

comps 〈 〉

lex –























A determiner is therefore a category which selects, via the spec attribute, a category which itself
selects, via its spr attribute, a determiner phrase. If we replace the aliases DetP and NP in the
above AVMs we come to figure 13 as the feature structure representation of the determiner “every”
(in which loc|. . . |spec abbreviates the path loc|cat|head|spec), and to figure 14 as that of the
common noun “dagger”. Note that both of these feature structures are cyclic.





























































word

phon 〈the〉

synsem 1



















































synsem

loc |cat













































head



























det

spec





















synsem

loc |cat

















head noun

spr

〈

[

synsem

loc | . . . | spec 1

]

〉

comps 〈 〉

lex –































































subj 〈 〉

spr 〈 〉

comps 〈 〉

lex +



























































































































































Figure 13: Partial feature structure of the determiner “the”.

Now that we have a lexical category of determiners, we need to define the kind of constituent
structures in which they can occur. We do this by specifying the attributes appropriate to the sort
head-specifier-phrase. (Cf. table 1.)

3 WORDS AND PHRASES 18







































word

phon 〈dagger〉

synsem 1































synsem

loc |cat

























head noun

subj 〈 〉

spr

〈









synsem

loc |cat | head

[

det

spec 1

]

lex –









〉

comps 〈 〉

lex +





























































































Figure 14: Partial feature structure of the common noun “dagger”.

Head-Specifier Phrase

hd-spr-ph =⇒





























phon 1 ⊕ 2

spr 〈 〉

hd-dtr





phrase

phon 2

spr 〈 3 〉





non-hd-dtrs

〈





phrase

phon 1

synsem 〈 3 〉





〉





























To illustrate we will show the gross structure of the NP “the dagger” in figure 15.9

Complex AVMs like figure 15 are rather difficult to digest. As we have seen above, annotated
trees can provide a more readable informal notation and we will specify a number of additional
notational conventions to be used in writing such trees that will serve to suppress clutter.

• We will use the symbol X to stand for categories of sort word , i.e. lexical categories which
contain the feature specification [lex +])

• We will use the symbol XP to stand for an object of sort phrase

• We will use X′10 to stand for an object of sort
[

phrase

spr 〈[]〉

]

, i.e. a phrase with a non-empty spr

value

• We will use X′′11 to stand for an object of sort
[

phrase

spr 〈 〉

]

• We will use the symbol VP as an alias for XP
[

verb

subj 〈[]〉

]

9Since head-specifier-phrase is a subsort of headed-phrase, the Head Feature Principle also applies.
10Pronounced “X-bar”.
11Pronounced “X-double-bar”.

3 WORDS AND PHRASES 19





















































































































hd-spr-phr

phon 1 ⊕ 2

ss | loc | cat









head 3

subj 〈 〉

spr 〈 〉

comps 〈 〉

lex –









hd-dtr











































hd-comp-phr

phon 2

ss | 4 loc | cat









head 3

subj 〈 〉

spr 〈 5 〉

comps 〈 〉

lex –









hd-dtr















word

phon 2 〈dagger〉

loc









head 3 noun

subj 〈 〉

spr 〈 5 〉

comps 〈 〉

lex +























non-hd-dtrs 〈 〉











































non-hd-dtrs

〈









































hd-comp-phr

phon 1

ss | 5 loc | cat





head 6

subj 〈 〉

comps 〈 〉

lex –





hd-dtr

















word

phon 1 〈the〉

loc









head 6

[

det

spec 4

]

subj 〈 〉

comps 〈 〉

lex +

























non-hd-dtrs 〈 〉









































〉





















































































































Figure 15: Partial description of the noun phrase “the dagger”.

• We will use the symbol S as an alias for XP
[

verb

subj 〈 〉

]

• We will also replace X in the above by N, A, P, Det and so on, to abbreviate X
[

head noun
]

etc.

Additional features will be written as AVMs under the category node. We will also use NP, PP,
DetP for the maximal (i.e. fully saturated) projection of the relevant lexical categories.12 With
these conventions, the NP “the dagger” can be written as in figure 16.13

12Note that VP is the exception to this convention. The maximal projection of a verb is written S.
13Note that representations like figure 16 involve an overloading of category aliases such as N′ and DetP. When

these occur as the value of spec, spr or other local features, they denote only the synsem value of the category
concerned. When they occur as a node in a tree (corresponding to the value of a dtrs feature), they denote a sign.

3 WORDS AND PHRASES 20

NP

2 DetP
[

spec 1
]

Det
[

spec 1
]

the

1 N′

[

spr 2
]

N
[

spr 2
]

dagger

Figure 16: The NP “the dagger” in tree notation.

In the example that we have been discussing, the head noun “dagger” did not take any comple-
ments. Many nouns, however, do, as illustrated in the following examples (in which the complement
is underlined).

(6) “Your disapproval of our plans.”

(7) “A book about linguistics.”

(8) “Her delight at winning.”

(9) “That photograph of your brother.”

All that is necessary to accommodate such cases is the inclusion in the grammar of the relevant
lexical entries along the following lines (details omitted).





phon disapproval

subj 〈 〉

comps 〈PP〉





The definition of Head-Complement phrases and the other principles introduced in this section
guarantee that the grammar will admit well-formed phrases of the following kind.

N′

N
[

comps 〈 1 〉
]

disapproval

1 PP

of our plans

3.4 Prepositions and PPs

The analysis of prepositions proceeds in much the same way as that of the other categories we have
discussed. They are distinguished from other categories by the value of their head feature, which
is prep. One feature of examples (6)-(9) immediately above is that there is a restriction on the
preposition possible in the complement of any given head noun: “disapproval” and “photograph”
require “of”, whereas “delight” requires “at”, and “book” requires “about” or “on”. In order to
capture this relationship, we will specify that the sort prep is appropriate for a feature pform with
value pform which forms the following sortal hierarchy.

pform

about at on to . . .

3 WORDS AND PHRASES 21

Prepositions have lexical entries of the following kind, in which the the phon value is paired with
an appropriate pform value. 14

















phon 〈about〉

head

[

prep

pform about

]

subj 〈 〉

comps 〈NP[acc]〉

















Since pform is a head feature, it and its value will be shared by its mother. To ensure the
correct matching between noun and preposition in examples like (6)-(9), we only need to modify the
lexical entry of the selecting noun so that it specifies the pform value of its PP complement, e.g.





phon 〈disapproval〉

subj 〈 〉

comps 〈PP[of]〉





These additions give us phrases of the kind shown in figure 17, in which the tags 1 , 6 and
7 indicate structure sharing of head values between mother and daughter. The remaining tags
indicate structure sharing between valence or spec values and daughters values.

NP
[

spr 〈 〉

comps 〈 4 〉

]

3 DetP 1

Det

1

[

spec 2

]

a

2 N′

[

spr 〈 3 〉

comps 〈 4 〉

]

N
[

spr 〈 3 〉

comps 〈 4 〉

]

book

4 PP 6

[

comps 〈 〉
]

P
[

comps 〈 5 〉

6 pform about

]

about

5 NP 7

N′
7

N
7 [acc]

linguistics

Figure 17: Tree representation for description of “a book about linguistics”.

Exercise 5 Re-draw figure 17 in AVM notation.

14Note, however, that the value of phon and that of pform are not the same things. The value of phon is an
object of sort phonstring , for which ‘about ’ is only an conventional abbreviation.

3 WORDS AND PHRASES 22

3.5 Verbs and auxiliaries

We have already touched on some of the major characteristics of the HPSG analysis of verbs in our
discussion of heads and valence. There is, however, quite a good deal more to be said about them.
Our starting point will be the following set of examples which show verbs selecting VPs as their
complements.

(10) “Toby may drink scotch.”

(11) “Toby is drinking scotch.”

(12) “Toby has drunk scotch.”

We assume without discussion that sentences like these have the structure shown in figure 18.

S

NP VP

V VP

Figure 18: Constituent structure for auxiliary verbs.

There are a number of interesting things to note about examples like these.

• Firstly, the verb drink appears in a range of different forms (“drink”, “drinking”, “drunk”),

• secondly, the appropriate form of drink in each example is determined by the preceding verb.
For example, “is” (or any other form of the lexeme be) requires “drinking”, any other choice
is ungrammatical (*“Toby is drink scotch”, *“Toby is drunk scotch”), and,

• thirdly, “Toby” is the subject of the second verb as well as the first one. (Who is doing the
drinking?)

English verbs can appear in a range of different forms, as illustrated in table 3 with the lexeme
drink, each with a distinctive distribution. To distinguish between these different forms of the
verb, we will introduce the attribute vform, with the value vform. The sort vform has the subsorts
shown in figure 19, whose names are drawn from the labels in table 3.

vform

finite prp psp bse ger

pres past

Figure 19: Sortal hierarchy for vform.

Finite present tense “Toby drinks”
past tense “Toby drank”

Present participle “Toby is drinking”
Past participle “Toby has drunk”
Base “Toby can drink”
Gerund “Toby likes drinking”

Table 3: Table of English verb forms

3 WORDS AND PHRASES 23

The attribute vform is appropriate for the head subsort verb, so every verbal category will
contain the following feature structure.







cat

head

[

verb

vform vform

]







Verbs may possess the complete range of verbal forms (as drink does), or may be restricted
to some subset of them. Among the first verbs in the sequences in (10)-(12), be has all the forms
shown for drink, whereas may lacks all except the finite forms. (There are no forms *“maying”
or *“mayed”). However, be, may and have also possess grammatical characteristics that are not
shared by other verbs such as drink. These are neatly summed up by the acronym NICE.

Negation: “Toby isn’t tall.”

Inversion: “Is Toby tall?”

Contraction: “Toby’s tall.”

Ellipsis: “People say Toby is tall, and he is.”

Negation means that the verb has a distinct negative form, usually represented orthographically
with n’t. Inversion refers to the capacity of the verb to precede the subject in interrogatives
and some other sentence-types. Contraction means the verb has an alternative pronunciation
which is shorter than its citation form – sometimes this is given orthographic recognition as with
‘s for “is” and “has”, sometimes not, as with the contracted version of “can” (rather like “c’n”).
Finally, ellipsis means that a constituent which normally follows the verb may be omitted and its
interpretation recovered from the context. Verbs that exhibit some or all of these properties are
known as auxiliary verbs, or simply auxiliaries.

As illustrated by the inversion example, in contrast to main verbs, auxiliaries may precede or
follow the subject - a phenomenon known as subject-auxiliary inversion (SAI). One further detail
of SAI is that the form of the verb which occurs in pre-subject position may be different to the one
that occurs in post-subject position.

(13) “I am not happy.”/ “I’m not happy.”15/*“I aren’t happy.”

(14) “Aren’t I happy.”

“Aren’t” can only co-occur with a first person singular subject if it precedes it, not if it follows it.
These distinctions motivate the postulation of two additional head features for verbs: aux and inv.
aux is boolean valued and partitions the class of verbs into auxiliaries ([aux +]) and non-auxiliaries
([aux –]). [inv +] identifies those forms of auxiliaries that precede the subject, [inv –] those that
follow it.

If we put these developments together, the value of head for verbal projections looks like this.











head









verb

vform vform

aux bool

inv bool



















We stated above that auxiliaries select VPs as their complements. To be precise, a VP here
means a local value which has a head value of sort verb, an empty comps list and a non-empty
subj value. This means that what appears on the comps list of an auxiliary is a description of the
following kind.

15Or “I amn’t happy.” in some varieties of English.

3 WORDS AND PHRASES 24











head

[

verb

inv –

]

subj 〈[]〉

comps 〈 〉











The various realisations of the lexeme be are followed by VPs headed by a present participle,
so their lexical entry will contain the information shown in figure 20, in which this information is
augmented by the addition of the feature specification [vform prp].































head

[

verb

aux +

]

subj 1

comps

〈















head





verb

vform prp

inv –





subj 1

comps 〈 〉















〉































Figure 20: Partial lexical entry for the auxiliary verb “be”.

The sentence “Toby is drinking scotch” will have the structure shown in figure 21.

S
[

head 2

subj 〈 〉
comps 〈 〉

]

1 NP

Toby

VP
[

head 2

subj 〈 1 〉
comps 〈 〉

]

V









head 2

[

vform fin
aux +
inv –

]

subj 〈 1 〉
comps 〈 3 〉









is

3 VP
[

head 4

subj 〈 1 〉
comps 〈 〉

]

V









head 4

[

vform prp
aux –
inv –

]

subj 〈 1 〉
comps 〈 5 〉









drinking

5 NP

scotch

Figure 21: “Toby is drinking scotch.”

3 WORDS AND PHRASES 25

May belongs to a large subclass of auxiliaries known as modals.16 These require that their
complement contains the base form of the verb and they exhibit the peculiarity (mentioned in
respect of may above) that they are defective and possess only the finite form. (Which precludes
them from following any other auxiliary, since no auxiliaries select a finite VP.) Their lexical entries
therefore look like figure 22.



































head





verb

vform fin

aux +





subj 6

comps

〈















head





verb

vform bse

inv –





subj 6

comps 〈 〉















〉



































Figure 22: Partial lexical entry for a modal auxiliary.

Have, the other auxiliary introduced in (10)-(12), requires that its complement be in the past
participle form, giving the lexical entry in figure 23.































head

[

verb

aux +

]

subj 6

comps

〈















head





verb

vform psp

inv –





subj 6

comps 〈 〉















〉































Figure 23: Partial lexical entry for the auxiliary verb have.

A potentially confusing property of have is that it represents the pronunciation of more than
one lexical category: both an auxiliary and a main verb. The version which subcategorises for a VP
is an auxiliary and exhibits all the NICE properties.

• Negation: “Toby hasn’t drunk the scotch.”

• Inversion: “Has Toby drunk the scotch?”

• Contraction: “Toby’s drunk the scotch.”

• Ellipsis: “People say Toby’s drunk the scotch, and he has.”

The version that subcategorises for an NP, for many speakers, does not, and shares the distribution
of main verbs like drink.17

16Other modals are “can”, “could”, “will”, “would”, “shall”, “should”, “might”, “must”.
17For some speakers (mainly British), this version of “have” can also behave as an auxiliary, giving

(i) “Toby hasn’t a book.”

(ii) “Has Toby a book?”

3 WORDS AND PHRASES 26

(15) (a) “Toby has a book.”

(b) “Toby drinks scotch.”

(16) (a) “Toby doesn’t have a book.”

(b) “Toby doesn’t drink scotch.”

(17) (a) “Does Toby have a book.”

(b) “Does Toby drink scotch.”

(18) (a) “I don’t have a book, but Toby does.”

(b) “I don’t drink scotch, but Toby does.”

With main verbs, in the NICE contexts, a ‘dummy’ auxiliary verb “do” is required. Auxiliary
do, like the modals, requires its complement to contain the base form of a verb. Like have, do
leads a double life, as both auxiliary and main verb, giving rise to sentences in which both auxiliary
and main verb do co-occur, such as “What did you do?”

The auxiliaries have and do are both defective. Auxiliary have lacks present and past participle
forms, thus disallowing sentences like the following.

(19) * “Toby is having drunk scotch.”

(20) * “Toby has had drunk scotch.”

Auxiliary do, like the modals, lacks all but the finite form and, in addition, requires VP complements
which are [aux –] (thus precluding sentences like *“Toby doesn’t have drunk the scotch”).

The final auxiliary that we will discuss here may seem rather surprising. It is to in sentences
such as “Toby wants to leave”. This is a highly defective auxiliary (it lacks finite, contracted and
negated forms), but it does allow ellipsis: “Toby says he isn’t leaving, but I’m sure he really wants
to”. To requires us to posit an additional subsort of vform, inf , giving it the lexical entry shown in
figure 24. The phrase “wants to drink” will have the analysis shown in figure 25, in which “wants”
selects a VP[vform inf].







































head









verb

vform inf

aux +

inv –









subj 6

comps

〈















head





verb

vform bse

inv –





subj 6

comps 〈 〉















〉







































Figure 24: Partial lexical entry for the auxiliary verb to.

(iii) “I haven’t a book, but Toby has.”

For such speakers, “have” has three lexical entries:

1. an auxiliary selecting a VP complement

2. an auxiliary selecting a NP complement

3. a main verb selecting a NP complement.

3 WORDS AND PHRASES 27

VP[fin]

V[fin]

wants

VP[inf]

V[inf]

to

VP[bse]

drink

Figure 25: Tree for the phrase “wants to drink” showing vform values.

As a conclusion to this section, we observe that the lexical entries for auxiliaries that we have
discussed here, together with the Head Feature Principle and the definition of head-complement-
phrase, allow for sentences containing sequences of auxiliary verbs.

(21) “Toby may be drinking scotch.”

(22) “Toby may have been drinking scotch.”

(23) “Toby has been drinking scotch.”

The flow of vform and valence information for (22) can be seen in the tree in figure 26.

S
[

vform 2 fin
]

1 NP

Toby

VP
[

vform 2 fin
subj 〈 1 〉

]

V
[

vform 2 fin
subj 〈 1 〉
comps 〈 3 〉

]

may

3 VP
[

vform 4 bse
subj 〈 1 〉

]

V
[

vform 4 bse
subj 〈 1 〉
comps 〈 5 〉

]

have

5 VP
[

vform 6 psp
subj 〈 1 〉

]

V
[

vform 6 psp
subj 〈 1 〉
comps 〈 7 〉

]

been

7 VP
[

vform 8 prp
subj 〈 1 〉

]

V
[

vform 8 prp
subj 〈 1 〉
comps 〈 9 〉

]

drinking

9 NP

scotch

Figure 26: “Toby may have been drinking scotch.”

3 WORDS AND PHRASES 28

Exercise 6 Show how the analysis of English auxiliaries sketched out above predicts the ungram-
maticality of the following sentences.

1. *“Toby has done drink the scotch.”

2. *“Toby is having drunk the scotch.”

3. *“Toby did may drink the scotch.”

3.6 Clauses

It was stated in the previous section that clauses (i.e. sentences) are projections of verbs. Figure 26
shows how, as a consequence of this and the way the Head Feature Principle operates, the vform
value of the clause will be shared with that of the the ‘highest’ verb in the clause. This means that
it is straightforward to account for the following patterns of distribution.

(24) “Andrew said Toby was drinking.”

(25) “Andrew said that Toby was drinking.”

(26) “That Toby was drinking surprised Andrew.”

(27) “For Toby to be drinking is most unusual.”

(28) “Andrew demanded that Toby stop drinking.”

(29) *“Andrew said Toby be drinking.”

(30) *“Andrew said (for) Toby to be drinking.”

(24)-(30) are all examples of sentences which contain a subordinate clause. In (24) the subordi-
nate clause “Toby was drinking” is headed by a finite verb (“was”). Examples (29) and (30) show
that the verb “say” cannot be followed by a subordinate clause headed by a bse (be) or an inf verb
(to). Bearing in mind that the clause itself shares the value of vform with its head verb, this
restriction is easily accounted for. All that is required is that the comps value of say is specified as
being 〈S[fin]〉.18

Example (25) is very similar, but the subordinate clause is introduced by the complementiser

“that”.19 Complementisers are lexical items which select a clausal complement, forming a con-
stituent called a complementiser phrase (CP). (See figure 27.) Many verbs which subcategorise
for a clausal complement are, like “say”, indifferent as to whether it is S or CP. One way of accom-
modating this fact is to complicate the sortal hierarchy of heads slightly, by defining a new sort for
complementisers, comp, and introducing a new sort verbal of which comp and verb are subsorts. The
features vform, aux and inv are appropriate for the new supersort and consequently are inherited
by both subsorts,20 as shown here.

18I.e.

〈

















synsem

head

[

verb

vform fin

]

subj 〈 〉

comps 〈 〉

lex –

















〉

19The term ‘complementiser’ has been in common use in linguistics for several decades. A more traditional term
is subordinating conjunction.

20This analysis follows Sag, 1997, English relative clause constructions, Journal of Linguistics, 33:2, p.456f and not
that of HPSG94, Chap. 3.

3 WORDS AND PHRASES 29

CP
[

head 1

]

C








head 1

[

comp

vform 2 fin

]

subj 〈 〉

comps 〈 3 〉









that

3 S

[

head

[

verb

vform 2

]]

Toby was drinking

Figure 27: Tree for “that Toby was drinking”







verbal

vform vform

aux bool

inv bool







comp verb

Since “that” introduces finite clauses, it is defined in feature structure terms as follows.























word

phon 〈that〉

head

[

comp

vform 10 fin

]

subj 〈 〉

spr 〈 〉

comps 〈S[vform 10]〉























With this lexical entry, the phrase “that Toby was drinking” is assigned the analysis in figure 27
as an instance of a head-complement structure. Verbs like “say” are defined as taking a complement
specified as











head

[

verbal

vform fin

]

subj 〈 〉

comps 〈 〉











which subsumes both S and CP.

It requires only a slight modification to the lexical entry for the complementiser “that” to accom-
modate example (28) in which demand selects a CP headed by a bse verb – changing the vform
value from fin to fin∨bse, as shown below.

3 WORDS AND PHRASES 30



















word

phon 〈that〉

head

[

comp

vform 2 fin∨bse

]

subj 〈 〉

comps 〈S[vform 2]〉



















The contrast between the subcategorisation requirements of verbs like say and verbs like demand
is that the latter require a comps value which is 〈CP[vform bse]〉.

Surprise in sentence (26) differs from the previous examples in taking a finite CP as its subject.
One of its subcategorisation requirements is therefore the following.

[

subj 〈CP[fin]〉

comps 〈NP〉

]

Example (27) is one in which the subject of “is surprising” is an infinitival clause (i.e. one whose
head contains [vform inf]). Infinitival clauses take a different complementiser, “for”, whose syntax
is defined as follows.21



























word

phon 〈for〉

head

[

comp

vform 2 inf

]

subj 〈 〉

comps

〈

4 NP, VP

[

vform 2

subj 〈 4 〉

]

〉



























The subj value of expressions like “is most unusual” is simply 〈CP[inf]〉.

Before we conclude this section, there is a further comment to be made about the relationship
between vform values and the case of NPs. As noted in chapter?? section??, pronouns in English
exhibit differences in case marking, depending upon the syntactic position in which they occur.
These differences are related to the kind of clause in which they occur: the subjects of finite clauses
are nominative, other NPs are accusative. This can be handled by specifying that when a finite verb
takes an NP subject, it specifies its subj value as 〈NP[nom]〉. Any NP on a comps list, on the other
hand, is specified as NP[acc]. The lexical entry for the finite transitive verb “drinks” will therefore
contain the following.

21Note that the valence values of this complementiser are different to those of the complementiser “that”. “That”
takes a single (sentential) complement, whereas “for” take a sequence of two complements, an NP and a VP. In tree
terms, the constituent structure of non-finite clauses defined by this lexical entry for “for” is the following.

CP

COMP

for

NP VP

3 WORDS AND PHRASES 31



























word

phon 〈drinks〉

head









verb

vform fin

aux –

inv –









subj 〈NP[nom]〉

comps 〈NP[acc]〉



























Exercise 7 What value of case should be specified for the subj values of auxiliary verbs? You
should consider the following examples in making your decision and draw trees for the grammatical
sentences, showing all the subj values.

1. “I may have been wrong.”

2. *“Me may have been wrong.”

3. “For me to be have been wrong would be unusual.”

4. *“For I to be have been wrong would be unusual.”

Exercise 8 Draw AVMs showing the subj and comps values for the underlined verbs in the fol-
lowing examples.

1. “Toby likes scotch”

2. “Toby gives scotch to Andrew”

3. “A book about linguistics”

4. “Ophelia is singing”

3.7 Subject-auxiliary Inversion (SAI)

The clauses that we have looked at so far have all taken the form NP VP. There are also English
clauses in which an auxiliary verb precedes the subject:

(31) “Is Toby drinking scotch.”

(32) “What is Toby drinking.”

(33) “Seldom did Toby drink scotch.”

We take the view that clauses like these simply have a flat structure in which the auxiliary,
subject and post-subject constituent are sisters:

S

V
[

aux +
]

Is

NP

Toby

VP

drinking scotch

We need a way of providing for these constructions and do so by introducing a new type of
clausal construction, sai-ph, a subsort of hd-nexus-ph, with the following constraint:

4 THE LEXICON 32

sai-phrase

sai-ph =⇒



























subj 〈 〉

hd-dtr















word

inv +

aux +

subj 〈 1 〉

comps 2















non-hd-dtrs 〈 1 〉 ⊕ 2



























This constraint ensures that only verbs marked as [aux +, inv +] will appear in such clauses
and that the sister constituents will obey the constraints imposed by such verbs on their subject
and complements.

Much more needs to be said about the semantics of these constructions and their syntactic
distribution, but space considerations preclude a more detailed discussion.

4 The Lexicon

We have seen in the preceding sections of this chapter how HPSG represents linguistic information in
terms of feature structure descriptions. Since HPSG is strongly lexical, the bulk of the information
required by the grammar is encoded in lexical entries, as shown in a typical lexical entry (for the
transitive verb like) in figure 28. Now, this is the lexical entry for just a single English word.22 Since
every English other mono-transitive verb will require an almost identical lexical entry, it looks as if the
lexicon will contain massive amounts of repetition. However, looked at from a different perspective,
the fact that much of this information is shared with other verbs provides the opportunity to avoid
unnecessary redundancy by organising lexical entries as an inheritance hierarchy. Like shares all
the information in figure 28 except its pronunciation with every other mono-transitive verb; the
value of head is shared by every other verb, irrespective of valence; its value for subj is shared by
many other finite verbs, and so on. These observations lead to the conclusion that the lexicon can
be structured into an inheritance hierarchy in which it is necessary to specify in the lexicon only the
most idiosyncratic information for any given word.









































word

phon 〈like〉

cat































head









verb

vform fin

aux –

inv –









lex +

subj 3 〈NP〉

spr 4 〈 〉

comps 5 〈NP[acc]〉

arg-str 3 ⊕ 4 ⊕ 5







































































Figure 28: Lexical entry for like.

Let us pursue this idea by first of all looking at parts of speech (i.e. noun, verb, etc.), and set up
a sortal hierarchy of lexical types, i.e. partitions of the sort word . This is shown in table 4. Each

22It is also incomplete. We have yet to discuss the non-local and content attributes.

4 THE LEXICON 33

sort is an immediate subsort of the entry given in its ISA column. The CONSTRAINTS column
specifies those features and values appropriate for the sort in the left-hand column. Each subsort
inherits the constraints of its supersorts. This hierarchy is also shown in graphical form in figure 29,
with the constraint information omitted.

SORT CONSTRAINT ISA

sign

























phon list(phonstring)

synsem



















synsem

local















local

cat









cat

subj list(synsem)

spr list(synsem)

comps list(synsem)

































































⊤

word















cat













lex +

subj 1

spr 2

comps 3

arg-str 1 ⊕ 2 ⊕ 3



























sign

verb-wd



















head









verb

vform vform

aux bool

inv bool









subj 〈synsem〉

spr 〈 〉



















word

main-verb-wd

[

head

[

aux –

inv –

]

]

verb-wd

aux-verb-wd




head
[

aux +
]

arg-str 〈synsem, VP〉





verb-wd

noun-wd

[

head

[

noun

case case

]

]

word

prep-wd

[

head

[

prep

pform pform

]

]

word

Table 4: Hierarchy of lexical parts of speech

4 THE LEXICON 34

sign

word phrase

verb-wd noun-wd prep-wd

main-vb-wd aux-vb-wd

Figure 29: Part of speech hierarchy.

With the definitions in this sortal hierarchy, we can simplify the lexical entry for “like” to that
below. All the other information specified in figure 28 is inherited from the sort main-verb-wd .23

























main-vb-wd

phon 〈like〉

cat















head









verb

vform vform

aux –

inv –









arg-str 〈NP, NP〉







































Let us now turn our attention to valence and show that a similar inheritance hierarchy is pos-
sible. We will consider separately the set of possibilities in subject position and the set of possible
complements. We start by drawing a distinction between words which require a subject (such as
verbs) and those which do not (such as prepositions), assigning the former to the sort predicator-wd
and the latter to non-predicator-wd .

The sort predicator-wd can be subdivided into those words which require an NP subject (np-
predicator-wd) and those that require a CP subject (cp-predicator-wd). The sort cp-predicator-wd
can be further partitioned into words requiring a finite CP(finite-cp-predicator-wd) or an infinitival
CP (infinitival-cp-predicator-wd).24 This hierarchy and the constraints associated with the various
subsorts are listed in table 5 and shown in diagrammatic form in figure 30.

word

non-prd-wd prd-wd

np-prd-wd cp-prd-wd

fin-cp-prd-wd inf-cp-prd-wd

Figure 30: Subject valence hierarchy diagram.

23We will suffix all subsorts of word with ‘-wd ’, to prevent confusion. Thus verb-wd is a subsort of word , while
verb is a subsort of head .

24There are further possibilities: infinitival VP subjects, gerundive subjects etc. We will not embark on an exhaus-
tive treatment.

4 THE LEXICON 35

SORT CONSTRAINT ISA

non-predicator-wd
[

subj 〈 〉
]

word

predicator-wd
[

subj 〈synsem〉
]

word

np-predicator-wd
[

subj 〈NP〉
]

prd-wd

cp-predicator-wd
[

subj 〈CP〉
]

prd-wd

finite-cp-prd-wd
[

subj 〈CP[fin]〉
]

cp-prd-wd

infinitival-cp-prd-wd
[

subj 〈CP[inf]〉
]

cp-prd-wd

Table 5: Subject valence hierarchy.

Turning next to complements, the primary distinction is between those words which take a direct
object NP and those which don’t. The former are partioned under the subsort transitive-wd , which
can be further partitioned into those words which permit only a single complement (the sort mono-
transitive-wd) and those that require two complements poly-transitive-wd . The latter can be further
partitioned into those whose second complement is an NP (ditransitive-wd), those whose second
complement is a PP (to-transitive-wd) and those whose second complement is an CP or S. Those
words which do not take a direct object NP are grouped under the sort intransitive-wd), which is
further subdivided into those permitting no additional complements at all (strict-intransitive-wd and
those taking an unsaturated complement (intransitive-xcomp-wd). The only instance of the latter
that we have encountered so far are the auxiliaries which take a VP complement and also share their
subj value with it. This is represented by the subsort ssr-wd (for ‘subject-to-subject-raising’ – a
term by which this kind of construction is referred to by linguists). This classification is summarised
in table 6 and in figure 31.

word

int-wd tr-wd

str-int-wd int-xcomp-wd mono-tr-wd poly-tr-wd

ssr-wd di-tr-wd to-tr-wd tr-scomp-wd

Figure 31: Complement valence hierarchy diagram.

4 THE LEXICON 36

SORT CONSTRAINT ISA

intran-wd word

strict-intran-wd
[

arg-str
[

first synsem
]

]

intran-wd

intran-xcomp-wd
[

arg-str

[

rest
[

first XP[subj 〈synsem〉]
]

]

]

intran-wd

ssr-wd

[

arg-str 〈 1 ,

[

subj 1

comps 〈 〉

]

〉

]

intran-xcomp-wd

trans-wd
[

arg-str 〈synsem, NP[acc]〉
]

word

trans-wd
[

arg-str

[

rest
[

first NP[acc]
]

]

]

word

mono-trans-wd
[

arg-str

[

rest
[

rest 〈 〉
]

]

]

trans-wd

poly-trans-wd
[

arg-str

[

rest
[

rest nelist(synsem)
]

]

]

trans-wd

di-trans-wd

[

arg-str

[

rest
[

rest 〈 NP[acc]〉
]

]

]

poly-trans-wd

to-trans-wd

[

arg-str

[

rest
[

rest 〈PP[to]〉
]

]

]

poly-trans-wd

trans-scomp-wd

[

arg-str

[

rest
[

rest 〈XP[verbal]〉
]

]

]

poly-trans-wd

Table 6: Complement valence hierarchy

The part of speech hierarchy and the valence hierarchies classify words along three different
dimensions and a given token of a word can possess properties from more than one of them, e.g. it
can be both a verb and intransitive or take both an NP subject and an NP direct object. Figure 32
shows the place of a mono-transitive verb such as “like” in terms of the different dimensions of the
word sort. The labels for the different dimensions are placed in boxes to indicate that they are not
themselves sorts and are not disjoint partitions of word . The lowest subsort np-predicator-mono-
transitive-wd inherits from all three dimensions, POS (Part of Speech), SUBJ-VAL (Subject Valence)
and COMP-VAL (Complement Valence), a phenomenon known as multiple inheritance.25 This
allows us to further simplify the lexical entry for “likes”, to that shown below. The sort np-predicator-
mono-transitive-wd is the meet of three sorts (main-vb-wd∧np-predicator-wd∧ mono-transitive-wd).

25We are here making an open world assumption – any conjunction of sorts is well-formed unless explicitly excluded.

4 THE LEXICON 37









np-prd-mono-tr-wd

phon 〈likes〉

head
[

vform fin
]









word

POS SUBJ-VAL COMP-VAL

vb-wd prd-wd trans-wd

main-vb-wd np-prd-wd mono-tr-wd

np-prd-mon-tr-wd

Figure 32: The place of “like” in the lexical hierarchy.

Ditransitive verbs such as “give” which take two NP complements, are assigned to the sort
np-predicator-di-transitive-wd, defined as inheriting from main-verb-wd , np-predicator-wd and di-
transitive-wd. The lexical entry for “gives” is simply the following.









np-prd-di-tr-wd

phon 〈gives〉

head
[

vform fin
]









SORT CONSTRAINT ISA

inf-wd

[

head
[

vform inf
]

]

verb-wd

fin-wd

[

head
[

vform fin
]

]

verb-wd

bse-wd

[

head
[

vform bse
]

]

verb-wd

prp-wd

[

head
[

vform prp
]

]

verb-wd

psp-wd

[

head
[

vform psp
]

]

verb-wd

Table 7: Lexical hierarch of vform values.

We have still to draw a distinction between the various values of vform that a verb can contain.
We can do this by recognising a dimension of verb-wd which classifies the range of possibilities. This

4 THE LEXICON 38

is shown in table 7. Recall that the distinction between main and auxiliary verbs is also a partition
of the sort verb-wd . We now have two different dimension in terms of which verb-wd is subclassified,
VFORM and AUX/MAIN. Multiple inheritance from these two dimensions allows us to define sorts
such as, finite-main-verb-wd as the meet of the sorts main-verb-wd and finite-wd . The unification
of this sort with the valence dimensions allows the definition of sorts like finite-np-predicator-mono-
transitive-verb-wd in figure 33.

word

POS SUBJ-VAL COMP-VAL

vb-wd prd-wd trans-wd

VFORM AUX/MAIN np-prd-wd mono-tr-wd

fin-wd main-vb-wd

fin-mn-vb-wd

fin-np-prd-mono-tr-mn-vb-wd

Figure 33: The place of finite mono-transitive verbs in the inheritance hierarchy

This allows us to provide the following lexical entry for a verb such as “likes”.

[

fin-np–mono-tr-vb-wd

phon 〈likes〉

]

To conclude this section, we will present a classification of the auxiliaries, i.e. subsorts of aux-
verb-wd . This is shown in table 8.

SORT CONSTRAINT ISA INSTANCE

perf-cmp-aux-vb-wd
[

comps 〈VP[psp]〉
]

aux-vb-wd “have”

prog-cmp-aux-vb-wd
[

comps 〈VP[prp]〉
]

aux-vb-wd “be”

bse-cmp-aux-vb-wd
[

comps 〈VP[bse]〉
]

aux-vb-wd “may”

do-aux-vb-wd

[

comps 〈VP

[

vform bse

aux –

]

〉

]

bse-cmp-aux-vb-wd “do”

Table 8: Auxiliary verb hierarchy

The constraints specify the vform values of the VP complements which these verbs select (dis-
cussed in section 3.5). We can define the lexical entry of, for example, the auxiliary“has” as a sort

4 THE LEXICON 39

has-wd which inherits from the sorts perf-comp-aux-vb-wd , fin-wd , prd-wd and ssr-wd , giving simply
the following.





has-wd

phon 〈has〉

vform pres





This requires the feature structure corresponding to “has” to satisfy the following cascade of
constraints. To be a has-wd it must be a perf-comp-aux-vb-wd. Therefore,

• It must be a word (table 4):















cat













lex +

subj 1 〈synsem〉

spr 2 list(synsem)

comps 3 list(synsem)

arg-str 1 ⊕ 2 ⊕ 3



























• It must be a verb-wd (table 4):





















vb-wd

cat











head









verb

vform vform

aux bool

inv bool



















spr 〈 〉





















• It must be an aux-verb-wd (table 4):





aux-verb-wd

cat
[

aux +
]





• It must be a perf-aux-verb-wd (table 4):

[

comps 〈VP[psp]〉
]

In addition, it must unify with fin-wd which entails that it satisfy the following pair of constraints.

• It must be a verb-wd (table 7).

• It must be a fin-wd (table 7):





fin-wd

head
[

vform fin
]





It must also unify with prd-wd which requires that it satisfy the following constraint (table 5).

•
[

prd-wd

subj 〈synsem〉

]

4 THE LEXICON 40

It must unify with ssr-wd which entails that it satisfy in addition the following cascade of
constraints.

• It must be an intran-xcomp-wd (table 6).

[

intran-xcomp-wd

comps 〈XP[subj 〈synsem〉]〉

]

• It must be an ssr-wd (table 6).









ssr-wd

subj 1

comps
[

subj 1

]









And, finally,

• it must satisfy the constraints stipulated in its lexical entry:

[

phon 〈has〉

vform pres

]













































word

phon 〈has〉

cat



































head









verb

vform fin

aux +

inv bool









lex +

subj 1

spr 2 〈 〉

comps 3 〈VP
[

subj 1 〈synsem〉
]

〉

arg-str 1 ⊕ 2 ⊕ 3















































































Figure 34: AVM for auxiliary “has”.

The unification of all of these constraints results in the description in figure 34.

For a account of the lexicon of English, further elaboration of the system of lexical sorts is
necessary, but we hope to have shown in this section how much of the redundancy in the specification
of lexical entries can be eliminated. This concludes our discussion of local values. In the next
section we turn to the non-local attribute.

Exercise 9

Go through the stages in inheritance of the properties of the feature structure for auxiliary “has”,
enumerated above, and draw an AVM for each step showing how the initial supersort is added to.

Exercise 10

Provide lexical entries for the following,

4 THE LEXICON 41

1. the modal auxiliary “may”, and

2. the infinitival auxiliary “to”.

Exercise 11

Show how to avoid the necessity of specifying in lexical entries that the subject of a finite verb must
be nominative.

Exercise 12

Simplify the following lexical entries by defining appropriate sorts based on those given in the text.
Explain how the required information is inherited from the lexical entry’s supersorts by drawing di-
agrams like figure 32. Make use of your answers to the preceding exercise.

1.


























phon 〈laughs〉

head









verb

vform fin

aux –

inv –









subj 〈NP[nom]〉

comps 〈 〉

lex +



























2.


























phon 〈gave〉

head









verb

vform past

aux –

inv –









subj 〈NP[nom]〉

comps 〈NP[acc], PP[to]〉

lex +



























3.








































phon 〈aren’t〉

head













verb

vform pres

aux +

inv +

neg +













subj 1

spr 〈 〉

comps 〈VP

[

subj 1

vform prp

]

〉

lex +









































Exercise 13

Provide full lexical entries for the underlined words in the following phrases. Show how to simplify
your entries by using multiple inheritance, positing whatever additional sorts you require.

1. “bought a book from Helena.”

2. “said that she was happy.”

5 LEXICAL RELATIONS 42

3. “told me that Macbeth is dead.”

4. “a book about drama.”

5 Lexical Relations

Consider the following pair of sentences.

(34) “Andrew gave Toby scotch”

(35) “Toby was given scotch by Andrew”

There are obvious systematic syntactic and semantic relationships between such pairs.

• They have the same truth conditions

• The subject of (34) appears as the object of the preposition “by” in (35)

• The direct object of (34) appears as the subject in (35)

• The verb of (34) appears in a related form in (35) and is preceded by a form of the auxiliary
verb “be”

Sentences like (34) are called active sentences and those like (35) are called passive sentences,
and any descriptively adequate account of English grammmar should explicitly recognise the exis-
tence of such systematic correspondences. A long-standing way of doing this is to take one of the
sentences as being more basic (typically the active one) and to map it onto the other. More recently,
in highly lexicalised frameworks, such as HPSG, it is argued that the relationship can be captured
in terms of a relationship between the active and passive forms of verbs (e.g. “give” and “given”).

If we look at AVMs for the active and passive forms of the verb “give”, shown in figure 35, it is
easy to see the general nature of the relationship. From a comparison of the two AVMs, it is clear
that, although they differ in a number of respects, quite a lot of information is also shared between
the two forms.

There are a number of different ways in HPSG of treating this kind of relationship. The most
traditional approach is is to map one form onto the other, preserving the similarities and that is
what we will sketch out here. This kind of mapping is called a lexical rule. Lexical rules are
statements of the form “if a word of form A (the ‘input’ to the rule) exists in the lexicon, then a
word of form B (the ‘output’ of the rule) is also in the lexicon”, where B is the result of applying
some function to A.

For example, a lexical rule for passive verbs might look like figure 36.

















trans-mn-vb-wd

phon 〈 1 〉

head
[

vform bse
]

arg-str 〈 2 i , 3 〉 ⊕ 4

cont 5

















=⇒

















pass-mn-vb-wd

phon 〈fpass(1)〉

head
[

vform pas
]

arg-str 〈 3 〉 ⊕ 4 ⊕ (〈PP[by] i 〉)

cont 5

















Figure 36: Passive lexical rule.

The essence of this mapping lies in the difference between the two arg-str values. The initial
item of the ‘input’ is dropped and its index transferred to a PP appended to the end of the original

5 LEXICAL RELATIONS 43

active






































phon 〈give〉

head
[

vform bse
]

arg-str 〈 1 NP i , 2 NP j , 3 PP[to]
k
〉

subj 〈 1 〉

comps 〈 2 , 3 〉

cont















quants 〈 〉

nucl









give-rel

giver i

gift j

recipient k





























































passive






































phon 〈given〉

head
[

vform pas
]

arg-str 〈 1 NP j , 2 PP[to] k , 3 PP[by] i 〉

subj 〈 1 〉

comps 〈 2 , 3 〉

cont















quants 〈 〉

nucl









give-rel

giver i

gift j

recipient k





























































Figure 35: Lexical entries for the active and passive forms of the verb “give”.

argument list.26 The second NP on the orginal argument list now becomes the first item and, from
the definition of the sort word given in table 4 on page 33, the first item on the argument list is
structure-shared with the subj value, so the direct object in the input is mapped onto the subject in
the output. fpass represents a morphological operation which maps the phonological representation
of the base form of the verb onto the corresponding passive form (i.e. fpass(give)=given). The
stipulation that the ‘output’ is of sort pass-wd entails that its vform value is pas(ive). It is assumed
that any other values not explicitly changed by the lexical rule are transferred unchanged from input
to output.27

The derived lexical entry for passive verbs, together with other constraints of the grammar of
English, will give us passive verb phrases containing passive verbs and there complements, but we
also need some way of allowing passive VPs to form sentences. Passive VPs can appear in a range
of constructions.

(1) “Duncan was killed by Macbeth”

(2) “Painted by Leonardo, the Mona Lisa is one of the most famous paintings in the world”

(3) “I’m looking for a book written by a linguist”

26Parentheses round the PP are intended to indicate that the constituent is optional, allowing ‘agentless passives’
like “Duncan was killed”.

27So, strictly speaking, the inclusion of content in figure 36 is redundant.

6 UNBOUNDED DEPENDENCY CONSTRUCTIONS 44

Here will limit ourselves to sentential passives like (1). These are introduced by the auxiliary be.
We already have a lexical entry for be (figure 20 on 24), but that entry specifies that its complement
must be a verb phrase bearing the specification [vform prp]. It would, of course, be possibly to
simply add another lexical entry, identical to figure 20, except for the specification [vform prp], but
a further look at be suggests that this would not be a good move.

be is not restricted to taking the two sorts of complements (VP[vform prp] and VP[vform pas])
that we have encountered so far.

(4) “Macbeth is in Glamis.” (PP)

(5) “Duncan was (the) king of Scotland.” (NP)

(6) “Toby is fond of scotch.” (AP)

To accommodate these additional examples, we would need a proliferation of bes. Items that can
occur as complements of be are traditionally known as ‘predicative complements’, which suggests
that we could capture their distribution in terms of a boolean-valued head feature pred. All the
kinds of constituents that can appears as complements to be are [pred +], those that cannot are
[pred -]. Passive and progressive verbs are [pred +], other forms of verbs (finite, past participle)
are [pred -].

The lexical entry for be is modified that that in figure 37































head

[

verb

aux +

]

subj 6

comps

〈















head





verb

pred +





subj 6

comps 〈 〉















〉































Figure 37: Revised lexical entry for the auxiliary verb “be”.

6 Unbounded dependency constructions

We mentioned in section 1 the existence of constructions exemplified by sentences like (36), in which
a constituent (in this case the NP “ice cream”) is displaced from its normal position (after the verb
“likes”).

(36) “Ice cream, I like.”

Such constructions are known as unbounded dependency constructions (UDCs), and have
the following characteristics.28

• there is a dependency between the displaced constituent, the ‘filler,’ and its ‘original’ position,
the ‘gap’ – if one of them is filled, the other must be empty

28They are also known as wh-constructions, because a significant subset of them involve the displacement of
phrases containing a wh-word (i.e. one whose spelling begins with the letters “wh”), as in examples (37)-(40) in the
text below. The phenomenon of displacement is also called wh-movement. It is also known as Ā-movement, since
it involves ‘movement’ to a non-argument position.

6 UNBOUNDED DEPENDENCY CONSTRUCTIONS 45

• the distance which can intervene between the filler and the gap is potentially unbounded,
subject to performance considerations – “Ice cream, he said that she said that he said that she
said . . . I like.”

UDCs cover a range of more specific constructions, including topicalisation (36), wh-questions (37)
and relative clauses (38), cleft sentences (39) and pseudo-clefts (40), among others.

(37) “Which ice cream do you like?”

(38) “The ice cream which I like is very expensive.”

(39) “It is Portia who I like.”

(40) “What I like is ice-cream.”

UDCs are handled in HPSG by the synsem|nonlocal attribute. This takes as its value a feature
structure of sort nonlocal which is appropriate for the features slash, rel and que, which all take
sets of various sorts as values, as shown in figure 38.















synsem















synsem

nonlocal









nonlocal

slash set(local)

rel set(ref-index)

que set(quantifiers)





































Figure 38: nonlocal values.

The attributes rel and que are used to handle some other classes of long-distance phenomena
associated with wh-questions and relative clauses, respectively, and we will defer discussion of them
until section 8.3. The attribute slash is the one which deals with UDCs. Note that it takes as
its value a set of feature structures of sort local . Its name comes from a notational device used to
represent UDCs in trees. The notation XP/YP denotes informally a constituent of type XP which
has somewhere within it a gap of type YP. In the case of (36), XP is S and YP is NP. The structure
of (36) is shown in figure 39 using this notation. As can be seen from this example, information
about the dependency is passed from the filler through the tree, from mother to daughter, until it
reaches the gap (or vice versa, since directionality is not at issue).

S

NP

Ice cream

S/NP

NP

I

VP/NP

V

like

NP/NP

ǫ

Figure 39: “Ice cream, I like.”

UDCs can be decomposed into three components:

the top, where the unbounded dependency is introduced,

the bottom, where it is resolved, and

6 UNBOUNDED DEPENDENCY CONSTRUCTIONS 46

the middle, where the dependency passes through the intervening structure.

In Phrase Structure grammar terms, for the top we require a rule of roughly the following kind.

S → XP S/XP

The intended interpretation of this rule is that a sentence may consist of some phrase XP, followed
by a sentence which contains a gap of the same type (XP).

For the bottom, we require a lexical entry of the following kind,

XP/XP → ǫ

which states that the ‘empty category’ XP/XP has no phonetic realisation.

For the middle, we require some general principle which determines how the slash value is shared
between mother and daughters.

In translating these informal ideas into HPSG, we will start with the top of the construction,
which is defined as a phrase of sort head-filler-ph (cf. figure 5 on page 8.), with XP being the filler
and S/XP being the head. The sort head-filler-ph has the following constraints.

Head Filler Phrase

hd-filler-ph =⇒

































nonloc
[

slash { }
]

hd-dtr













head verb

subj 〈 〉

comps 〈 〉

lex –

slash { 1 }













non-hd-dtr 〈
[

loc 1

]

〉

































These constraints require that the head daughter at the top of a UDC must be an S which has
a single item in its slash value set and that this item is token identical to the local value of the
non-head daughter. This ensures that the category of the filler and the category of the slash (and
hence that of the gap) match. Furthermore, the phrase’s own value for slash must be the empty
set – the dependency cannot be ‘passed up’ any further. The values for example (36) are shown in
figure 40.

6 UNBOUNDED DEPENDENCY CONSTRUCTIONS 47

S
[

head 2 verb

slash { }

]

NP
(non-hd-dtr)

[

loc 1

]

Ice-cream

S
(head-dtr)







head 2

subj 〈 〉

comps 〈 〉

slash { 1 }







I like

Figure 40: The top of an unbounded NP dependency.

For the bottom of a UDC we have the following lexical entry for an ‘empty category’ – also called
a trace.

The Lexical entry for trace













sign

phonology 〈 〉

synsem





local 1

nonlocal
[

slash { 1 }
]

















Here the value of the attribute phonology is the empty list and the sign’s local29 value is
shared with the only member of the nonlocal|slash value. (The counterpart of XP/XP).

Finally, we provide a general constraint on head-valence-ph that handles the middle of a UDC.

Slash Inheritance Principle

In a object of sort head-valence-ph, the value of slash is the set union of the slash
values of the daughters.30

In addition, we need now to specify that all lexical entries with the exception of the empty
category above contain [nonlocal|slash {}].

29The restriction to local entities means that UDCs are prevented from referring to nonlocal information – for
example, specifying that an extracted constituent must itself contain a gap.

30Recall that hd-valence-ph subsumes the sorts hd-subject-ph, hd-complement-ph and hd-specifier-ph. Cf. figure 5
on page 8.

6 UNBOUNDED DEPENDENCY CONSTRUCTIONS 48

S
hd-fill-ph

[

slash { }
]

NP
[

loc 1
]

Ice-cream

S
hd-subj-ph

[

slash { 1 }
]

NP
[

slash { }
]

I

VP
hd-comp-ph
[

slash { 1 }
]

V
[

slash { }
]

like

NP
[

local 1

slash { 1 }

]

Figure 41: HPSG analysis of “Ice cream, I like”.

We are now in a position to translate figure 39 into HPSG terms, as shown in figure 41. The slash
values of VP and the lower S are the union of the slash values of their daughters, in conformance
with the Slash Inheritance Principle. Since head-filler-ph is not a subsort of head-valence-phrase,
the topmost S of the construction is not constrained by the Slash Inheritance Principle; instead, the
constraint associated with head-filler phrases requires that the slash value of the mother be empty,
terminating the unbounded dependency. The coindexing of the local values of the filler and the
gap ensures that they have the same syntactic category, in this case NP.31

The analysis of UDCs that we have just outlined assumes the existence of an empty category.
Although we have not yet discussed the question of parsing using feature structures, we will show
in the next chapter that the techniques discussed in earlier chapters are also applicable to these
kinds of representations. The existence of empty categories therefore leads to the postulation of ǫ-
productions, which, as was pointed out in chapter 3, cause problems of non-termination for bottom-
up parsers. One of the possibilities we mentioned in that chapter for avoiding these problems is
to use a grammar that does not use ǫ-productions. It is of interest, therefore, to note that a more
recent alternative treatment of unbounded dependencies in HPSG in fact proposes the abandonment
of the empty category approach to unbounded dependencies in favour of a lexical one.

This alternative exploits the strongly lexicalist nature of HPSG. Every lexical sign already en-
codes, via its valence attributes, the syntactic arguments with which it combines to form phrases. It
is not necessary, therefore, to actually build phrases in order to specify that one or more arguments
may be missing. This can be accomplished by modifying the information contained in the lexical

31Note that case is also a part of local, so that the case specification of the filler and gap will be identical,
guaranteeing that only (i) is defined as well-formed.

(i) “Me, he likes.”

(ii) *“I, he likes.”

Taking the union of the daughters’ slash values may seem to be vacuous, since in this example only one daughter has
a non-empty value. There are, however, languages which permit more than one gap in questions and topicalisations
and even in English there is one construction that permits multiple gaps, in examples like “[Which violins]i are [those
sonatas]j easy to play gapj on gapi”, for which set union correctly increases the number of elements in the mother’s
slash value (i.e. the phrase “play gapj on gapi”.).

6 UNBOUNDED DEPENDENCY CONSTRUCTIONS 49

entry itself. The lexical version of UDCs requires a number of modifications to our earlier account.
The first is that we modify the constraints associated with the sort word to include the following.

The Slash Amalgamation Constraint

word =⇒













loc





arg-str 〈
[

slash 1

]

, . . .,
[

slash n

]

〉

bind 2





nonloc
[

slash (1 ⊎ . . .⊎32
n) - 2

]













This ensures that the slash value of each of a lexical head’s arguments is shared by the head.
If these are all the empty set, then the head’s slash value will be the empty set (and there will be
no UDC). If, on the other hand, at least one of the arguments has a non-empty slash value, the
slash value of the head itself will share that non-null value. The feature bind, which takes a set of
synsem objects as value, is introduced to deal with cases (not discussed so far) where a lexical head
may bind off an unbounded dependency.33

The second modification is to partition the sort synsem into two subsorts, called canonical-synsem
and gap-synsem.

synsem

canon-ss gap-ss

The sort canonical-synsem is just the set of synsem values that we have been using so far. The
sort gap-synsem is defined as follows.









gap-synsem

local 1

nonlocal
[

slash { 1 }
]









In contrast to all previous examples, no actual lexical item in English (or any other language)
contains a non-canonical synsem value.

The third modification is to change the constraint on the sort word which relates the values of
the subj, spr, comps and arg-str attributes. Instead of simply relating them via append, we have
the more complex Argument Realisation Constraint.34

32 ⊎ denotes the disjoint union of two sets: A ⊎ B ≡ A ∪ B ∧ (A ∩ B = ∅). If, for example, A ⊎ B = {a, b, c},
then A and B can have the following values:

{} {a, b, c}
{a} {b, c}
{a, b} {c}
{a, b, c} {}

In contrast to normal set union, what is not possible is A = {a, b} ∧ B = {b, c}.
33An example of such a head is the adjective “easy”, and many other semantically related adjectives, as shown

in (i), where there is an NP gap following “deceive”.

(i) “Malvolio is easy to deceive.”

34The Argument Realisation Constraint replaces the constraint on valence values given in table 4 on page 33.

6 UNBOUNDED DEPENDENCY CONSTRUCTIONS 50

The Argument Realisation Constraint

word =⇒









subj 1

spr 2

comps 3 list(canon-ss)

arg-str 1 ⊕ 2 ⊕ (3 © list(gap-ss))









This states that the arg-str list may contain objects of sort gap-synsem, but the comps list may
not – complements must be phonetically realised. The symbol © represents the sequence union

or shuffle operator. The shuffle relation holds of three sequences A, B and C if C is a sequence that
contains all and only the elements of A and B, and the relative order of the elements in A and the
relative order of the elements in B are both preserved in C. Suppose that C = 〈a, b, c〉 then A© B

is true of each of the following pairs of values of A and B.

A B

〈a, b, c〉 〈 〉
〈a, b〉 〈c〉
〈a, c〉 〈b〉
〈a〉 〈b, c〉
〈b, c〉 〈a〉
〈b〉 〈a, c〉
〈c〉 〈a, b〉
〈 〉 〈a, b, c〉

Suppose that the arg-str value of some head is 〈NP1, NP2, PP〉 and that there is no specifier (i.e.
the value of the tag 2 is the empty list). The bracketing of the arg-str list in the definition of the
Argument Realisation Constraint indicates that the shuffle relation is defined only over arguments to
the right of the specifier, so the tag 1 always has the value 〈NP1〉. If both the remaining arguments
are of sort canonical-synsem then the other values in the Argument Realisation Constraint have the
following values, 3 = 〈NP2, PP〉 and list(gap-ss) = 〈 〉. If, say, PP is of sort gap-synsem, then the
values are: 3 = 〈NP2〉 and list(gap-ss) = 〈PP〉. If both the second and third arguments are of sort
gap-synsem, then the values are: 3 = 〈 〉 and list(gap-ss) = 〈NP2, PP〉.

Exercise 14

There is one further possibility. What is it?

A more subtle effect of the Argument Realisation Constraint is that it says nothing about subj
values; it does not constrain them to be canonical, but, at the same time, it does not allow them to
be ‘transferred’ to the slash value. In contrast to complements, whatever appears in first position
on the arg-str list also appears on the subj list. We will return to the issue of subjects and gaps
in section 6.1.

The final modification needed is to the Slash Inheritance Principle (page 47). The mother now
simply inherits the slash value of its head daughter.

Slash Inheritance Principle - Revised version

hd-valence-ph =⇒





slash 1

hd-dtr
[

slash 1

]





Let us now put all these changes together and show their effect on a mono-transitive verb such
as “likes”. The lexical entry for “likes” is described by the following AVM.

6 UNBOUNDED DEPENDENCY CONSTRUCTIONS 51

















word

phon 〈likes〉

arg-str

〈

[

loc NP

slash 1

]

,

[

loc NP[acc]

slash 2

]

〉

slash 1 ⊎ 2

















The comps value of this lexical entry can satisfy the Argument Realisation Constraint in either
of the two ways shown in figure 42.

































word

phon 〈likes〉

subj

〈

1





ss

loc NP

slash 2





〉

comps

〈

3





canon-ss

loc NP[acc]

slash 4





〉

arg-str 〈 1 , 3 〉

slash 2 ⊎ 4



































































word

phon 〈likes〉

subj

〈

1





ss

loc NP

slash 2





〉

comps 〈 〉

arg-str

〈

1 ,





gap-ss

loc 4

slash 4





〉

slash 2 ⊎
{

4 NP[acc]
}



































(a) (b)

Figure 42: Argument realisation for a mono-transitive verb.

In figure 42(a), the second argument is a canonical-ss and it therefore realised as the value of
comps.35 This is the kind of feature structure which occurs in sentences in which there is no UDC
(e.g. (41)), where each of the slash values is the empty set, and also in sentences in which the slash
value of the complement is non-empty, in which case the gap appears within the complement, as
in (42), in which it occurs inside the NP “every kind of”. In figure 42(b), the second argument is a
gap-ss and appears in the slash set of “likes” and is therefore realised as a gap, as in (43)

(41) “Toby likes every kind of scotch.”

(42) “Scotch, Toby like every kind of.”

(43) “Scotch, Toby likes”

The tree in figure 43 shows the middle of the construction for both (41) and (42). The tag
5 is instantiated to the value of the NP complement’s slash value. This appears as part of the
slash value of the verb “likes” because of the Slash Amalgamation Constraint and on the VP and
S because of the Slash Inheritance Principle. If this value the empty set, then the NP contains no
gap; if it is non-empty, then there must be a missing constituent of the appropriate kind somewhere
within the NP.

A continuation of the tree in figure 43 in which the NP contains an NP gap is shown in figure 44,
which also illustrates the lexical termination of a UDC. The argument of the preposition “of” is of
sort gap-synsem and, therefore, as a result of the Argument Realisation Constraint, cannot appear
on the preposition’s comps list, which only permits objects of sort canonical-synsem. From the
Slash Amalgamation Constraint it follows that presence of an object of sort gap-synsem on the
head’s arg-str results in the preposition itself having a non-empty slash value.

35As discussed above, the subj value can be either canonical or a gap, hence the specification synsem

6 UNBOUNDED DEPENDENCY CONSTRUCTIONS 52

S
[

slash 5
]

NP

1

[

synsem
slash 2 { }

]

Toby

VP
[

slash 5
]

V

















subj 〈 1

[

synsem
slash 2

]

〉

comps 〈 3

[

synsem
slash 4

]

〉

slash 5 (2 ⊎ 4)

arg-str 〈 1 , 3 〉

















likes

NP

3

[

synsem

slash 4

]

every kind of (scotch)

Figure 43: The Slash Inheritance Principle.

NP
[

slash { 3 }
]

DetP

every

N′

(hd-dtr)
[

slash { 3 }
]

N
(hd-dtr)





subj 1 〈 〉
comps 〈 2 〉
slash { 3 }
arg-str 〈 1 , 2 〉





kind

PP

2

[

synsem
slash { 3 }

]

P
(hd-dtr)













subj 4 〈 〉
comps 〈 〉
slash { 3 }

arg-str 4 ⊕

〈[

gap-ss
loc 3 NP[acc]
slash { 3 }

]〉













of

Figure 44: An NP containing an NP gap.

6 UNBOUNDED DEPENDENCY CONSTRUCTIONS 53

6.1 Subject extraction

All of the discussion of UDCs above has been restricted to those that terminate in what would have
been a complement position. In this section, we extend the analysis to subject gaps. There is a well-
known restriction on the distribution of subject gaps in English (and many other languages), namely
that they cannot occur immediately after a complementiser, as shown by the contrast between (44)
and (45).

(44) *“Who did Andrew say that —— liked scotch?”

(45) “Who did Andrew say —— liked scotch?”

While the lexical analysis of UDCs described in the preceding section requires that elements of
the comps list must be of sort canonical-synsem, it places no sortal restriction on the synsem value
of subjects. Consequently, the theory permits signs such as the following.





























word

phon 〈liked〉

subj

〈

1





gap-ss

loc 2

slash { 2 }





〉

comps 〈 3 NP[acc]〉

arg-str 〈 1 , 3 〉

slash { 2 }





























This word, together with the other principles of HPSG, licenses phrases like that shown in
figure 45.

VP







subj

〈

[

gap-ss

loc 1

]

〉

slash { 1 }







V
[

slash { 1 }
]

liked

NP
[

slash { }
]

scotch

Figure 45: VP with a gap-synsem subj value.

Examples like (45) can be accounted for if verbs such as “say” are specified having the particular
lexical property of taking, not a [subj 〈 〉] complement, as proposed on page 29, but rather a
complement specified as [subj list(gap-ss)]. This means that such a verb can combine with the
synsem component of signs like that in figure 45, as shown in figure 46. If, on the other hand,
the complementiser “that” is specified as requiring a [subj 〈 〉] complement, (44) is automatically
disallowed. Note that [subj 〈 〉] is one of the possibilities subsumed by [subj list(gap-ss)] (since
elist is a subsort of list), which means that verbs such as “say” may also take the saturated clausal
complements S and CP.

7 SEMANTICS 54

VP
[

comps 〈 〉

slash { 3 }

]

V
(hd-dtr)

















comps

〈

1













synsem

head

[

verbal

vform fin

]

subj 2 list(gap-ss)

comps 〈 〉













〉

slash { 3 }

















said

VP

1











synsem

subj 2

〈

[

gap-ss

loc 3

]

〉

slash { 3 }











liked scotch

Figure 46: A subject ‘gap’ in an unbounded dependency.

These remarks are only directed at the subjects of subordinate clauses. In main clauses there is
never a subject gap. The “who” in “Who drinks scotch?” is simply in the normal subject position.

Exercise 15

Show, by drawing the relevant subparts of trees, that the requirement that verbs such as “say” select
phrasal verbal complements specified as [subj list(gap-ss)] correctly determines the following patterns
of grammaticality.

(a) “Kim said that Sandy had left”

(b) “Kim said Sandy had left”

(c) “I wonder who Kim said had left”

(d) *“I wonder who Kim said that had left”

(e) “I wonder who Kim said Sandy had met”

Exercise 16

Provide and analysis of the sentence “Who drinks scotch?” by drawing a tree or AVM containing
the relevant features and values.

7 Semantics

So far, all of our discussion of HPSG has been restricted to syntax. In this section we turn our
attention briefly to semantics. Space does not permit an extended discussion of the HPSG treatment
of semantics and we will restrict ourselves to outlining some of its central properties.36

The first point to make is that semantic information, like syntactic information, is represented by
feature structures. One of the advantages of using feature structures is that they provide a uniform

36Since the inception of HPSG, its treatment of semantics has been inspired by Situation Semantics. We will
follow this tradition here, pointing out correspondences to standard logical treatments as we go. It is important to
realise, however, that HPSG is perfectly compatible with other approaches to semantics. Richter and Sailer (1999),
for example, show how to encode standard predicate logic in typed feature structures.

7 SEMANTICS 55

representation language for a wide range of different phenomena. A second point is that semantic
information is also organised into sortal systems. The attribute that bears semantic information is
called content and has values of sort content.



















sign

synsem













synsem

local







local

cat category

content content





































content forms the top of sortal hierarchy with subsorts parameterised-state-of-affairs, nominal-
object and quantifier, as shown below.

content

psoa nom-obj quant

These three sorts are used to define the semantics for different classes of syntactic objects.
Broadly speaking, verbs and verbal projections have psoa content values, nouns and nominal
projections nom-obj values and determiners quantifier values. The sort psoa corresponds very
roughly in FOL terms to a predicate whose argument positions are occupied by variables (the
‘parameters’ of the name). It has the following constraint.





psoa

quants list(quantifier)

nucleus relation





The value of nucleus is the sort relation. The idea is that in psoas the quantificational infor-
mation appears as the value of quants and is segregated from the quantifier-free component of the
semantics in nucleus. Let us move rapidly to a concrete example by giving the content value for
“like”.















psoa

quants 〈 〉

nucleus





like-rel

liker index

liked index



















This corresponds to FOL representations like like1(x,y), discussed in chapter 5, but provides more
fine-grained information about the semantic rôles of the arguments. Relations form a sortal hierarchy,
which permits a systematic structuring of lexical relations. We will not discuss this aspect of the
framework any further here. quants has the empty list as value because this is an unquantified
expression.

To proceed any further, we need to say something about the content of NPs. This is of sort
nominal-object and has the following attributes.





nom-obj

index index

restriction set(psoa)





7 SEMANTICS 56

The sort index is further partitioned into subsorts referential, there and it. The referential indices
are used for contentful nouns and PPs in argument positions; there and it for the non-referential
‘dummy’ NPs “there” and “it” in sentences such as “There appears to be a unicorn in the garden”
or “It is easy to see you don’t like ice cream”. We will only discuss referential indices here. To be
interpreted, an index needs to model-theoretically anchored to some appropriate real-world entity.
The sort index has the following constraint.









index

person person

number number

gender gender









The sign for a proper noun such as “Toby” will have the following content value, in which the
value of the restriction attribute is empty,

























phon 〈Toby〉

content



















nom-obj

index









ref

person 3

number sing

gender masc









restr { }











































whereas a common noun, such as “book”, will look like the following.









































phon 〈book〉

content



































nom-obj

index 1









ref

person 3

number sing

gender neut









restr





























psoa

quants 〈 〉

nucleus

[

book-rel

instance 1

]







































































































The restriction value for “book” corresponds to the FOL book1(x).

7.1 The semantics of verbs.

We are now in a position to discuss the connection between the syntactic and semantic components
of signs, starting with verbs. We will use the abbreviation in figure 47, in which a subscripted tag
indicates the index value of an NP’s content.

7 SEMANTICS 57

Abbreviation Simplified AVM

NP i 













loc















cat









head noun

subj 〈 〉

comps 〈 〉

lex –









content | index i





























Figure 47: Abbreviation for the NP synsem value.

This allows us to express the feature structure for “likes” as figure 48.













































word

phon 〈likes〉

local



































cat











head verb

subj 〈 1 NP[nom] i [3rd,sing]
〉

comps 〈 2 NP[acc] j 〉

arg-str 〈 1 , 2 〉











content















psoa

quants 〈 〉

nucl





like-rel

liker i

liked j

































































































Figure 48: The syntax and semantics of “likes”.

The index values of the subject and complement NP’s are structure-shared with the values of
the argument rôles of the verb’s content, expressing the fact that the liker rôle is filled by the
referential index of the subject and the liked rôle is filled by the referential index of the complement.
In this way, lexical signs link up the syntactic and semantic contributions made by their arguments.
Since “likes” is a finite verb, the index of the subject is assigned the values [person 3] and [number
singular] (abbreviated as [3rd, sing]), which ensures the correct subject-verb agreement.37

The lexical entries for intransitive and ditransitive verbs are analogous. The subject of an
intransitive will contribute its index to the only rôle of the relation. With some simplification
through the omission of path information, the sign for the intransitive verb “laughs” is shown in
figure 49(a) and the to-transitive verb “gives”is shown in figure 49(b).

37Note that this way of analysing subject-verb agreement treats it as a semantic, rather than a syntactic, phe-
nomenon.

7 SEMANTICS 58





























word

phon 〈laughs〉

subj 〈 1 NP[nom] i [3rd,sing]
〉

arg-str 〈 1 〉

cont











psoa

quants 〈 〉

nucl

[

laugh-rel

laugher i

]















































































word

phon 〈gives〉

subj 〈 1 NP[nom] i [3rd,sing]
〉

comps 〈 2 NP[acc] j , 3 PP[to]
k
〉

arg-str 〈 1 , 2 , 3 〉

cont



















psoa

quants 〈 〉

nucl









give-rel

giver i

given k

gift j



































































(a) (b)

Figure 49: Simplified AVMs for “laughs” and “gives”.

To project from the semantics of lexical entries such as these to the semantics of phrases con-
taining them is very simple. We simply need to specify a relationship between the content value
of the phrase and the content value of the head daughter.

The Content Principle

hd-nexus-ph =⇒





content 1

hd-dtr
[

content 1

]





This is a constraint on head-nexus-phrase, which subsumes all subsorts of headed-phrase except
head-adjunct-phrase. It will therefore be applicable to all the structures that we have discussed
so far in this chapter. We will briefly illustrate its effect with respect to two examples: (46) with
normal constituent order and (47) its counterpart with a UDC in which the complement NP has
been displaced to the front of the clause.

(46) “Toby likes Andrew.”

(47) “Andrew, Toby likes.”

A tree representation of the structure of example (46) is shown in figure 50.

The content value of the whole sentence is











quants 〈 〉

nucleus





like-rel

liker i

liked j















where the tags i and j are keyed to the individuals denoted by the subject and object NPs “Toby”
and “Andrew” respectively. This nucleus value is identical to that of the head verb “likes” and is
shared by each of the projections of the head daughter as a consequence of the Content Principle.

The second example (47), whose tree is given in figure 51, is particularly interesting from the
point of view of its semantics, because, despite its radically different syntax, absolutely nothing
more needs to be said about content values. The values of the roles liker and liked are supplied
by the index values of the members of the arg-str list of the head verb “likes”, in exactly the
same way as for (46). The structure sharing of local values in UDCs ensures that this relationship
between a head and its arguments is preserved in the UDC.

7 SEMANTICS 59

S
[

cont 3

]

NP

1

[

synsem
index i

]

Toby

VP
hd-dtr

[

subj 〈 1 〉
cont 3

]

V
hd-dtr



















subj 〈 1 〉
comps 〈 2 〉
arg-str 〈 1 2 〉,

content 3









psoa
quants 〈 〉

nucl

[

like-rel
liker i

liked j

]



























likes

NP

2

[

synsem

index j

]

Andrew

Figure 50: The content values of “Toby likes Andrew”.

7.1.1 Context

The observant reader will have noticed that in figure 51 we have lost information about the names
of the individuals involved in the liking relationship. In FOL terms, we have a representation akin
to like1(x, y), with x and y anchored to two individuals in the Universe of Discourse.

The HPSG solution to this omission is to assume that meaning not only consists of content
values, but also includes contextual information. With this information added, the structure of signs
looks like this:





























sign

synsem























cat cat

content content

context













contextual-indices







speaker index

hearer index

. . .







background set(relation)































































Adding background information to the lexical entry for a proper noun such as “Toby” gives
the following:

7 SEMANTICS 60

S
[

content 3

slash { }

]

NP
[

synsem

loc 1

[

index j
]

]

Andrew

S
hd-dtr

[

content 3

slash { 1 }

]

NP

2

[

synsem
index i

]

Toby

VP
hd-dtr

[

subj 〈 2 〉
cont 3

slash { 1 }

]

V
hd-dtr



























subj 〈 2 〉
comps 〈 〉

arg-str

〈

2 ,

[

local 1

slash { 1 }

]〉

cont 3









psoa
quants 〈 〉

nucl

[

like-rel
liker i

liked j

]









slash { 1 }



























likes

Figure 51: The content values of the UDC “Andrew, Toby likes”.

7 SEMANTICS 61









































phon 〈Toby〉

synsem



































content



















nom-obj

index 1









ref

person 3

number sing

gender masc









restr { }



















context







bkgrnd {





name-rel

bearer 1

name Toby



}

















































































The contribution of background values to the larger structures in which they occur is determined
by the following constraint:

Principle of Contextual Consistency

The context|background value of a given phrase is the union of the context|background
values of the daughters.

This ensures that the meaning representation for the sentence “Toby likes Andrew” is































synsem































content 2





























psoa

quants 〈 〉

nucl





like-rel

liker i

liked j





context







bkgrnd {





name-rel

bearer i

name Toby



,





name-rel

bearer j

name Andrew



}































































































There is considerably more to be said about the context attribute, but we will not do so here.

7.2 Prepositional Phrases

Having shown with respect to verbs how syntax and semantics are interleaved in lexical entries, we
will turn in the next section to the more complex situation represented by NPs but, before we do
so, we look briefly at the semantics of prepositional phrases. In section 3.4 we discussed the syntax
of those PPs that occur on the argument structure list of another head, as in examples like “Toby
gave a drink to Andrew”. From a semantic point of view, apart from indicating that Andrew is the
recipient of the drink, the preposition “to” does not have any significant semantic content.38 (Note
that the sentence is synonymous with “Toby gave Andrew a drink”, which contains no preposition.)
This can be accounted for if we assign such prepositions the following kind of feature structure.







phon 〈to〉

comps 〈NP[content 1]〉

content 1







38This not true of all prepositions. Locative prepositions, for example, clearly make a significant semantic contri-
bution.

7 SEMANTICS 62

According to this, the content of the preposition is simply the content of its NP complement.
Because the value of this content is of sort nominal-object, the Content Principle requires that
any PP of which this preposition is the head daughter has an identical content value, and so the
PP inherits an NP denotation.

Exercise 17

Show how the content value of the following sentence follows from the lexical entries of the com-
ponent words and the constraints imposed by the Content Principle.

1. “Toby gave scotch to Andrew.”

7.3 Determiners and quantifiers

The preceding section introduced the basic ingredients of the HPSG treatment of semantics. In
this section we extend that to cover quantification. Quantification in HPSG essentially utilises a
version of quantifier storage to permit alternative scopings.39 To incorporate this we modify the
definition of the sort local to include the attribute qstore, which encodes information about stored
quantificational meanings.









local

cat category

content content

qstore set(quantifier)









Before showing what the feature structure of a determiner such as “every” looks like, we need to
introduce the sort quantifier. This is a subsort of content and has subsorts all-quantifier and exist-
quantifier, with the intended interpretations of universal and existential quantifiers respectively.

[

quant

rest-ind npro

]

all-quant exist-quant

The sort quantifier is appropriate for a feature restricted-index (abbreviated rest-ind),
whose value is an object of sort non-pronominal (a subsort of nominal-object, and abbreviated to
npro) with a non-empty restriction value.







npro

index index

restriction neset







Putting these modifications together, we can now add content and qstore values to the syntax
of determiners discussed in section 3.3. The resulting lexical entry for the determiner “every” is
shown in figure 52.

39Cf. chapter 6, section 7.

7 SEMANTICS 63



























word

phon 〈every〉

local

















cat

[

head

[

det

spec N′[cont 1]

]

]

cont 2

[

all-quant

rest-ind 1

]

qstore { 2 }











































Figure 52: Abbreviated lexical entry for the determiner “every”.

There are two things to note about this feature structure. Firstly, the content value of the N′

which the determiner selects through its spec attribute contributes the value of the determiner’s
rest-ind, and, secondly, the value of the determiner’s own content is co-tagged with the only
element of its qstore set – quantifier storage is built into the lexical entry.

The actual value of the tag 1 is supplied by the N′ in construction with the determiner. A
typical example (for the common noun “book”) is given in figure 53.



































word

phon 〈book〉

local



























head noun

spr 〈DetP〉

cont











npro

index 1 3ps

restr

{

[

book-rel

inst 1

]

}











qstore { }





























































Figure 53: Abbreviated lexical entry for the noun “book” showing content values.

If we combine these two pieces of information in the phrase “every book”, the determiner’s
content value will be that shown in figure 54. The qstore value thus contains information
roughly equivalent to the FOL expression ∀x(book1(x)).















































cont 1









































all-quant

rest-ind



































npro

index 2









ref

person 3

number sing

gender neut









restr





























psoa

quants 〈 〉

nucl

[

book-rel

inst 2

]







































































































qstore { 1 }















































Figure 54: content value for the determiner “every” in the phrase “every book”.

7 SEMANTICS 64

qstore values are inherited by phrases in a very similar way to slash values in UDCs. Firstly,
the qstore value of a lexical head is the union of the qstore values of its arguments.

The Quantifier Amalgamation Principle – First version

word =⇒

[

arg-str 〈[qstore 1], . . ., [qstore n]〉

qstore 1 ⊎ . . .⊎ n

]

Secondly, the mother inherits the qstore value of its head daughter.

The Quantifier Inheritance Principle

head-nexus-ph =⇒





quants 1

hd-dtr
[

quants 1

]





However, quantifiers must also be retrieved from storage at appropriate points in structure.
We therefore modify the definition of the relationship between a word’s qstore and those of its
arguments given on page 64 above in the first version of the Quantifier Amalgamation Principle to
take account of this possibility.

The Quantifier Amalgamation Principle – Final version

word =⇒











arg-str 〈[qstore 1], . . ., [qstore n]〉

qstore (1 ⊎ . . .⊎ n) - 2

content

[

psoa

quants order(2)

]











The attribute quants plays a rôle here for the first time. Recall (page 55) that quants has
as its value a list of objects of sort quantifier. The intention is that these represent the quantifiers
that have been retrieved from storage and that their order in the list corresponds to their scope –
quantifiers on the left scope over those to their right. The tag 2 denotes a set, so order(2) is a list
in which the elements of 2 appear in some order or other.

The qstore of a word, then, is the union of the qstores of its arguments, minus any quantifiers
that occur in the quants list.

Let us work through an example, using sentence (48).

(48) “Some student read every book.”

The content value for the determiner “every” in the NP “every book” is shown in figure 54.
The tree in figure 55 shows the content and qstore values for the phrase “every book”. Neither
quantifier nor nominal-object, the content values for the determiner and the noun, are defined for
the attribute quants, so there is no possibility of quantifier retrieval.

The NP “some student” has almost exactly the same structure, except that the determiner’s
content value is of sort exist-quantifier and the noun’s nucleus value is of sort student-rel.

7 SEMANTICS 65

NP
[

cont 3

qstore 5

]

1 DetP







spec 2 [cont 3]

cont 4

[

all-quant
rest-ind 3

]

qstore 5 { 4 }







every

2 N′

















spr 〈 1 〉
arg-str 〈 1 [qstore 5]〉

cont 3







npro
index 6 3ps

restr

{[

book-rel
inst 6

]}







qstore 5 ⊎ { }

















book

Figure 55: content and qstore values in the NP “every book”.

S
[

cont 10

qstore 12

]

7 NP
[

index i

qstore { 8 }

]

some student

VP
[

cont 10

qstore 12

]

V

















arg-str
〈

7 , 9

〉

cont 10









quants 〈 8 , 11 〉

restr





read-rel

reader i

read j













qstore 12 { }

















read

9 NP
[

index j

qstore { 11 }

]

every book

Figure 56: content, qstore and quants values in one reading of “Some student read every book”.

The tree in figure 56 shows one possible distribution of values for the whole sentence. In the
quants value of the verb “read”, both quantifiers occur, in the order: subject’s quantifier before
complement’s quantifier. (This will give a reading in which the existential quantifier has wide scope –
a particular student has read every book.) This means that both of these quantifiers must be removed
from the value of the verb’s qstore. Since there are only two items on the verb’s argument list,
there are no more qstore values to union, so the verb’s qstore value is the empty set. The verb’s
content value is inherited by the VP and ultimately by the S. The content value for the sentence
is also shown in AVM form in figure 57. It corresponds to the quantifier scoping given by the FOL

7 SEMANTICS 66

formula ∃x(student1(x) ∧ ∀y(book1(y) ⊃ read1(x, y)))

The ordering of the quants list is not deterministic, so the reverse order of quantifiers is also
legitimate and would represent the reading in which the universal quantifier has wide scope.

There is also no necessity for both quantifiers to be recovered at this point. In example (49),

(49) “Every teacher thinks some student read every book.”

if only the quantifier corresponding to “every book” is retrieved by the verb “read”, its qstore set
will contain the quantifier corresponding to “some student”. This will be inherited by the qstore
values of the VP and ultimately by that of the CP “that some student has read every book”. This CP
is on the argument list of the verb “thinks”, so its qstore contributes to the qstore of “thinks”,
and can be retrieved into the quants value of “thinks”. Ordering the quants list provides two
different scopings for “every teacher” and “some student”.

S1

[

quants 〈 1 , 2 〉
qstore { }

]

NP
[qstore { 1 }]

Every teacher

VP1

[

quants 〈 1 , 2 〉
qstore { }

]

V1

[

quants 〈 1 , 2 〉
qstore { }

]

thinks

S2

[

quants 〈 3 〉
qstore { 2 }

]

NP
[qstore { 2 }]

some student

VP2

[

quants 〈 3 〉
qstore { 2 }

]

V2

[

quants 〈 3 〉
qstore { 2 }

]

read

NP
[qstore { 3 }]

every book

Figure 58 shows the content value of the reading of (49) in which “some student” has wide
scope over the whole sentence.

7
S
E

M
A

N
T

IC
S

6
7







































cont





































psoa

quants

〈

















exist-quant

rest-ind











npro

ind i

restr

{

[

student-rel

inst i

]

}



























,

















all-quant

rest-ind











npro

ind j

restr

{

[

book-rel

inst j

]

}



























〉

nucleus





read-rel

reader i

read j















































































Figure 57: AVM of the content value for one reading of “Some student read every book”.

8 ADJUNCTS 68





































cont





































psoa

quants 〈 1 , 2 〉

nucl



























think-rel

thinker 3

soa-arg

















psoa

quants
〈

4

〉

nucl





read-rel

reader 5

read 6























































































































Figure 58: content value for one reading of “Every teacher thinks some student read every book”.

The values of the tags in the quants values are shown in figure 59. The corresponding FOL
formula is

∃x(student1(x) ∧ ∀y(teacher1(y) ⊃ think1(y, ∀z(book1(z) ⊃ read1(x, z)))))

1













exist-quant

rest-ind







index 5

restr

[

nucl

[

student-rel

inst 5

]

]



















2













all-quant

rest-ind







index 3

restr

[

nucl

[

teacher-rel

inst 3

]

]



















4













all-quant

rest-ind







index 6

restr

[

nucl

[

book-rel

inst 6

]

]



















Figure 59: quants values for figure 58.

This concludes our discussion of quantification. In it we have shown how to provide a treatment
of quantification and quantifier scoping within a feature structure framework. Note, however, that
we have not addressed the problems raised in chapter 6 concerning soundness and completeness nor
the vexed matter of determining scoping preferences.

8 Adjuncts

In this section we will look at the syntax and semantics of adjuncts. The term ‘adjuncts’ covers a
range of syntactically heterogeneous constructions. They include modifiers of VPs (50 and 51), so-
called ‘sentential adverbs’ (52), pre-nominal adjective modifiers (53), post-nominal PP modifiers (54),
relative clauses (55), ‘reduced’ relative clauses (56), among others, shown underlined in the following
examples.40

40Some examples of adjuncts were discussed in chapter 6, section 5 in the context of attachment ambiguities.

8 ADJUNCTS 69

(50) “Toby drank the scotch rapidly.”

(51) “Toby drank in the garden.”

(52) “Toby drinks scotch, apparently.”

(53) “Portia is an intelligent person.”

(54) “The man on the bus was a spy.”

(55) “The man who we saw on the bus was a spy.”

(56) “The man seen on the bus was a spy.”

There are many unresolved issues in the identification and analysis of adjuncts, and to some
extent they might appear to be the residue left after we have identified subjects, complements and
fillers. Nonetheless, some general characterisation of adjuncts is possible. Firstly, the combinatory
possibilities allowed between an adjunct and the set of objects it can modify are much wider than
those between, say, complements and a head. Typically, a relative clause can be the adjunct of any
common noun,41 whereas the number and form of complements is restricted by the selecting noun
(e.g. “disapproval” requires its PP complement to contain the preposition “of”). (Cf. section 3.4.)
Secondly, adjuncts are optional constituents; all the sentences in (50)-(56) are perfectly well-formed
if the adjunct is omitted. Thirdly, while the number of complements is typically restricted by the
head which selects them (e.g. “read” permits a maximum of one complement), this is not the case
with adjuncts (e.g. “Macbeth saw Banquo at a banquet in the great hall in the evening”).

8.1 Adjectival adjuncts

Adjuncts are sensitive to the syntactic status of the constituent they modify – relative clauses modify
common nouns, manner adverbs like “quickly” modify verb phrases, and not vice versa. The HPSG
analysis of all adjuncts proposes, therefore, that adjuncts select the head they modify and uses a
feature modified to effect this selection, in a manner analogous to the spec feature of determiners.
We will restrict ourselves here to a discussion of modifiers of N′, such as adjectives.42

The syntactic component of the feature structure assigned to an adjunct adjective such as “Scot-
tish” is the following.

























local

cat



















head





adj

mod N′

pred –





subj 〈 〉

spr 〈 〉

comps 〈 〉











































This states that the adjective selects an N′ as the item it modifies, and that all its valence lists
are empty. The new head feature pred(icative) (with value boolean) is posited to deal with an
additional complication – many words that function as adjuncts lead a dual life. “Scottish”, for
example, is not restricted to appearing as an adjunct (57), it can also occur as the complement to
the copula auxiliary be (58).

41Although not all of the possible combinations will be pragmatically plausible.

(i) “The number that I met on Thursday.”

(ii) “A man whose cardinality is greater than zero.”

42But we will extend the coverage to VP modifiers in our discussion of implementation in the next chapter.

8 ADJUNCTS 70





























































synsem

cat





























head















adj

mod N′





npro

index 1

restr 2





pred –















subj 〈 〉

spr 〈 〉

comps 〈 〉





























content

















index 1

restr





























psoa

quants 〈 〉

nucl

[

Scottish-rel

inst 1

]





























∪ 2













































































Figure 60: synsem value for an attributive adjective.

(57) “The Scottish king was killed by Macbeth.”

(58) “Macbeth himself was Scottish.”

The former are called attributive uses of the adjective, the latter predicative uses. The fea-
ture predicative is used to distinguish between attributive ([pred –]) and predicative ([pred +])
versions of categories.43

The semantics of attributive adjectives like “Scottish” is quite simple. If, for example, someone
satisfies the description “Duncan was a Scottish king” then he also satisfies the description “Duncan
was a king” and the description “Duncan was Scottish”. The denotation of “Scottish king” is simply
the conjunction of denotations of “Scottish” and “king”. In FOL terms, “Duncan was a Scottish
king” can be translated as king1(d) ∧ Scottish1(d). In HPSG this logical conjunction is represented
as the set union of the psoas corresponding to “Scottish” and “king”. Adding the relevant content
values to the lexical entry for “Scottish” gives the AVM in figure 60. The index value of the modified
N′ is unified with that of the of adjective, giving an effect similar in effect to the lambda-expression
λP[λx (Scottish1(x) ∧ P(x))] (where P corresponds to the restriction value of the N′ and x to
the index value).

We can accommodate both kinds of adjective by defining the sort adjective-wd (a partition of
word) as shown in figure 61. The common property possessed by all adjectives is that their content
value contains an object of sort psoa. The value of the semantic argument of the psoa is supplied

43Many prepositions also have this dual function.

(i) “The children are in the park.” (Predicative)

(ii) “The children in the park are playing on the grass.” (Attributive)

In addition, some adjectives have only a predicative rôle, while others have only an attributive one.

(i) “An utter fool” (Attributive)

(ii) *“That fool is utter.”

(iii) “The door is ajar.” (Predicative)

(iv) *“The ajar door”

8 ADJUNCTS 71









adj-wd

head adj

cont 2 psoa ∨ 5

[

nom-obj

restr { 2 }

]





















pred-adj-wd

head

[

mod none

prd +

]

subj 〈NP
1
〉

cont 2

[

inst 1

]

































att-adj-wd

head





mod N′

[

index 3

restr 4

]

prd –





cont 5





index 3

restr

{

2

[

nucl

[

relation

inst 3

]]}

∪ 4

























Figure 61: Sortal hierarchy for adjectival words.

by some external constituent – by the subject in the case of a predicative adjective, by the modified
constituent in the case of an attributive one.

To make use of attributive adjectives, we need to define the sort of phrases in which they can
occur – the sort head-adjunct-phrase.

Head-Adjunct Phrase

hd-adj-ph =⇒

























content 1

hd-dtr 〈

[

phrase

synsem 2

]

〉

non-hd-dtrs

〈









phrase

head
[

mod 2

]

cont 1









〉

























Head-adjunct phrases have the same syntactic category as their head daughter (because they
are a subsort of headed-phrase), but they inherit the content value of the adjunct daughter. The
values for head and content attributes in the N′ “Scottish king” are shown in figure 62.44

8.2 PP adjuncts

PPs may also function as N′ adjuncts, in phrases such as “an actor in London”. Here, the preposition
“in”, as the head of the PP, needs to be specified as modifying N′. As can be seen from figure 63,
the principal difference between attributive adjectives and attributive prepositions is that the latter
take an NP argument whose index value is unified with the value of the location attribute. The

44To conserve space we have only included information about the immediate constituents of the phrase. The values
for the words “Scottish” and “king” are identical to the daughter in figure 62, apart from the value for lex, which
will be minus in both cases.

8
A

D
J
U

N
C

T
S

7
2

N′

















synsem
head 7

cont 4











index 2

restr 5

















psoa
quants 〈 〉

nucl

[

Scottish-rel
inst 2

]

















∪ 6

















psoa
quants 〈 〉

nucl

[

king-rel
inst 2

]











































AdjP






















synsem

cat











head











adj

mod 1 N′

[

index 2

restr 3

]

pred –
lex –





















cont 4

[

index 2

restr 5 ∪ 6

]























Scottish

N′

1

















synsem

cat





head 7

[

noun
pred –

]

spr 〈DetP〉





cont

[

npro
index 2

restr 6

]

















king

Figure 62: content and head values for the N′ “Scottish king”.

8 ADJUNCTS 73

modified N′, as before, contributes its index value to the locatee role and to the index of the
preposition itself.





































































word

phon 〈in〉

cat





























head















prep

mod N′





npro

index 1

restr 2





pred –















subj 〈 〉

spr 〈 〉

comps 〈NP
3
〉





























content





















index 1

restr









































psoa

quants 〈 〉

nucl





in-rel

locatee 1

location 3













































∪ 2

























































































Figure 63: synsem value for an attributive preposition.

The PP inherits its head and content values from the preposition and the constraints on head-
adjunct-phrase ensure that the value of the whole phrase’s content will be as in figure 64, where 3

is the index of the NP “London”.





















index 1

restr





































psoa

quants 〈 〉

nucl

[

actor-rel

inst 1

]











,















psoa

quants 〈 〉

nucl





in-rel

locatee 1

location 3

































































Figure 64: content value of the phrase “actor in London”.

Exercise 18

Prepositional phrases come in three flavours.

1. those that occur in argument positions and whose interpretations are identical to those of NPs,
e.g. “Toby offered a drink to Andrew”

2. predicative PPs that occur as complements to “be”, e.g “Hermes is in Rome”

3. attributive PPs, e.g. “Some men in Rome are Italian”

Provide lexical entries for each of the three type of preposition. prepositions.

8 ADJUNCTS 74

8.3 Relative clauses

Relative clauses form a major class of N′ adjuncts. They include wh-relatives, which can be
subdivided into finite (59) and infinitival (60), non-wh-relatives, which can be divided into
that-relatives (61) and contact-relatives (62). The complete range of relative clauses is far
too complex to receive comprehensive coverage here and we will restrict ourselves here to a brief
discussion of finite wh-relatives.

(59) “the book which is on the table”

(60) “a shelf on which to put the book”

(61) “the book that is on the table”

(62) “the shelf I put the book on”

In terms of the way in which the mod feature is inherited, relative clauses bear a certain similarity
to PP adjuncts. In PPs it is the head preposition that is lexically specified as containing the mod
attribute which is inherited by the prepositional phrase. In relative clauses, it is the highest verb
that is lexically specified for mod.45 Example (61) has the distribution of mod features shown in
figure 65. Since mod is a head feature, it is shared by all the verb’s projections.

NP

DetP

the

N′

1 N′

N

book

S
[

mod 1

]

NP

that

S
[

mod 1

]

NP

I

VP
[

mod 1

]

V
[

mod 1

]

put

PP

on the table

Figure 65: Distribution of the mod feature in a relative clause.

We need to be able to distinguish between relative clauses and other sorts of clause which have
different syntactic characteristics. In addition to relative clauses, we have imperative clauses (63),
declarative clauses (64) and interrogative clauses (65).

(63) “Eat your toast.”

(64) “You are eating something.”

(65) “What are you eating?”

45This entails that, like adjectives and prepositions, each verb will come in (at least) two forms, one with the
feature specification [mod synsem] and one with [mod none], where synsem and none are partitions of modifier. The
former function as adjuncts, the latter as ‘ordinary’ verbs.

8 ADJUNCTS 75

This suggests a partition of the sort phrase along a dimension of clausality as in the following
hierarchy.

phrase

non-clause




clause

head verbal

subj 〈 〉





imp-cl decl-cl inter-cl










rel-cl

head

[

inv –

mod N′

]

rel {}











With the exception of rel-cl, all other clause types are defined as [mod none] and cannot function
as adjuncts. Relative clauses are constrained to modify N′ and are precluded from containing
Subject-Auxiliary Inversion.

8.3.1 Wh-words and Pied-piping

Before looking at relative clauses proper, we need say something about wh-words. These lexical
items get their name because many of them are spelt with the initial letters “wh”, e.g. “who”,
“whose”, “what”, “which”, “when” (but also “how”). They can occur both in relative clauses
and in questions and, in HPSG terms, are characterised by the non-local features rel and que
mentioned in section 6. Relative pronouns have a non-empty value for rel, as illustrated by the
lexical entry for relative “who” shown in figure 66, and interrogative pronouns have a non-empty
value for que, as shown in the lexical entry for interrogative “who” in 67.









































word

phon 〈who〉

cat













head noun

subj 〈 〉

spr 〈 〉

comps 〈 〉

lex +













cont

[

nom-obj

index 1

]

rel { 1 }

que { }









































Figure 66: Lexical entry for relative “who”.

It is necessary to distinguish between relative and interrogative categories, not only because they
require different semantics (as is apparent from a comparison of figures 66 and 67), but also because
their distributions differ – “what I like”, for example is good as an interrogative (e.g. “They asked
what I like”), but bad as a relative clause in many varieties of English (e.g. *“the man what I like”).
Similarly, “which” is an interrogative determiner (e.g. “Which book did you buy?”), but not a relative
one (e.g. *“the book which book you bought”).46

46The “which” that occurs in “the book which you bought” is an NP, not a determiner. “Which” is categorially
ambiguous.

8 ADJUNCTS 76































































word

phon 〈who〉

cat













head noun

subj 〈 〉

spr 〈 〉

comps 〈 〉

lex +













cont 1























which-quant

rest-ind

















index 2 3rdsing

restr





























psoa

quants 〈 〉

nucl

[

person-rel

inst 2

]



































































rel {}

que { 1 }































































Figure 67: Lexical entry for interrogative “who”.

The features rel and que are distributed by principles very similar to those for slash and
quants – the rel and que values of a word are the disjoint union of the rel and que values of its
arguments.

The Wh-Amalgamation Principle

















word

arg-str

〈

[

rel 3

que 4

]

, . . . ,

[

rel n

que m

]

〉

rel 3 ⊎, . . . ,⊎ n

que 4 ⊎, . . . ,⊎ m

















The rel and que values of the head daughter are inherited by the mother according to the
following principle.

The Wh-Inheritance Principle

head-nexus-ph =⇒











rel 1

que 2

hd-dtr

[

rel 1

que 2

]











The Wh-Inheritance Principle has the effect of ensuring that rel and que values of a word
somewhere in the head daughter of a head-nexus-phrase are inherited by the mother. For example,
the PP “in which” (in a phrase such as “the house in which I live”) contains a wh-word. “Which”
here is and NP and has a lexical entry identical (apart from its phon value) to that of “who” in
figure 66.

8 ADJUNCTS 77

The tree in figure 68 shows the values for the feature rel in the wh-phrase “in which”.47 Since
the preposition takes only one argument, its own rel value is identical to that of the argument.
The rel value on the noun “which” comes from its lexical entry. It is shared with the mother NP
as a consequence of the Wh-Inheritance Principle. The preposition “in” has the same rel value by
virtue of the Wh-Amalgamation Principle, and the PP acquires the same value for rel again as a
consequence of the Wh-Inheritance Principle.

PP
[

rel 6

]

P





arg-str

〈

5

[

synsem

rel 6

]〉

rel 6





in

5 NP
[

rel 6

]

N
[

rel 6

]

which

Figure 68: Tree showing distribution of rel values in the PP “in which”.

A clause like “in which I live”, when compared with “I live in a house”, seems to show that
the ‘movement’ of the wh-word has dragged the preposition along with it to the front of the clause.
This phenomenon is therefore known (somewhat whimsically) as Pied-piping. In HPSG, where
no movement is involved, Pied-piping corresponds to a wh-word being contained in some other
constituent, with its rel and que values being passed up to the mother.

Pied-piping may affect indefinitely large constituents, such as the phrase

“whose friends’ mother’s . . . uncle’s brother”

in examples such as such as

“the guy whose friends’ mother’s . . . uncle’s brother I know”,

in which the non-empty rel value of the wh-determiner “whose” is inherited by the whole phrase.

Not all constituent types can host non-empty rel or que values. In English verbal, projections
may not do so, as evidenced by the ungrammaticality of NPs such as *“the man to see whom I
went”, containing the illicit VP “to see whom”. We impose this restriction by a constraint to the
effect that all objects of sort clause must have empty specifications for the features rel and que.

clause =⇒

[

rel { }

que { }

]

The interaction of this constraint with the Wh-Inheritance Principle ensures that no VP or verb will
have a non-empty rel value.

8.3.2 The Relative Clause

We have seen how the feature mod functions in a relative clause, and how the feature rel is related
to the occurrence of wh-words. We now show how these two pieces of information come together to
determine the top of the relative clause. We define the sort wh-rel-cl as a subsort of rel-cl, with the
following constraint.

47que, whose values in this example are all the empty set, has been omitted from the tree for clarity.

8 ADJUNCTS 78

wh-rel-cl =⇒















hd-filler-ph

hd-dtr

[

mod N′

1

subj list(gap-ss)

]

non-hd-dtr 〈
[

rel { 1 }
]

〉















This constraint requires that the index value passed up in the rel value of the wh-phrase be
identified with the index value of the modified N′.

wh-rel-cl has two subsorts: su(bject)-rel-cl and non-subject-rel-cl (ns-rel-cl), with the following
constraints:

su-wh-rel-cl =⇒













hd-dtr

[

subj 〈

[

gap-ss

loc 1

]

〉

]

rel 6 non-hd-dtr 〈

[

loc 1

rel 6

]

〉













ns-wh-rel-cl =⇒

[

hd-dtr
[

subj 〈 〉
]

]

The former defines relative clauses where a wh-phrase is in subject position, as in the N′ “man
who likes Toby”, whose relevant features and values are shown in figure 69.

N′

[

ind 2

]

1 N′

[

ind 2

]

man

S
su-wh-rel-cl




mod 1

rel { }

subj 〈 〉





NP

[

loc 3

[

ind 2

]

rel { 2 }

]

who

VP








mod 1

rel { 2 }

subj 〈

[

gap-ss

loc 3

]

〉









likes Toby

Figure 69: The N′ “man who likes Toby”.

The structure dominated by S is a normal head-filler-phrase, except that in addition it contains
a feature specification for mod. The rel value of S is empty because it is of sort rel-clause. The
constraint on wh-rel-cl ensures that the membership of the rel set is identified with the index value
of the mod feature and the rel feature does not propagate any higher because the NP containing it
is not the head daughter. The index value of mod in S is identified with the index of the N′ “man”

8 ADJUNCTS 79

and with the index value of the NP “who”, ensuring that the argument of the man relation and the
liker rôle of the like relation bound to the same individual.

The revisions that we have made to the clausality dimension are summarised in figure 70.

phrase

non-clause






clause

head verbal

rel eset

que eset







imp-cl dec-cl inter-cl 



rel-cl

head

[

inv -

mod N′

]





wh-rel-cl

su-wh-rel-cl ns-wh-rel-cl

non-wh-rel-cl

Figure 70: Revised sortal hierarchy for clausality

The analysis developed so far accounts correctly for the structure sharing of index values, but
the content value of a verbal projection is not of the right sort to contribute correctly to the
content value of the phrase as a whole.48 There does not seem to be any independent motivation
to justify assigning verbs one kind of content in relative clauses and a different kind of content
in other contexts, so an alternative is to make the required adjustment at the phrasal level by
defining head-relative phrases as a distinct kind of phrase – head-rel-phrase – which forms a subsort
of head-adjunct-phrase, and to impose the required constraints on head-rel-phrase as follows.

hd-rel-ph =⇒





























head noun

cont

[

index 1

restr 2 ⊎ { 3 }

]

hd-dtr

[

index 1

restr 2

]

non-hd-dtr 〈





subj 〈 〉

cont
[

nucleus 3

]



〉





























The content values for the phrase “man who likes Toby” which result from this analysis are
shown in figure 71. The content value of the whole phrase is equivalent to the FOL expression
λx(man1(x) ∧ like1(x, t)).

48Recall that the previous instances of N′ modifiers (adjectives and preposition) had content values of sort nominal
object, whereas verbal projections have content values of sort psoa.

8 ADJUNCTS 80

N′

hd-rel-ph









ind 1

restr







2

[

man-rel

inst 1

]

, 5





like-rel

liker 1

liked 4



















N′

[

ind 1

restr { 2 }

]

man

S
wh-rel-cl

[

cont 3

[

quants 〈 〉

nucl 5

]]

NP
[

ind 1

]

who

VP
[

cont 3

]

V
[

cont 3

]

likes

NP
[

ind 4

]

Toby

Figure 71: The content values for the N′ “man who likes Toby”.

The phrase “who likes Toby” is an example of what is called a subject relative clause. That
is to say, the wh-word fills the rôle of the subject NP of the relative clause. The sentence “who Toby
likes” is an example of an object relative clause – the wh-phrase fills the rôle of the direct object
of the relative clause. Non-subject relatives introduce an additional complexity, since the relative
clause contains a slash dependency between the wh filler and ‘gap’. This is illustrated in figure 72.

The structure dominated by S2 is a normal unbounded dependency construction, except that
its head verb also contains the feature specification [mod N′]. mod and slash values are both
inherited from the head daughter (by the Head Feature Principle and Slash Inheritance Principle
respectively). The slash dependency is terminated in the head-filler-phrase dominated by S1. The
constraint on wh-rel-cl ensures that the content of the rel set of the filler NP “who” is identified
with the index value of the mod feature and that the rel feature does not propagate any higher
because the NP containing it is not the head daughter. The index value of mod in S1 is identified
with the index of the N′ “man”, ensuring that the content of the whole phrase, shown in figure 72,
has the argument of the man relation and the liked rôle of the like relation bound to the same
individual, as in the equivalent FOL expression λx(man1(x) ∧ like1(t, x)).

This concludes our discussion of relative clauses. The analysis that we have outlined here extends
without modification to other non-subject relatives, such as “the money which Andrew gave Toby”,
and to more deeply embedded ‘gaps’, such as “the money which Portia said that Andrew gave to
Toby”.

Exercise 19

Draw a tree, augmented with AVMs to show the structure of the following phrase

1. “the man to whom Andrew gave a drink”

Exercise 20

8 ADJUNCTS 81

N′

hd-rel-ph









ind 2

restr







3

[

man-rel

inst 2

]

, 8





like-rel

liker 2

liked 6



















1 N′

[

ind 2

restr 3

]

man

S1

ns-wh-rel-cl








slash { }

mod 1

cont 7

[

quants 〈 〉

nucl 8

]









NP
[

loc 4

[

ind 2

]

rel { 2 }

]

who

S2





slash { 4 }

mod 1

[

ind 2

]

cont 7





5 NP
[

ind 6

]

Toby

VP
[

slash { 4 }

mod 1

]

V












slash { 4 }

arg-str

〈

6 ,

[

gap-ss

loc 4

]〉

mod 1

cont 7













likes

Figure 72: The N′ “man who Toby likes”.

8 ADJUNCTS 82

Assume that the lexical entry for the possessive pronoun “my” is as shown below.49 Use this to
provide the basis for an analysis of the phrase “a woman whose book Portia borrowed”.





















































phon 〈my〉

head







det

spec N′:

[

ind 1

restr 2

]







arg-str 〈 〉

cont

[

index 1

[

per 1

num sing

]

]

qstore















































the-quant

rest-ind











index 3

restr





poss-rel

possessor 1

possessed 3

















































































































49The notation N′: is used to indicate the content value of the N′. The sort the-quant is the counterpart of the
FOL translation of the definite determiner discussed in section 6.9.

	Tables
	Exercises
	Signs
	Valence
	Words and phrases
	Complements
	Head-Complement Phrase
	The Head Feature Principle

	Subjects
	Head-Subject Phrase

	Nouns and Noun Phrases
	Head-Specifier Phrase

	Prepositions and PPs
	Verbs and auxiliaries
	Clauses
	Subject-auxiliary Inversion (SAI)

	The Lexicon
	Lexical Relations
	Unbounded dependency constructions
	Subject extraction

	Semantics
	The semantics of verbs.
	The Content Principle
	Context

	Prepositional Phrases
	Determiners and quantifiers
	The Quantifier Amalgamation Principle – First version
	The Quantifier Inheritance Principle
	The Quantifier Amalgamation Principle – Final version

	Adjuncts
	Adjectival adjuncts
	Head-Adjunct Phrase

	PP adjuncts
	Relative clauses
	Wh-words and Pied-piping
	The Wh-Amalgamation Principle
	The Wh-Inheritance Principle

	The Relative Clause

