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ABSTRACT

A charged particle moving in a bounded region of the plane
{(with periodic boundary conditions) is subject to external
periodic electromagnetic fields. Classically, they effect a hy-
perbolic mapping of the particle configuration space onto
itself which leads to highly chaotic motion. A strong irreg-
ularity in the motion of the quantum system is discovered:
the process of stretching and folding is found to occur in the
system’s configuration space. The formation of arbitrarily
fine structures is reflected in the spectrim of the Floquet
operator which turns out to be absolutely continuous.

INTRODUCTION
There are mainly two classes of works related to “quantum chaos”.

On the one hand, the relation between classically chaotic Hamiltonian
systems and their quantum-mechanical counterparts is investigated. Two
aspects of this relation are emphasized: a) What can be learned from clas-
sical chaotic dynamics about the structure of the corresponding quantum-
mechanical system? Basically, this question aims at an extension of semi-
classical WKB methods to nonintegrable systems.!) b) Taking quantum me-
chanics as starting point, the inverse question reads: Are there unambiguous
“precursors” of classical chaotic behaviour? Put another way: Is it possible
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to “predict” - without explicitly taking the classical limit - the (regular or
irregular) type of the classical motion? In this context one would like to
understand how chaotic motion of the classical system “emerges” out of the
gquantum time-evolution.

On the other hand, one can ask whether “deterministic randomness” 2

is possible in the time evolution of the wave function. This would repre-.

sent a dynamical source of unpredictability, fundamentally different from
the probabilistic element which enters the theory through the statistical
interpretation of quantum mechanics. Actually, the appearance of this phe-
nomenon in generic classical systems has far-reaching physical consequences:
the system’s long-time behaviour becomes effectively inaccessible.

The present work belongs to the second class of problems. Tt will be
shown that for a particular model the quantum-mechanical time-evolution is
deterministically random, despite the appealing but irrelevant “linearity” of
the Schrodinger equation with respect to the wave function. Consequently,

in quantum mechanics again one faces the problem of extremely difficult
long-time predictions.

The phase-space flow of chaotic systems is highly complicated: due to the
continuous range of the canonical variables, arbitrarily fine structures on all
scales are present. The formation of small structures, however, is limited
in the coarse “phase space” of quantum systems. The noncommutativity
of pairs of canonical variables does not allow to resolve structures smaller
than 2¥ in 2N-dimensional phase space. For example, the umnit square,
considered as the phase space of the one-dimensional quantum cat map,?
is divided into n cells of size h. In this phase-space picture a state occupying

cne specific cell is the most precise information about the system ome can
have.

Yet, in quantum mechanics one is not restricted to phase-space consid-
erations. H%@wnmz%u the investigation of quantum systems is carried out by
using a complete set of commuting observables. Their {(possibly general-
ized) common eigenfunctions span the Hilbert space of the system. If these
commuting observables have continuous spectra, the formation of ever finer
structures in the associated basis becomes possible in principle. As an ex-
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ample, consider the position operators &1, &2 of a two-dimensional system:
the wave function in the coordinate representation may develop arbitrar-
ily small structures, if the dynamical evolution is chosen appropriately. In
order to resolve the ever finer structures in configuration space, the mo-
menta have to grow indefinitely in such a system. This was emphasized by
Chirikov et al.) who analyzed an abstract model showing “configurational
chaos”.

In the next section the model to study is presented. Results which fol-
low from the classical treatment are briefly discussed. Subsequently, the
“kinematic” properties of the associated quantum system are investigated:
the Floquet operator, its eigenfunctions, and the quasi-energy spectrum
are given. Finally, the time evolution in the position basis is considered. It
turns out that the coefficients of spatially localized states undergo in the
course of time a transformation which is formally equivalent to “stretching
and folding” known from classically chaotic systems.

THE CLASSICAL SYSTEM

The system under consideration® consists of a charged particle con-
strained to move in a unit square of the (z;, z7)-plane with periodic bound-
ary conditions (period 1) under the influence of time-dependent electromag-
netic fields. The Hamiltonian reads

1 1

m?.?“v“m m+m?.<.x+x.¢.vvbﬁm3. (1)

Here, Az.(t) is a sequence of smooth kicks of period T, duration £ and
height 1/ with ¢ < T'. 'V is a constant 2 x 2 matrix such that C = exp[V]
is integer hyperbolic and has determinant 1. Comparing (1) with

H'(x,pyt) = W:, ~ SA(x 1)) + ed(x, 1) 2)

one can determine the vector potential A(x,t) and the scalar potential
¢(x,t). It turns out® that the associated magnetic field B(x, t) is spatially
uniform and directed along the z3-axis, whereas the electric field E{x,{)
has components in the (z1, z2)-plane only. Although it contains terms pro-
portional to the square and the derivative of the kick function Ag.(t), such
an electric field can in principle be realized for any finite kick width e.
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The important difference of this model to other kicked quantum systems®
is the p-dependence of the kick amplitude which results in a qualitatively
distinct time evolution. The bilinearity of the Hamiltonian (1) makes it
possible to apply analytic methods throughout.

The classical equations of motion read

x={x,H}= @.m.u\.unbﬁm?v 3)

P={p,H}= ~V.pAgt). _
The time evolution consists of two different elements. The particle moves
freely between kicks. Coordinates and momenta directly before and after
a kick, (x~,p~) and (x*,p*), are related to each other according to the
symplectic transformation

xt = e¥x~ = C.x"
pt = eVp- = Clp-.

(4)
In the derivation of (4), the limit ¢ — 0 has been performed. Taking the
periodic boundary conditions in the (z;,s;)-plane into account, it follows
that the first part of (4) actually is a hyperbolic map of the unit square
onto itself. Therefore the time evolution in configuration space enjoys all
the properties which are known for such maps.” For example, orbits of a
particle initially placed at x¢ with zero momentum possess positive algo-
rithmic complexity® for almost all xo. This simply follows from the fact
that the subsequent particle positions in configuration space

x({nT)") = (C™ x¢) mod 1 (5)

coincide with the phase-space trajectories of a corresponding one-dimensional
system with g = 1, p = .

The accessible phase space is unbounded for almost all trajectories with
non-zero momenta. Stricily speaking, this prohibits a straightforward ap-
plication of tools for the study of chaotic motion: they are designed for
systems with a bounded energy surface.

QUANTUM KINEMATICS

The quantum mechanical description of the system is given by the same
Hamiltonian (1). However, in this case x and p have to be considered as
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pairs of canonically conjugate operators. They will be denoted by % and p,
etc. .

The time evolution of arbitrary states {4} is known if the time evolution
of the elements of a basis in Hilbert space is known. Two bases prove
to be particularly useful. On the one hand, there is the complete set of
orthonormal (generalized) eigenvectors of the position operator

-

X|x) = x|x) ®1, 22 € [0,1) (6)

with the property

Ix+z)=|x) z,z22€ Z (7
because the (@1,z;)-plane is tiled into equivalent unit squares. On the
other hand, there is an orthonormal basis associated with the momentum
operator

BIp) = p|p) = hk|Ak)

the discrete spectrum being a consequence of the spatial periodicity.

ki,ks € Z, {(8)

As a consequence of the bilinearity of the Hamiltonjan (1), the equations
of motion in the Heisenberg picture are formally identical with the classical
equations of motion {3). Nevertheless, in order to investigate the long-
time behaviour of a quantum system the time-evolution operator over one
period, the Floquet operator U(T'), is more appropriate. Evaluating the
formal expression (T is the time-ordering operator)

U(T) = Texp IM L &mi (9)

vields in the limit £ -~ 0
T . A S 5
U(T) = exp —!wﬂﬁé exp ﬁl%mﬁx V.p+p-V- u&_ =Up(T)Ug. (10}
The period of integration has been chosen in such a way that the application
of the kick Ux is followed by the free time-evolution according to Up(T).
The transformation of the eigenstates of position and momentum under the
kick is remarkably simple

Uglx) =|{C-x)mod1) and Ug|p)=|C™'-p). (11)
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Hence the eleciromagnetic fields effect a mapping of the states which is given
by applying the classical kick transformation to the labels of the quantum
states.

The eigenfunctions | 1) of the time-evolution operator U(T) can be found
by solving the equation

U(T) |) = e FT/% ). (12)

The set of all numbers E for which (12) holds is called the @:mmm-mumam%
spectrum, and associated with every particular value of E there is a (pos-
sibly generalized) eigenstate.

An analysis of how the Floquet operator U(T) acts on the momen-
tum. basis reveals the structure of its eigenstates. The operator Uy parti-
tions this two-dimensional grid of states into “discrete hyperbolas” S(P) =
{|C*-P),s € %} labelled by P, which are invariant under U %: Applica-
tion of this operator transforms the states on each S(P) among themselves.
The free time-evolution Uz(T") only changes the phase of each momentum
state. Therefore, superpositions of states on a single hyperbola S(P) with
appropriate phases turn out to be eigenstates of the total time evolution
operator U(T')

z

o)== £ expl-gpfolP) + ianl| &7 P) (13)

n—1
-YpC&p w20

s“._.ﬁ_u. %ﬁﬁ“v = _ﬁ_mﬂa _ ﬁﬂhv
Y5-CP.Ep m<0

s=1 o
where « is any real number in the interval [0,2x). Straightforward calcu-
lation shows that {|P,a)} is a complete set of (generalized) orthonormal
states,

r da S|P, a)(P, a| =1 (15)

and
(P, a|P', o/} = §(P,P) ¥ b{a-d +21m) (16)

m=—co
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where only the m = 0 term is relevant. The Kronecker symbol in (16)
, 1 if P=p _

6(P,P') = ﬁ 0 clee (17)

expresses the fact that two hyperbolas labelled with different P and P do
not have any state in common.

From
U(T)IP,a) = €| P, a), (18)

it follows that the quasi-energy spectrum is absolutely continuous, and every
value is countably infinite degenerate.

Having determined the properties of the Floquet operator U(T') one can
turn to the investigation of the system’s long-time evolution. The con-
tinuous quasi-energy spectrum is a promising fact which, in combination
with the bounded configuration space, may give rise to irregular quantum-
mechanical motion.

QUANTUM DYNAMICS

The discrete and equidistant spectrum of the momentum operator has a
consequence which is known as quantum resonance.®) At the time g = 2/h
the free time-evolution operator Ur becomes the identity: Ugp{tz) = 1.
Hence, if the external kick period T coincides with t5 (or an integer multiple
of it) the Floquet operator over n periods T reduces to the nth power of
the kick operator Ux. The free time-evolution appears to be mn.wﬁummmmm.
[t becomes possible to investigate exclusively the effect of the kicks which
in the classical model generate the irregular behaviour. For simplicity, the
matrix C is assumed to be symmetric from now on.

Taking a position eigenstate |x,) as initial state, the time evolution over
n periods T = tg immediately follows from (11)

U((nT)7) |%0) = Ug|%o) = [ C" - xq). (19)
Therefore the expectation value of the position operator % becomes

(W(Ta () 1% [ 9(T7 (5))) = (C™ - x0) mod 1. (20)
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The last two equations show clearly the high irregularity of the exact
quantum-mechanical time-evolution of the wave function and, consequently,

of the position expectation-value. It is completely determined by the re-

peated application of a hyperbolic map C on some initial value. As an
immediate consequence of (19) the quantum time-evolution in this model
has positive algorithmic complexity.
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Figure 1: The distribution of non-zero coefficients of the state |}

over the configuration space at time { = 0~ (A) and after
n periods (B)
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Let |9) be a state which initially is localized in a small region of con-
figuration space (Fig. 1A). The non-zero coefficients of this state under the
time evolution are spread exponentially quick over the total set of basis
vectors |x). After n periods T the coefficients vary strongly over the coor-
dinate basis, as is depicted schematically in Fig. 1B. This process formally is
equivalent to the transformation of a classical phase-space density of a one-
dimensional system under the influence of a hyperbolic map. Classically,
stretching and folding in phase space is the origin of “mixing” behaviour.”)
After introducing a codrse-graining in phase space one discovers classical

observables to approach an “equilibrium state”,'%

As a consequence of stretching and folding of the wave function in config-
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uration space, expectation values of various observables with respect to an
initially localized state |4} do approach a limit - even without introducing
a coarse-graining procedure. Let the initial state |1} give rise to a non-zero
probability amplitude [¢{x)}|? = x(x,%o)/Az; Az; only in a small rectangle
centered about xg,

1 |zip—21| € Az /2 and |29 — 22| < Azy/2
= ! - ! 21
X(¥%o) A 0 else. (21)
Then the estimate
1 2
~ — -2l <« —n|In 2| 29
L T e (22)

can be derived, A being an eigenvalue of the matrix C. Hence the expecia-
tion value of the position operator X indeed approaches its limit

111
Jim, B RETDI9) = 5| (23)

exponentially quick. The same is true for the variance of the position op-
erator. Omne finds (Azy = &1 — (& |2:1]¥))

| (#1(A2(T)

where ¢, ¢y are positive real numbers. Furthermore, the position auto-

1
vm:wv Imﬁ < Emla__sy_..Tnmmlm:isy_u AMKC

correlation function containing information about the time evoliution of
spatial correlations also decays exponentially.”

Turning to expectation values of momentum operators, one generically
encounters the expected growth of momenta p(t) and, consequently, of the
energy H (£). The explicit calculation shows that the increase of these quan-
tities is exponential in time, and the rate is again determined by the eigen-
values of the matrix C. It is worth remarking that in this model the time
dependence of the expectation value of the energy strictly parallels the clas-
sical one. The ubiquitous “quantum mechanical suppression of (diffusive)
energy growth” % is not present here.

SUMMARY

It has been shown for a particular model that within the framework of
quantum mechanics, the formation of arbitrarily small structures is possible
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on the level of wave functions. The spectrum of the Floquet operator has
been obtained from the complete set of analytically given eigenfunctions,
and turned out to be absolutely continuous.. This property is reflected
in the time evolution of various expectation values which do not change
quasi-periodically in time but approach limiting values at an exponential
rate. Obviously for such a spectrum the method of level statistics is not
applicable. Tt is important to note that with respect to long-time predictions
in this model one encounters basically the same difficulties which are present
in classical chaotic systems.

Further investigations will concentrate on the problem of why the be-
haviour observed here generically seems to be suppressed. Another question
of interest is whether autonomous systems are able to mimic such behaviour
for some finite but possibly long time.
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